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1
Giới thiệu

Notebook về toán ...

Các bạn có thể tải phiên bản PDF của notebook này ở mathbook.pdf.

Mình đang dời nhà sang https://dunglq2000.github.io để dễ tìm kiếm (bỏ subdomain /mathematics).

1.1 Những lời nói đầu

1.1.1 Toán học là gì với mình?
Mình không giỏi toán. Tuy nhiên toán lại là môn mình dành nhiều thời gian nhất trong suốt 10 năm (2015
tới 2025). Đây là mối lương duyên không tầm thường, nhưng cũng không hề lãng mạn tí nào.

Những ngày đầu học toán

Mình bắt đầu học toán nhiều từ cấp 2 nhưng cũng không quá đặc sắc. Mình chỉ đơn giản là làm nhiều bài
tập hơn, nhiều dạng hơn thôi. Mình may mắn được học với thầy cô tâm huyết, cũng như các bạn học cùng
chí hướng. Nhờ các cô dạy toán và bạn bè mà mình tiến bộ, biết thêm nhiều kiến thức mới (đặc biệt từ chỗ
mấy bạn học thêm ở trung tâm 218 ^^).

Năm 2015 mình vào lớp 10 chuyên toán. Sau ba năm thì mình nhận ra mình học toán rất ... tệ, nhưng mình
cũng nhận ra đam mê mạnh mẽ của mình cho môn toán. Mình rất biết ơn các thầy, cô trong trường, luôn
giúp đỡ và động viên mình, cũng như cho mình thấy được nhiều lối tư duy khác nhau. Đặc biệt, chuyên
toán học toán theo cách khác với những lớp khác mà tư duy đó mình vẫn sử dụng tới tận hiện nay.

Thầy chủ nhiệm lớp mình suốt 3 năm là giáo viên toán. Mình kính trọng thầy không chỉ vì thầy giỏi, mà
thầy dạy mình cách học toán sao cho đúng. Thông thường học sinh chúng mình bám theo các tính chất để
giải bài toán. Ví dụ, đường phân giác của một góc thường được hiểu là đường chia đôi góc đó. Tuy nhiên
thầy nói đó là tính chất, không phải định nghĩa. Đường phân giác của góc là tập hợp các điểm cách đều
hai cạnh của góc.

Càng học nhiều toán thì mình càng nhận thấy định nghĩa là nơi bắt đầu mọi thứ, là điểm quan trọng nhất
của các vấn đề toán học. Các tính chất giúp chúng ta tìm lời giải nhanh hơn, nhưng khi bế tắc thì định
nghĩa là nơi để chúng ta bám vào và tìm hướng giải. Trong trường hợp hình học, mỗi đối tượng hình học
đều là một tập hợp điểm. Do đó chúng ta có thể nói điểm là đơn vị cơ bản nhất. Các định nghĩa đóng
vai trò xây dựng nên nền tảng toán học mà về sau mình mới hiểu được ý nghĩa của chúng và hậu quả nếu
chúng "có vấn đề". Phần sau mình sẽ nói rõ hơn về điều này.

1

https://dunglq2000.github.io


Math Book

Một điều quan trọng mình được thầy nhắc là không nên bám vào các phương pháp giải toán. Thông
thường các sách tham khảo, khóa học ở cấp 3 sẽ theo dạng Bài 1. Chủ đề A. Phương pháp 1 rồi lại Bài
2. Chủ đề A. Phương pháp 2. Theo mình, các phương pháp rất hữu ích khi gặp bài đúng dạng, chỉ cần
"áp dụng công thức" là xong. Tuy nhiên việc học theo phương pháp cũng là con dao hai lưỡi. Nếu chúng
ta gặp dạng chưa học thì khả năng cao là chịu chết. Việc đọc các phương pháp giải bài là cần thiết để có
nhiều phương án giải quyết khác nhau, nhưng quan trọng là khả năng tư duy để kết nối những cái mới gặp
với những điều đã biết. Một bài hình học gồm dữ kiện và học sinh cần giải quyết bốn câu hỏi nhỏ (a), (b),
(c), (d). Đây thường là cấu trúc của câu hình học trong đề tuyển sinh lớp 10 ở thời mình. Tất nhiên là dù
đề chung hay đề thi chuyên toán luôn có những bạn làm trọn vẹn bốn câu. Vấn đề là, khi cắt bỏ ba câu hỏi
(a), (b), (c) và chỉ bảo giải câu (d) thì bài toán trở thành tầm quốc gia, quốc tế (VMO, IMO). Lý do rất
đơn giản, những câu (a), (b), (c), (d) được tăng dần theo độ khó và câu trước thường là tiền đề để giải hoặc
làm gợi ý cho câu sau. Khi chúng ta mất gợi ý thì chúng ta sẽ tiếp cận ra sao để giải quyết câu (d)? Đây
chính là thực tế của toán học nói chung. Nhiều công thức, định lí được phát biểu đơn giản, ngắn gọn như
câu (d) của đề tuyển sinh, nhưng để chứng minh chúng thì mất mấy trăm năm nỗ lực của con người chứ
không phải một lề sách là đủ.

Hai điều thầy nói có thể thấy rõ trong các cuộc thi olympiad toán, và cũng là thực tế trong toán học. Câu
khó thường có dạng:

Số 𝐴 được gọi là số như này nếu nó thỏa mãn các điều kiện như kia. Hãy chứng minh nếu 𝐴 là
số như này thì nó sẽ có các tính chất như nọ.

Đây là một dạng toán rất khó nhằn vì chúng ta đụng phải một khái niệm, định nghĩa mới lạ. Lúc này chúng
ta phải bám sát định nghĩa vì đó là thứ duy nhất đề cho chúng ta để chứng minh tính chất. Vấn đề là chỉ
với mỗi định nghĩa không giúp chúng ta tìm phương pháp giải. Việc dựa trên các phương pháp đã biết còn
tùy vào chúng ta liên kết được định nghĩa đó với kiến thức, kinh nghiệm và trải nghiệm của bản thân tới
mức nào. Điều thú vị là kiến thức, kinh nghiệm và trải nghiệm có thể được nâng cao nhờ sự chăm chỉ và rèn
luyện "trực giác". Đối với người không giỏi toán như mình thì việc nâng khả năng của trực giác rất có lợi,
cho phép mình "phán đoán" cách tiếp cận sẽ đưa tới lời giải. Làm càng nhiều, sự thấu hiểu và cảm nhận
của mình với những bài toán càng nhạy.

Một giáo viên dạy toán khác của lớp mình cũng đã để lại nhiều bài học quý giá. Một lần nữa, câu chữ trong
toán học rất quan trọng và chúng ta phải cẩn thận khi xử lý. Các bạn có thể thấy hai cách viết R ∖ {0}
và (−∞, 0) ∪ (0,+∞) giống nhau vì đều chỉ việc bỏ số 0 khỏi tập số thực R. Tuy nhiên khi xét đến các
khoảng (đoạn) xác định của hàm số thì đây là vấn đề rất quan trọng. Khi xét tính đồng biến, nghịch
biến bằng đạo hàm, giả sử hàm số 𝑓(𝑥) = 1

𝑥
với đạo hàm 𝑓 ′(𝑥) = − 1

𝑥2
< 0 với mọi 𝑥 ∈ R ∖ {0}. Khi đó

chúng ta có thể nói rằng hàm số 𝑓(𝑥) xác định trên tập R ∖ {0}. Tuy nhiên, nếu chúng ta kết luận rằng
𝑓(𝑥) nghịch biến trên R ∖ {0} thì đây là kết luận sai hoàn toàn. Kết luận đúng phải dựa trên các khoảng
xác định, nghĩa là hàm số nghịch biến trên hai khoảng (−∞, 0) và (0,+∞). Ở [1] (trang 220, định lí
2) ghi rằng:

Giả sử hàm số 𝑓 có đạo hàm trên khoảng I. Khi đó

a) Nếu 𝑓 ′(𝑥) > 0 với mọi 𝑥 ∈ I thì 𝑓 đồng biến trên I.

b) Nếu 𝑓 ′(𝑥) < 0 với mọi 𝑥 ∈ I thì 𝑓 nghịch biến trên I.

c) Nếu 𝑓 ′(𝑥) = 0 với mọi 𝑥 ∈ I thì 𝑓 có giá trị không đổi trên I.

Ở đây, sách giáo khoa ghi rõ ràng khoảng xác định mà trên đó hàm số có đạo hàm, nghĩa là không được
nói 𝑓(𝑥) ở trên nghịch biến trên một khoảng "hụt" ở giữa như (−∞, 0) ∪ (0,+∞) hay R ∖ {0}, mà phải là
nghịch biến trên hai khoảng xác định: (−∞, 0) và (0,+∞).

Một vấn đề quan trọng dễ bị sai sót là các mệnh đề "Nếu như này thì như kia". Theo ngôn ngữ logic thì
đây là phép kéo theo.

Phép kéo theo "Nếu 𝑃 thì 𝑄" hay "𝑃 ⇒ 𝑄", trong đó 𝑃 và 𝑄 là hai mệnh đề, sai khi 𝑃 đúng
và 𝑄 sai, và đúng trong các trường hợp còn lại.
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Thông thường có hai điểm dễ bị hiểu nhầm hoặc cố tình hiểu nhầm (khi đánh tráo khái niệm, bẻ cong logic,
...).

1. Đây là phép kéo theo, nghĩa là phải hội tụ đủ tất cả điều kiện 𝑃 thì chúng ta mới có 𝑄.

2. Khi phủ định hai mệnh đề ta không thu được mệnh đề cùng tính đúng sai với mệnh đề ban đầu, tức là
khi có 𝑃 chưa chắc có 𝑄. Mình thấy việc này xảy ra gần như trong tất cả lĩnh vực không riêng toán,
không biết do vô tình hay cố ý. Ví dụ mình có mệnh đề "Nếu trời mưa thì đường ướt". Như vậy có
thể suy ra "Nếu trời không mưa thì đường không ướt"? Câu trả lời là chưa chắc, đường vẫn có thể
ướt vì lý do khác, ví dụ như nước bị rò rỉ ở đường ống gần đó.

Về mặt logic thì phép kéo theo 𝑃 ⇒ 𝑄 sẽ hoàn toàn tương đương phép kéo theo 𝑄 ⇒ 𝑃 , trong đó 𝑃
và 𝑄 là mệnh đề phủ định của 𝑃 và 𝑄. Với ví dụ trên, chúng ta suy ra được "Nếu đường không ướt thì
trời không mưa". Mệnh đề này có cùng giá trị logic với mệnh đề ban đầu "Nếu trời mưa thì đường ướt":
đúng thì đúng chung, sai thì sai chung. Đây là vấn đề khi lên đại học và đối chiếu sách vở mình rút ra được.
Ở cấp 3 mình chỉ được nhắc rằng việc phủ định chưa chắc đúng còn lý do đằng sau (như mình vừa trình
bày) thuộc khuôn khổ nội dung về logic và được giảm tải ở thời mình. Khi lên đại học thì môn toán rời rạc
thường sẽ có phần cơ sở logic chính là nền tảng của phép kéo theo.

Đại học, tình yêu không thành với toán

Khi được tiếp cận các kiến thức toán cao hơn ở đại học thì mình nhận ra một vấn đề thú vị của bản thân:
mình học toán rời rạc (lý thuyết số, hàm Boolean, lý thuyết nhóm) tốt hơn toán liên tục (các loại giải tích).
Hệ quả là mình dở tệ môn vật lý vì nhiều kiến thức về giải tích được áp dụng để giải quyết các bài toán vật
lý. Artificial Intelligence (AI) và Machine Learning (ML) là những từ khóa "hot trend" nhất lúc mình học
đại học, nhưng vì khả năng toán liên tục yếu kém mà mình sớm đuối sức và không đi sâu nữa. Tuy nhiên
mình vẫn có hy vọng sẽ hiểu một ngày nào đó ^-^. Do đó thay vì AI/ML mình đã chọn theo mật mã học
(cryptography), cụ thể là mã hóa khóa đối xứng (symmetric key cryptography) dựa trên các hàm Boolean.
Mình thấy mình theo lĩnh vực này bớt thảm hơn AI/ML nên là mình theo tới tận bây giờ (2025).

Khi lên đại học, các kiến thức trở nên phức tạp hơn cả về bề rộng lẫn chiều sâu. Chúng ta thường sẽ học
nhiều kiến thức hơn (mở rộng) nhưng đồng thời học sâu bản chất (chiều sâu). Mình thích ham vui nên mình
học rất nhiều loại toán: giải tích, xác suất thống kê, hình học giải tích, hình học affine, hình học phi Euclid,
lý thuyết số, đại số Booelan, đại số tuyến tính, lý thuyết đồ thị, lý thuyết tập hợp, ...

Đa phần trong đó là ... cưỡi ngựa xem hoa. :) Các bạn có thể thấy những môn về toán rời rạc mình học
rất nhiều và viết rất kỹ ở notebook này, mỗi tội đa phần vẫn là cơ bản. :) Các kiến thức về toán liên tục ở
notebook này vào thời điểm hiện tại còn ít.

Quan niệm của mình về toán học

Mình thích toán vì sự logic và chặt chẽ của nó. Khi học những môn trừu tượng như lý thuyết nhóm, số
phức, ... thì mình còn thích hơn vì khi đó có một nền tảng chung, trừu tượng hơn cho những gì chi tiết. Ví
dụ, hình học Euclid được xây dựng dựa trên các tiên đề của Euclid từ quan sát trực quan. Về sau, các
nhà toán học xây dựng một nền tảng cao hơn mà với một điều kiện nhất định thì Euclid đúng, nhưng với
một điều kiện khác thì Euclid nhường chỗ cho người khác. Lúc này trực quan không còn đúng nữa mà phụ
thuộc vào trí tưởng tượng, sáng tạo của con người. Cách tiếp cận tổng quát hóa này giúp làm đơn giản vấn
đề nhưng cũng là cơ sở cho những "hạt giống" khác phát triển ở nhiều lĩnh vực khác.

Năm 2024 mình có xem một series trên Youtube của kênh Nhận thức mới về định lí bất toàn của Godel do
giáo sư Phạm Việt Hưng trình bày. Mình thấy series rất thú vị và mình có nhiều quan điểm giống giáo sư,
nhưng cũng có nhiều quan điểm trái ngược.

Mặc dù toán học logic và chặt chẽ, nhưng định lí bất toàn đã chứng minh được rằng toán học không hoàn
hảo. Quan trọng hơn là tính đúng đắn của toán học nằm ngoài toán học và có nhiều điều, kể cả trong toán
học, chúng ta không thể biết là đúng hay sai. Điều này mình đồng ý với Godel lẫn giáo sư. Tuy nhiên một
vấn đề là nếu toán học sai thì sẽ hậu quả sẽ rất khủng khiếp. Ví dụ, trước khi khái niệm "giới hạn" ra đời
thì người xưa có những lập luận đúng về mặt logic nhưng sai trên thực tế như nghịch lý nổi tiếng của Zeno.
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Ở thời của Zeno thì các khái niệm trừu tượng như "vô hạn", "vô cùng lớn", "vô cùng bé" chưa xuất hiện.
Do đó khi làm việc với những đại lượng vô hạn đã gây ra những hiểu lầm mà về mặt trực quan chúng ta
lại thấy "có vẻ đúng". Euclid cho rằng "Một phần thì nhỏ hơn toàn bộ". Tuy nhiên lý thuyết tập hợp của
Cantor đã chứng minh được một phần (của tập vô hạn) cũng bằng toàn bộ, thậm chí có nhiều kiểu vô hạn
với "kích thước" lớn nhỏ khác nhau.

Trước thế kỉ 18, toán học được sử dụng làm công cụ chính để nghiên cứu các lĩnh vực khác, nhất là vật lí.
Điều này phù hợp khi giải thích các hiện tượng quan sát được vào thời đó như mặt phẳng Euclid. Vấn
đề là vật lí dựa trên nền tảng toán học, nhưng toán học lại dựa trên các quan sát hiện tượng vật lí. Đây là
một vòng luẩn quẩn và chỉ cần sai sót nhỏ trong toán sẽ gây ra ảnh hưởng rất nghiêm trọng. Từ đó toán
học cần phải đúng đắn từ nội tại.

Các nhà toán học thế kỉ 18, 19 như Cauchy, Hilbert, ... đã xây dựng lại toán học không dựa trên quan sát
vật lí mà dựa trên các định nghĩa chặt chẽ. Trong series về định lí bất toàn, giáo sư Phạm Việt Hưng có
nói các nhà toán học thời kì này tôn sùng và thần thánh hóa toán học quá mức. Điều này mình vừa đồng ý
vừa không đồng ý với giáo sư. Rõ ràng việc các nhà toán học làm lúc đó là rất cần thiết để đảm bảo nội tại
toán học thống nhất, không mâu thuẫn, và chặt chẽ. Việc họ tôn sùng quá mức cho thấy họ hiểu sự quan
trọng của việc họ làm và rất nhiều những điều bị bác bỏ trước đó đã được đưa trở lại toán học. Từ đây mở
ra rất nhiều khả năng phát triển, mở rộng tới những nơi chúng ta chưa thể thấy, sửa chữa những sai lầm
của người đi trước. Bằng việc để trí tưởng tượng bay xa, kết hợp với logic chặt chẽ, đã giúp nhiều lĩnh vực
đoán trước sự tồn tại của nhiều đối tượng trước cả khi phát hiện ra chúng.

Tuy nhiên quan niệm của mình về các nhà toán học thời kì đó có chút khác. Mình công nhận là những đóng
góp của họ đã đưa tới sự phát triển đáng kinh ngạc trong nhiều lĩnh vực, nhưng bản thân mình thấy đó
là công việc ... rất nhàm chán. Mục tiêu quan trọng nhất của họ là làm chặt chẽ và đảm bảo tính đúng
đắn của toán học từ những khái niệm có thể gọi là cơ bản nhất làm nền tảng. Những khái niệm như điểm,
đường, ... đã được định nghĩa từ rất lâu ở bộ sách huyền thoại Elements của Euclid [2], nhưng trong sách
lại định nghĩa chung chung kiểu:

• mặt là thứ có bề dài và có bề rộng;

• đường là thứ chỉ có bề dài mà không có bề rộng;

• điểm là thứ không có bề dài lẫn bề rộng.

Ở đây, "thứ" là gì? Nhiều hình thù kì quặc đã được xây dựng, vừa có thể được xem là đường mà cũng vừa
có thể được xem là mặt theo định nghĩa của Euclid, ví dụ như tấm thảm Sierpinski. Rõ ràng những nhà
toán học hiện đại đã làm công việc chán ngắt là định hình lại toán học nhân loại trong 2000 năm. Cộng 1
respect cho các nhà toán học chứ mình thấy là oải rồi. :>>>

Đối với mình, toán học là bộ môn của đam mê, logic, và cả toxic. =))) Các nhà toán học không quan tâm
kết quả của mình có ứng dụng thực tiễn gì. Họ quan tâm tính đúng đắn của từng mệnh đề, từng chứng
minh. Họ cố gắng bảo vệ niềm tin của mình đến nỗi dám đương đầu mọi thứ, thậm chí tử thần.

Ở thời Trung Cổ nơi những tòa án dị giáo đàn áp dã man các nhà khoa học ủng hộ thuyết nhật tâm của
Copernicus, các nhà khoa học (đa phần là toán và thiên văn) thậm chí còn bác bỏ những điểm chưa đúng
của Copernicus - cho rằng Trái Đất quay xung quanh Mặt Trời - và bổ sung rằng bản thân Mặt Trời cũng
quay quanh cái gì đó khác nữa. Cauchy tin tưởng cách xây dựng giới hạn dựa trên ngôn ngữ 𝛿 − 𝜀 tới nỗi
năm lần bảy lượt chơi trò "mèo vờn chuột" với định chế khoa học cao nhất nước Pháp là Viện Hàn lâm và
Đại học Bách khoa (Ecole Polytechnique) [3]. Tất nhiên Cauchy đã có cuộc đời không dễ dàng gì và nhiều
lần rơi vào tình cảnh khó khăn. Cantor tin tưởng lý thuyết tập hợp của mình là vững như đá tảng, nếu mũi
tên nào bắn vào thì mũi tên sẽ bật ngược lại người bắn [3]. Tuy nhiên phe đối lập với Cantor có các nhà
toán học vĩ đại Poincare và Kronecker với quan điểm bảo thủ luôn cố gắng vùi dập ý tưởng của ông. Về
sau, những người ủng hộ ông như Hilbert, Dedekind, ... đã thắng thế, và lý thuyết tập hợp của Cantor đã
được truyền bá rộng rãi. Đáng tiếc thay, Cantor đã ra đi mãi mãi trước đó do đột quỵ từ trầm cảm bởi sức
ép từ phe Kronecker và nỗi đau mất người thân.
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Kết luận

Các bạn thấy đó, bản thân toán học không hoàn hảo và thậm chí các nhà toán học nhiều lần xung đột với
nhau về logic. Về mặt logic thì ai cũng đúng, nhưng éo le là người khác không chấp nhận bạn đúng và bác
bỏ nó. :'( Lúc này, hệ thống định nghĩa là điều cực kì quan trọng và cần được thống nhất trên toàn thế giới,
giữa các cộng đồng khoa học. Trong các công trình của mình thì hệ thống định nghĩa phải rõ ràng, thống
nhất và không mâu thuẫn. Khi đó những kiến thức được xây dựng trên đó sẽ hợp lý về logic.

Toán học đã, đang và sẽ luôn là niềm đam mê của mình bất chấp khả năng có hạn. ^)^ Mình hy vọng
notebook này sẽ lưu trữ đam mê tuổi trẻ của mình, và nếu trong khả năng có hạn, tiếp thêm sức mạnh cho
những người theo đuổi toán học.

Moscow, ngày 23 tháng 02 năm 2025.

1.1.2 Cơ sở xây dựng notebook
Mục tiêu của notebook

Notebook này được xây dựng từ kiến thức của bản thân mình, những điều thú vị đối với mình trên con
đường học toán và mật mã học. Lượng kiến thức và công bố khoa học ngày nay quá nhiều nên mình chỉ ghi
lại những điều mình thích và mình nghĩ là quan trọng với mình.

Notebook này được mình xây dựng cho bản thân trong tương lai. Tuy vậy mình cũng hy vọng một ngày
đẹp trời nào đó notebook này trở thành nơi giúp cộng đồng khoa học Việt Nam phát triển mạnh.

Công cụ phát triển notebook

Ban đầu, notebook được viết bởi LaTeX PDF. Phần cũ mình đã lưu ở đây, các bạn có thể xem nếu hứng
thú.

Cá nhân mình rất thích font chữ trên LaTeX PDF (CMU Serif) nên mình bắt đầu viết vào tháng 3 năm
2023. Tuy nhiên sau nhiều suy nghĩ và tham khảo ý kiến thì mình đã quyết định chuyển hết sang dạng web
vào tháng 10 năm 2024.

Việc viết notebook ở dạng web có một số ưu điểm so với PDF:

• cỡ chữ phù hợp với việc đọc trên điện thoại: mặc dù cùng cỡ chữ 12pt nhưng trên điện thoại đọc PDF
khó khăn hơn đọc web;

• khả năng đưa code (Python, C++) vào: việc bỏ code vào web không bị giới hạn bởi lề web và những
đoạn code quá dài không cần phải suy nghĩ nên xuống dòng như thế nào như trên PDF;

• một tính năng thú vị mà mình hay dùng của package sphinx (Python) là các admonition. Mình sử
dụng hai class là danger và dropdown cho các phần chứng minh và sau này mình dùng dropdown cho
các phần code. Lý do cho việc này mình sẽ giải thích rõ ở phần sau;

• mình sử dụng package sphinx-proof để đánh số thứ tự cho định nghĩa, định lí, nhận xét, tương tự
như việc khai báo newenvironment hay newtheorem trong LaTeX. Hiện tại nhược điểm của package
này là chưa hỗ trợ tiếng Việt và mình cũng chưa biết đóng góp hay chỉnh sửa ra sao.

Tuy nhiên một số nhược điểm ở dạng web cũng khá khó chịu:

• các công thức toán "inline", tức là được đặt trong cặp dollar $...$ không tự động xuống dòng nên dễ
bị tràn ra bên phải. Thực ra chúng ta có thể kéo màn hình qua và đọc được nhưng không "mượt";

• font chữ: mình sử dụng theme Furo giống với trang tài liệu của SageMath (phiên bản 2025) và nhà
thiết kế theme nói rằng font chữ được lựa chọn cẩn thận để phù hợp với việc đọc trên web. Mình đồng
ý với họ vì nhìn các font LaTeX (CMU Serif) trên web lại không thuận mắt như trên PDF. Cơ mà nếu
được thì mình vẫn thích các font LaTeX hơn.
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Các hình vẽ chất lượng cao được vẽ từ TikZ và sau đó mình chuyển đổi PDF thành JPEG để đưa vào web
nên chất lượng bị giảm.

UPDATE ngày 07/04/2025: ban đầu mình viết notebook bằng markdown (sử dụng Jupyter Book) nhưng vì
Jupyter Book dựa trên Sphinx mà Sphinx có nhiều tính năng hay ho hơn nên mình chuyển sang viết bằng
reStructuredText (rST) thay vì markdown. Dù vậy nếu độc giả vẫn có thể đóng góp bằng markdown (như
bên dưới mình có trình bày) và mình sẽ tự sửa thành rST, tất nhiên là kèm credit.

Nguyên lí xây dựng notebook

Chứng minh là bắt buộc, nhưng dễ gây chán

Mình nhận thấy nhiều quyển sách bị đánh giá thấp vì lối viết định lí rồi sau đó chứng minh, rồi lại tiếp tục
như vậy. Đây thường là sách giáo trình được viết theo khuôn mẫu của nhà xuất bản nên điều này dễ hiểu.
Tuy nhiên mình muốn ghi lại nhiều nội dung và việc ghi chứng minh sẽ khiến bài viết dài lê thê.

Chứng minh là bắt buộc nên mình vẫn viết nhưng sử dụng admonition của sphinx với class dropdown nhằm
ẩn phần chứng minh đi. Các bạn có thể bấm vào chữ "Chứng minh" để xem đầy đủ. Template thông thường
của chứng minh sẽ có dạng

.. admonition:: Chứng minh
:class: danger, dropdown

Ở đây viết chứng minh.

Kết quả sẽ như sau:

INFO-CIRCLE Chứng minh

Ở đây viết chứng minh.

Class danger để màu đỏ cho đẹp. :)))

Nếu có thể ẩn phần code thì mình sẽ ẩn

Notebook này có rất nhiều demo phá mã với code, cũng như writeup CTF. Mình nhận thấy cần có code để
dễ theo dõi (cả đề lẫn lời giải). Tuy nhiên đôi khi code khá dài và việc này cũng khiến bài viết nhìn có vẻ
dài. Do đó mình cũng sử dụng class dropdown để ẩn phần code đi hoặc chuyển thành đường dẫn tải xuống,
và nếu các bạn muốn đọc chi tiết thì chỉ cần ấn vào để xem. Templete lúc này có dạng

.. admonition:: main.py
:class: dropdown

.. code-block:: python

print("Hello, World")

Kết quả sẽ là:

INFO-CIRCLE main.py

print("Hello, World")
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Tiếng Việt là nền tảng

Mình rất thích tiếng Việt và mình cũng không nghĩ là nên làm khó bản thân trong tương lai, thậm chí
độc giả, bằng việc viết ngôn ngữ khác. Tiếng Việt rất giàu đẹp, phong phú, và sẽ luôn là xương sống cho
notebook này.

Một vấn đề khá đau đầu là rất nhiều từ vựng chuyên ngành hiện tại chưa có thuật ngữ tương đương trong
tiếng Việt. Các thuật ngữ mình dùng đa phần là lấy từ wikipedia hoặc đọc từ các sách tiếng Việt, còn nếu
không có thì mình sẽ giữ nguyên tiếng Anh. Đôi khi các thuật ngữ lại nghe khá ... chuối và các tay to nước
nhà đã cải thiện dịch thuật. Ví dụ như "Dynamic programming" trong bảng dịch quyển "Introduction to
Algorithm" của MIT năm 2006 được gọi là "Lập trình động", rất sát từ (mà giờ nhiều người gọi là dịch kiểu
word-by-word). Lúc mình học cấp 3 (2015-2018) thì được là "Quy hoạch động" nghe vui hơn :)))

Một vấn đề đau đầu tương tự là sự trùng lặp thuật ngữ tiếng Việt. Hiện tại hai từ encode và encrypt đều
được dịch là mã hóa, nhưng về bản chất của hai hành động là khác nhau hoàn toàn. Encode sẽ chuyển đổi
giữa hai bảng chữ cái, ví dụ chuyển các kí tự trên bàn phím thành các số nhị phân gọi là bảng mã ASCII,
hoặc trong lý thuyết coding là F𝑛

2 → F𝑚
2 với 𝑚 và 𝑛 không nhất thiết giống nhau. Trong khi đó encrypt sẽ

biến đổi trong cùng bảng chữ cái, ví dụ RSA là Z𝑛 → Z𝑛 bằng phép modulo, mã khối nói chung có dạng
F𝑛
2 → F𝑛

2 . Ở notebook này mình sẽ dùng mã hóa để chỉ encrypt, còn code thì mình sẽ giữ nguyên thuật
ngữ tiếng Anh (lý thuyết coding, encode, decode, coder, decoder).

Mọi khái niệm, định nghĩa mình sẽ cố gắng viết bằng cả tiếng Việt, tiếng Anh và tiếng Nga. Quan trọng
nhất là các bài viết trên notebook này sẽ chỉ được viết bằng tiếng Việt.

Tổng kết

Việc xây dựng notebook này giống như tài liệu học tập cho bản thân mình. Tuy nhiên nếu may mắn mà
notebook này giúp bạn nào đó học tốt hơn thì cũng là điều tốt.

Mọi đóng góp của độc giả để giúp notebook tốt hơn, thậm chí đóng góp bài viết (ở dạng markdown) càng
được hoan nghênh. Mình viết trên reStructuredText nhưng có thể không thân thiện với đa số người dùng
nên các bạn gửi markdown về và mình sẽ tự sửa về rST. Các bạn có thể mở issue trên repository nếu có vấn
đề với nội dung mình viết. Nếu các bạn muốn đóng góp bài viết (contribute) cho repository này, các bạn có
thể contribute vào repository trên github hoặc gửi file markdown qua mail cho mình (dunglq@yandex.ru).
Các bạn nhớ để lại tên ở cuối bài viết hoặc giới thiệu trong mail vì có khả năng mình sẽ biên tập lại bài
viết của các bạn (về kí hiệu, bổ sung diễn giải, ...) nhưng mình giữ tên tác giả ở đầu bài viết. Như mình đã
nói ở trên, các bài viết trên notebook này chỉ được viết bằng tiếng Việt nên mình xin phép chỉ nhận các bài
đóng góp bằng tiếng Việt.

Cám ơn các bạn đã đọc những dòng ghi chú về những cơ sở và động lực mình xây dựng notebook này!!!

Moscow, ngày 23 tháng 02 năm 2025.

1.1.3 Những lời răn
There is no royal road to geometry.

Không có con đường hoàng gia đến hình học.

---Euclid

Học, học nữa, học mãi.

---Vladimir Ilich, Lenin (1870 - 1924)
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We must know. We will know.

Chúng ta phải biết. Chúng ta sẽ biết.

---David, Hilbert (1862 - 1943)

Mình tin rằng khả năng của con người là có hạn. Tuy nhiên giới hạn của mỗi người trong mỗi lĩnh vực mỗi
khác. Có người có năng lực về mảng này nhưng lại kém mảng kia, nhưng cũng có người giỏi mảng kia và
kém mảng này. Việc chắc chắn một điều không thể thực hiện khi chỉ mới nhìn là không hợp lý. Bằng chứng
là loài người có khả năng kế thừa tri thức rất mạnh, và những điều được cho là bế tắc của hiện tại, ai biết
được 500 năm sau có còn bế tắc nữa không.

Trong series về định lí bất toàn của Godel trên Youtube, giáo sư Phạm Việt Hưng nói rằng có những điều
mà chúng ta không bao giờ biết được, không bao giờ hiểu được. Mình không đồng ý với giáo sư ở điểm này
vì định lí cuối cùng của Fermat từng bị cho là không thể giải trong hơn 300 nhưng vẫn khuất phục trước trí
tuệ của loài người. Hiện tại có thể là chúng ta không biết, nhưng không có gì đảm bảo chúng ta mãi mãi
không biết.

Không thể là một nhà toán học mà không có tâm hồn thi sĩ.

---Sofia, Kovalevskaya (1850 - 1891)

Đường đi ngàn dặm, khởi đầu bởi một bước chân.

---Lão Tử

Mình rất thích câu nói này. Nếu mình làm một việc gì đó, có thể mình sẽ thành công, cũng có thể mình sẽ
thất bại. Tuy nhiên chắc chắn mình sẽ học hỏi được gì đó trong quá trình làm việc. Lúc trước mình hay sợ
thất bại, sợ uổng công mà không được gì, nhưng về sau mình nhận ra nếu không làm thì mình mãi sẽ không
làm được gì cả.

Lịch sử loài người đi qua nhiều lần thử sai. Đôi khi cái giá phải trả cho tri thức, cho chân lý rất đắt. Không
ít nhà khoa học đã bỏ mạng khi thực hiện các thí nghiệm hoặc chế tạo các thiết bị giúp đời sống con người
tốt hơn. Ở thời Trung Cổ, các nhà khoa học thậm chí còn dám chống lại Tòa án Dị giáo vì sự đúng đắn của
khoa học, và kết cục luôn rất thảm khốc. Những bài toán từng được mệnh danh là không thể giải, ví dụ
như định lí cuối của Fermat, đã được giải sau 300 năm cố gắng của loài người. Trên con đường giải quyết
định lí cuối cùng của Fermat, rất nhiều lý thuyết mới đã ra đời, thúc đẩy toán học phát triển mạnh mẽ.

Trong phim Mr. Robot (phần 1), Mr. Robot đã nói với Elliot rằng:

Khi xem xét đến tận cùng của mọi vấn đề thì đều quy về 0 hoặc 1. Nếu cậu làm, cậu là 1. Nếu
cậu không làm, cậu là 0.

Câu nói của Mr. Robot cũng giống với niềm tin của nhà toán học David Hilbert. Ông tin rằng trên đời chỉ
có hai loại người: những người làm việc và tạo ra kết quả, và những người không làm gì. Mình xin phép bổ
sung cho ý này, kết quả không nhất thiết phải theo hướng tốt. Một thí nghiệm có thể thành công, có thể
thất bại. Nếu thành công tức là lý thuyết có tiến triển. Nếu thất bại, chúng ta xem xét nguyên nhân, rút
kinh nghiệm, thay đổi cách tiếp cận, ... Trong cả hai trường hợp, chúng ta đều đang tiến lên, không ì ạch
một chỗ.

Không có việc gì khó.

Chỉ sợ lòng không bền.

Đào núi và lấp biển.

Quyết chí ắt làm nên.
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---Hồ Chí Minh (1890 - 1969)

Luôn yêu để sống. Luôn sống để học toán. Luôn học toán để yêu.

---Diễn đàn toán học Việt Nam

Những thứ đích thực có giá trị không sinh ra từ tham vọng hoặc ý thức trách nhiệm đơn thuần,
mà đến từ tình yêu và sự hiến dâng cho nhân loại và những điều khách quan.

---Albert Einstein

Tôi tư duy nên tôi tồn tại.

---René Descartes

1.1.4 Kí hiệu và công thức toán trong mật mã
Khi tham khảo các tài liệu về mật mã thì mình gặp chút khó khăn vì mỗi tác giả kí hiệu mỗi kiểu cho cùng
khái niệm toán học. Hơn nữa, trong cộng đồng toxic CH mình cũng thấy được nhiều người kí hiệu mà không
hiểu rõ nó là gì. Trong bài viết này mình sẽ nói về các kí hiệu toán học mà mình sẽ dùng trong các bài viết
của mình, cũng như quan điểm về chúng.

Có nên sử dụng kí hiệu mọi lúc, mọi nơi?

Trong toán học, kí hiệu được sử dụng nhằm mô tả những định nghĩa, định lí. Thông qua kí hiệu, các nhà
toán học của nhiều quốc gia khác nhau có thể "thấu hiểu" nhau bất chấp rào cản ngôn ngữ. Tuy nhiên
trong các bài viết của mình thì mình sẽ không sử dụng kí hiệu mọi lúc, mọi nơi.

Ví dụ, định nghĩa giới hạn hàm số theo kiểu 𝛿 − 𝜀 được ghi như sau

∀𝜀 > 0,∃𝛿 > 0 : ∀ |𝑥− 𝑥0| < 𝛿 ⇒ |𝑓(𝑥)− 𝐿| < 𝜀.

Đây là định nghĩa giới hạn hữu hạn của hàm số, nói rằng hàm số 𝑓(𝑥) tiến tới 𝐿 khi 𝑥 tiến tới 𝑥0. Mình
thấy việc kí hiệu đôi khi khiến mình bị rối khi theo dõi các phần (có lẽ do mình không giỏi toán). =(((

Do đó định nghĩa giới hạn hàm số ở trên được viết lại theo tiếng Việt như sau:

• với mọi 𝜀 > 0

• tồn tại 𝛿 > 0 sao cho:

– với mọi 𝑥 mà |𝑥− 𝑥0| < 𝛿

– ta sẽ có |𝑓(𝑥)− 𝐿| < 𝜀.

Khi này, việc chứng minh giới hạn hàm số theo định nghĩa sẽ "thông" hơn. Mình sẽ theo từng câu chữ ở
trên:

• lấy 𝜀 > 0 bất kì (tương ứng lượng từ với mọi)

• tìm 𝛿 > 0 (chứng minh tồn tại, thường sẽ liên hệ với 𝜀 ở trên) thỏa mãn:

– nếu với mọi 𝑥 thỏa mãn |𝑥− 𝑥0| < 𝛿

– mình sẽ suy ra được |𝑓(𝑥)− 𝐿| < 𝜀.

Kết luận: việc viết ra đầy đủ giúp mình biết được các bước cần thực hiện theo định nghĩa, định lí nào đó.
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Z𝑛 hay Z/𝑛Z?

Thông thường, việc kí hiệu Z𝑛 được hiểu là tập hợp các số dư có thể có khi chia một số nguyên bất kì cho
𝑛, nói cách khác

Z𝑛 = {0, 1, 2, . . . , 𝑛− 1}.

Đối với Z/𝑛Z, chúng ta có thể dùng hai cách lí giải: bằng lý thuyết nhóm và bằng quan hệ tương đương
(quan hệ hai ngôi).

Nếu sử dụng lý thuyết nhóm, nếu ta nhân mỗi phần tử trong Z với 𝑛 thì

𝑛Z = {. . . ,−2𝑛,−𝑛, 0, 𝑛, 2𝑛, . . .}.

Ta lần lượt cộng 𝑖 cho các phần tử của 𝑛Z với 𝑖 = 0, 1, . . . , 𝑛− 1. Khi đó ta sẽ có

0 + 𝑛Z = {. . . ,−2𝑛,−𝑛, 0, 𝑛, 2𝑛, . . . , },
1 + 𝑛Z = {. . . ,−2𝑛+ 1,−𝑛+ 1, 1, 𝑛+ 1, 2𝑛+ 1 . . .},

...
(𝑛− 1) + 𝑛Z = {. . . ,−𝑛+ 1,−1, 𝑛− 1, 2𝑛− 1, 3𝑛− 1, . . .}.

Các tập 0 + 𝑛Z, 1 + 𝑛Z, ..., (𝑛 − 1) + 𝑛Z rời nhau nên chúng ta có đúng 𝑛 coset. Hơn nữa phép cộng số
nguyên có tính giao hoán nên 𝑖 + 𝑛Z = 𝑛Z + 𝑖. Như vậy tập 𝑛Z là nhóm con chuẩn tắc (hay normal
subgroup) của Z. Khi đó Z/𝑛Z được gọi là nhóm thương (hay quotient group) và kí hiệu

Z/𝑛Z = {0 + 𝑛Z, 1 + 𝑛Z, . . . , (𝑛− 1) + 𝑛Z}.

Đối với cách giải thích sử dụng quan hệ tương đương, chúng ta kí hiệu

𝑥 = {𝑦 ∈ Z : 𝑥 ≡ 𝑦 mod 𝑛}.

Nói cách khác, 𝑥 và 𝑦 có quan hệ nếu 𝑥 và 𝑦 có cùng số dư khi chia cho 𝑛.

Dễ thấy

0 = {. . . ,−2𝑛,−𝑛, 0, 𝑛, 2𝑛, . . . , },
1 = {. . . ,−2𝑛+ 1,−𝑛+ 1, 1, 𝑛+ 1, 2𝑛+ 1 . . .},
...

𝑛− 1 = {. . . ,−𝑛+ 1,−1, 𝑛− 1, 2𝑛− 1, 3𝑛− 1, . . .}.

Đây là ví dụ hoặc bài tập phổ biến trong các bài giảng về quan hệ tương đương. Ở đây, quan hệ tương
đương chia (phân hoạch) tập Z thành 𝑛 tập con không giao nhau, gọi là các lớp tương đương. Chúng ta
lấy số nguyên không âm nhỏ nhất của mỗi lớp làm đại diện cho lớp đó, tức là 0, 1, ..., 𝑛− 1 như trên.

Khi đó, tập thương là tập hợp các lớp tương đương

Z/𝑛Z = {0, 1, . . . , 𝑛− 1}.

Như vậy, dù giải thích theo lý thuyết nhóm hay quan hệ tương đương đều chỉ ra rằng 𝑛Z chia tập Z thành
𝑛 tập con không giao nhau, và chúng ta lấy số nguyên không âm nhỏ nhất của mỗi tập làm đại diện cho tập
đó. Lúc này, các phép cộng, trừ và nhân (không có chia) trên tập Z/𝑛Z sẽ cho các phần tử vẫn thuộc Z/𝑛Z.

Tuy nhiên phép tính trên Z𝑛 phải chỉ định phép modulo 𝑛, chẳng hạn là 𝑎+ 𝑏 mod 𝑛 với 𝑎, 𝑏 ∈ Z𝑛.

Lý do hai tập này có thể dùng như nhau là tính đẳng cấu, kí hiệu là Z𝑛
∼= Z/𝑛Z. Trong nhiều tài liệu, tập

Z𝑛 được định nghĩa là

Z𝑛 = {0, 1, . . . , 𝑛− 1}

chỉ vành các số dư (resuide ring, кольцо вычётов). Ý nghĩa vẫn giống Z/𝑛Z, ta xét tất cả phần tử của Z
dưới 𝑛 lớp rời nhau. Do đó mình nghĩ rằng cần hiểu rõ ý nghĩa của Z/𝑛Z trước khi phán Z𝑛 ở bất cứ đâu.
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Z𝑝 hay F𝑝?

Khi 𝑝 là số nguyên tố thì chúng ta có thể thực hiện phép chia khác 0 (nhân nghịch đảo) trong modulo 𝑝. Khi
đó tập Z𝑝 trở thành trường và chúng ta có thể dùng F𝑝 để thể hiện rõ ý này (F = Field). Cách kí hiệu Z𝑝

không sai nhưng mình nghĩ sẽ khó theo dõi xem đâu là trường, đâu không phải là trường (mới chỉ là vành).

GF(28) hay GF(256)?

Rõ ràng 28 = 256, và hai cách kí hiệu là một. Tuy nhiên mình chọn viết cách đầu.

Đầu tiên, việc kí hiệu 28 sẽ dễ liên hệ tới phần tử của trường, tức là các đa thức bậc 8 và có dạng

𝑎0 + 𝑎1𝑥+ · · ·+ 𝑎7𝑥
7

với 𝑎𝑖 ∈ GF(2).

Nếu viết GF(256), chúng ta phải nhớ xem 256 phân tích thành thừa số nguyên tố ra sao. Điều này đơn
giản nếu chúng ta làm việc với các số quen thuộc như 28 = 256. Tuy nhiên nếu chúng ta nghiên cứu trên số
nguyên tố khác, chẳng hạn

GF(6561),GF(625), . . .

thì không phải ai cũng nhớ. Chúng ta phải mất công phân tích số 6561 thành 38, hay 625 thành 53, rồi mới
làm tiếp.

Một ví dụ khác là

GF(340282366920938463463374607431768211456),

thì cũng là GF(2128) thôi, được dùng khi tính message authentication code (MAC) của thuật toán mã hóa
đối xứng. Ở đây chắc chắn mình sẽ chọn viết GF(2128) thay vì con số dài ngoằn kia.

Như vậy, việc viết GF(256) không sai, nhưng mình nghĩ viết GF(28) có nhiều ưu điểm hơn và sẽ giúp tạo
thói quen tốt.

F28 hay F8
2?

Hai tập hợp này có cùng số phần tử là 28 = 256. Tuy nhiên ý nghĩa của chúng khác nhau hoàn toàn.

Đầu tiên, F28 chỉ trường các đa thức

𝑎0 + 𝑎1𝑥+ · · ·+ 𝑎7𝑥
7,

với 𝑎𝑖 ∈ F2. Các phép tính cộng, trừ, nhân, chia hai đa thức được thực hiện trong modulo 𝑚(𝑥) - là một đa
thức tối giản bậc 8 với hệ số trong F2.

Trong khi đó, F8
2 chỉ các vector

𝑎 = (𝑎0, 𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5, 𝑎6, 𝑎7) ∈ F8
2

với 𝑎𝑖 ∈ F2. Ta xem F8
2 là một không gian vector. Khi đó chúng ta chỉ có hai phép tính trên tập F8

2 là cộng
hai vector và nhân vector với một phần tử thuộc F2. Nếu các bạn mở rộng lên không gian Euclid hay gì đó
thì vẫn không giống F28 .
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GF(𝑝𝑛) hay F𝑝𝑛?

Hai cách kí hiệu đều có ý nghĩa như nhau.

Khi 𝑛 = 1 thì mình thấy dùng GF(𝑝) hay F𝑝 đều được.

Khi 𝑛 > 2 thì mỗi cách kí hiệu đều có ưu điểm và nhược điểm riêng. Cả hai cách đều chỉ trường số với các
phần tử là đa thức

𝑎0 + 𝑎1𝑥+ 𝑎2𝑥
2 + · · ·+ 𝑎𝑛−1𝑥

𝑛−1,

với 𝑎𝑖 ∈ F𝑝, hay cũng có thể viết 𝑎𝑖 ∈ GF(𝑝).

Việc viết F𝑝𝑛 có nhược điểm là làm đại lượng 𝑝𝑛 hơi nhỏ, khó nhìn nên sử dụng GF(𝑝𝑛) sẽ tốt hơn. Tuy
nhiên một ưu điểm của F𝑝𝑛 là có thể chỉ tập các vector mà mỗi vị trí là một phần tử trong F𝑝𝑛 . Ví dụ

𝑓 = (𝑓1(𝑥), 𝑓2(𝑥), . . . , 𝑓𝑚(𝑥)) ∈ F𝑚
𝑝𝑛

với 𝑓𝑖(𝑥) là các phần tử thuộc F𝑝𝑛 . Nếu sử dụng GF(𝑝𝑛) thì phải viết GF(𝑝𝑛)𝑚 khá rối. Khi chúng ta xét
tới ma trận có phần tử trong F𝑝𝑛 thì còn rối hơn nữa. Thay vào đó ta có thể viết

𝐴 =

⎛⎜⎜⎜⎝
𝑎1,1(𝑥) 𝑎1,2(𝑥) · · · 𝑎1,𝑑(𝑥)
𝑎2,1(𝑥) 𝑎2,2(𝑥) · · · 𝑎2,𝑑(𝑥)

...
...

. . .
...

𝑎𝑚,1(𝑥) 𝑎𝑚,2(𝑥) · · · 𝑎𝑚,𝑑(𝑥)

⎞⎟⎟⎟⎠ ∈ F𝑚×𝑑
𝑝𝑛

với 𝑎𝑖,𝑗(𝑥) là phần tử thuộc F𝑝𝑛 .

Từ các lý do trên có thể thấy F𝑝𝑛 đa dụng hơn nên mình sẽ dùng cách kí hiệu này.
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2
Toán khó quá người ơi

2.1 Đại số

2.1.1 Đại cương về tập hợp
Tập hợp là khái niệm nền tảng, có mặt trong hầu khắp các ngả rẽ của toán học. Mình có dịp đọc quyển
Toán học qua các câu chuyện về tập hợp của Tủ sách Sputnik [4], dịch từ quyển Рассказы о множествах
của Виленкин Н.Я. [5] và thấy những câu chuyện rất thú vị. Nếu hứng thú các bạn có thể tìm đọc.

Tập hợp

Mở đầu về tập hợp

Một tập hợp (set) bao gồm các phần tử khác nhau. Tập hợp là khái niệm cơ sở cho nhiều vấn đề của toán
học. Tuy nhiên chúng ta lại không có một định nghĩa chặt chẽ về tập hợp mà chỉ có thể biểu diễn nó. Để
biểu diễn tập hợp ta có hai cách.

1. Liệt kê. Ví dụ 𝐴 = {1, 2, 3, 4}, 𝐵 = {𝑎, 𝑏, 𝑐}.

2. Sử dụng tính chất đặc trưng. Ví dụ 𝐴 = {𝑎 ∈ N* : 𝑎 < 5}.

Ở đây hai cách biểu diễn tập hợp 𝐴 là giống nhau.

INFO-CIRCLE Definition 1.1 (Tập hợp rỗng)

Tập hợp rỗng không chứa phần tử nào, kí hiệu là ∅.

INFO-CIRCLE Definition 1.2 (Tập hợp con)

Xét tập hợp 𝐴. Tập hợp 𝐵 được gọi là tập hợp con của tập 𝐴 nếu mọi phần tử của 𝐵 đều nằm trong
𝐴. Nói cách khác với mọi 𝑏 ∈ 𝐵 thì 𝑏 ∈ 𝐴. Ta kí hiệu 𝐵 ⊂ 𝐴.

INFO-CIRCLE Remark 1.1

Tập hợp rỗng là con của mọi tập hợp.

13
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Dễ thấy rằng mọi tập hợp là tập hợp con của chính nó. Do đó tập con này được gọi là tập con tầm thường
(trivial subset). Để kí hiệu một tập con có thể bằng tập chứa nó ta viết 𝐵 ⊆ 𝐴. Trong trường hợp 𝐵 là tập
con của 𝐴 nhưng không bằng 𝐴 ta có thể viết 𝐵 ( 𝐴.

Toán tử trên tập hợp

Chúng ta xem xét ba toán tử cơ bản trên tập hợp là giao, hợp và hiệu của hai tập hợp. Để biểu diễn các
toán tử này ta có thể dùng biểu đồ Venn.

INFO-CIRCLE Definition 1.3 (Giao của hai tập hợp)

Giao của hai tập hợp 𝐴 và 𝐵 là tập hợp các phần tử thuộc cả 𝐴 và 𝐵.

𝐴 ∩𝐵 = {𝑥 : 𝑥 ∈ 𝐴 và 𝑥 ∈ 𝐵}.

A B

Hình 2.1: Phép giao hai tập hợp

Hình 2.1 là biểu đồ Venn tương ứng của phép giao hai tập hợp. Khi giao của hai tập hợp 𝐴 và 𝐵 là rỗng
thì ta nói hai tập rời nhau. Kí hiệu 𝐴 ∩𝐵 = ∅.

INFO-CIRCLE Definition 1.4 (Hợp của hai tập hợp)

Hợp của hai tập hợp 𝐴 và 𝐵 là tập hợp các phần tử thuộc 𝐴 hoặc 𝐵.

𝐴 ∪𝐵 = {𝑥 : 𝑥 ∈ 𝐴 hoặc 𝑥 ∈ 𝐵}.

Hình 2.2 là biểu đồ Venn tương ứng của phép hợp hai tập hợp.

A B

Hình 2.2: Phép hợp hai tập hợp

INFO-CIRCLE Definition 1.5 (Hiệu của hai tập hợp)

Hiệu (hay phần bù) của tập hợp 𝐴 đối với tập hợp 𝐵 là tập hợp các phần tử thuộc 𝐴 nhưng không thuộc
𝐵.

𝐴∖𝐵 = {𝑥 : 𝑥 ∈ 𝐴 và 𝑥 ̸∈ 𝐵}.

14 Chapter 2. Toán khó quá người ơi
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Hình 2.3 là biểu đồ Venn tương ứng của hiệu hai tập hợp.

A B

Hình 2.3: Phép hiệu hai tập hợp

Lực lượng của tập hợp

Để chỉ số lượng phần tử của một tập hợp ta dùng khái niệm lực lượng của tập hợp.

Kí hiệu lực lượng của tập hợp 𝐴 là |𝐴| hoặc #𝐴.

Khi một tập hợp có vô số phần tử, ta gọi đó là tập vô hạn. Ngược lại ta gọi là tập hữu hạn.

INFO-CIRCLE Example 1.1

Các tập hợp số thông dụng N, Z, Q, R là các tập vô hạn.

Tập hợp 𝐴 = {1, 2, 3, 4, 5} là tập hữu hạn có 5 phần tử. Kí hiệu |𝐴| = 5.

Từ biểu đồ Venn chúng ta cũng có thể tìm được công thức tính lực lượng của tập 𝐴 ∪𝐵.

A B

Hình 2.4: Nguyên lý bù trừ cho hai tập hợp

Dựa vào hình ta có thể suy ra công thức sau:

|𝐴 ∪𝐵| = |𝐴|+ |𝐵| − |𝐴 ∩𝐵|.

Ánh xạ

[TODO] Viết lại ánh xạ dựa trên một giáo trình chuẩn.

Ánh xạ

Cho hai tập hợp 𝑋 và 𝑌 .

Nói đơn giản, ánh xạ 𝑓 biến một phần tử 𝑥 ∈ 𝑋 thành một và chỉ một phần tử 𝑦 ∈ 𝑌 .

2.1. Đại số 15
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INFO-CIRCLE Definition (Ánh xạ)

Một ánh xạ 𝑓 từ tập 𝑋 đến tập 𝑌 là một quy tắc đặt tương ứng mỗi phần tử 𝑥 của 𝑋 với một (và chỉ
một) phần tử của 𝑌 . Phần tử này được gọi là ảnh của 𝑥 qua ánh xạ 𝑓 và được kí hiệu là 𝑓(𝑥).

Tập hợp 𝑋 được gọi là tập xác định của 𝑓 . Tập hợp 𝑌 được gọi là tập giá trị của 𝑓 .

Ánh xạ 𝑓 từ 𝑋 đến 𝑌 được kí hiệu là 𝑓 : 𝑋 → 𝑌 hoặc 𝑓(𝑥) = 𝑦.

Cho 𝑎 ∈ 𝑋 và 𝑦 ∈ 𝑌 . Nếu 𝑓(𝑎) = 𝑦 thì ta nói 𝑦 là ảnh của 𝑎 và 𝑎 là nghịch ảnh của 𝑦 qua ánh xạ 𝑓 .

INFO-CIRCLE Chú ý

1. Mỗi phần tử 𝑎 của 𝑋 chỉ có một ảnh duy nhất (là phần tử 𝑓(𝑎)).

2. Mỗi phần tử 𝑦 của 𝑌 có thể có nhiều nghịch ảnh hoặc không có nghịch ảnh nào.

Tập

𝑓(𝑋) = {𝑦 ∈ 𝑌 : ∃𝑥 ∈ 𝑋, 𝑦 = 𝑓(𝑥)}

được gọi là tập ảnh của 𝑓 .

Như vậy, tập ảnh 𝑓(𝑋) là tập tất cả phần tử của 𝑌 có nghịch ảnh.

Ánh xạ có ba loại:

1. Đơn ánh (hay Injection): Hai phần tử khác nhau của tập nguồn cho hai ảnh khác nhau, tức là với
mọi 𝑥1, 𝑥2 ∈ 𝑋 mà 𝑥1 ̸= 𝑥2, thì 𝑓(𝑥1) ̸= 𝑓(𝑥2).

2. Toàn ánh (hay Surjection): Mọi phần tử 𝑦 ∈ 𝑌 đều có ít nhất một phần tử 𝑥 ∈ 𝑋 mà 𝑓(𝑥) = 𝑦.
Nói cách khác với mỗi phần tử trong 𝑌 ta đều tìm được phần tử thuộc 𝑋 biến thành nó.

3. Song ánh (hay Bijection): Nếu ánh xạ đó vừa là đơn ánh, vừa là toàn ánh.

Dựa vào định nghĩa và hình vẽ, ta có thể rút ra kết luận như sau

1. Đối với đơn ánh, do mọi phần tử của 𝑋 đều có ảnh ở 𝑌 , tuy nhiên có thể có phần tử ở 𝑌 không do
phần tử nào của 𝑋 biến thành (trong hình là 5). Do đó |𝑋| 6 |𝑌 |.

2. Đối với toàn ánh, mọi phần tử của 𝑌 đều có nguồn gốc xuất xứ, tuy nhiên có thể có phần tử của 𝑋
không biến thành 𝑦 nào của 𝑌 (trong hình là 𝑒). Do đó |𝑋| > |𝑌 |.

3. Đối với song ánh, do là kết hợp giữa đơn ánh và toàn ánh, khi đó dấu đẳng thức xảy ra, |𝑋| = |𝑌 |.

16 Chapter 2. Toán khó quá người ơi
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a

b

c

d

1

2

3

4

5

Hình 2.5: Đơn ánh

a

b

c

d

e

1

2

3

4

Hình 2.6: Toàn ánh

a

b

c

d

1

2

3

4

Hình 2.7: Song ánh

Cho song ánh 𝑓 : 𝑋 → 𝑌 . Khi đó với mỗi 𝑦 ∈ 𝑌 tồn tại duy nhất một phần tử 𝑥 ∈ 𝑋 mà 𝑓(𝑥) = 𝑦.

Phần tử duy nhất 𝑥 ∈ 𝑋 này được gọi là ảnh của phần tử 𝑦 ∈ 𝑌 qua ánh xạ ngược của 𝑓 .

INFO-CIRCLE Definition (Ánh xạ ngược của song ánh)

2.1. Đại số 17



Math Book

Ánh xạ ngược của 𝑓 : 𝑋 → 𝑌 , kí hiệu là 𝑓−1 là ánh xạ từ 𝑌 tới 𝑋 biến phần tử 𝑦 ∈ 𝑌 thành phần tử
𝑥 ∈ 𝑋 duy nhất, như vậy

𝑓−1(𝑦) = 𝑥⇐⇒ 𝑓(𝑥) = 𝑦.

Như vậy, nếu 𝑓 không phải song ánh thì chúng ta không thể xác định ánh xạ ngược.

INFO-CIRCLE Example

Xét hàm số 𝑓 : R→ R, 𝑥→ 𝑦 = 𝑓(𝑥) = 𝑥3.

Lúc này, 𝑓 là song ánh và mình có thể biểu diễn 𝑥 theo 𝑦 là 𝑥 = 𝑓−1(𝑦) = 3
√
𝑦.

INFO-CIRCLE Definition (Ánh xạ hợp)

Xét hai ánh xạ 𝑓 : 𝑋 → 𝑌 , 𝑓(𝑥) = 𝑦 và 𝑔 : 𝑌 → 𝑍, 𝑧 = 𝑔(𝑦). Ánh xạ hợp của 𝑔 và 𝑓 được kí hiệu là

𝑔 ∘ 𝑓 : 𝑋 → 𝑍, 𝑧 = 𝑔(𝑦) = 𝑔(𝑓(𝑥)).

INFO-CIRCLE Definition (Tích Descartes)

Tích Descartes của hai tập hợp 𝐴 = {𝑎1, 𝑎2, · · · , 𝑎𝑛} và 𝐵 = {𝑏1, 𝑏2, · · · , 𝑏𝑚} là tập hợp

𝐴×𝐵 = {(𝑎𝑖, 𝑏𝑗) : 𝑎𝑖 ∈ 𝐴, 𝑏𝑗 ∈ 𝐵}.

INFO-CIRCLE Example

Với 𝐴 = {1, 2, 3} và 𝐵 = {4, 5} thì tích Descartes là

𝑆 = 𝐴×𝐵 = {(1, 4), (1, 5), (2, 4), (2, 5), (3, 4), (3, 5)}.

Với nhiều tập hợp ta định nghĩa tich Descartes tương tự.

INFO-CIRCLE Example

Xét ba tập nguồn 𝑋, 𝑌 , 𝑍, và tập đích là 𝑇 , ánh xạ 𝜑 : 𝑋 × 𝑌 ×𝑍 → 𝑇 , với 𝜑(𝑥, 𝑦, 𝑧)→ 𝑡 là ánh xạ ba
biến, tập nguồn của ánh xạ khi này là tích Descartes 𝑋 × 𝑌 × 𝑍.

Hàm số

Hàm số

Khi hai tập nguồn và đích của ánh xạ là hai tập hợp số, ta có hàm số.

18 Chapter 2. Toán khó quá người ơi
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INFO-CIRCLE Example

Hàm số 𝑓 : R→ R với 𝑦 = 𝑓(𝑥) = 𝑥3 + 𝑥+ 1. Ở đây 𝑓 : 𝑋 → 𝑌 vói 𝑋 ≡ R và 𝑌 ≡ R.

Lưu ý rằng tập nguồn và đích không nhất thiết là tập hợp số cơ bản (Q, R) mà cũng có thể là tích Descartes
của chúng.

INFO-CIRCLE Example

Hàm số 𝑓 : R×R→ R với 𝑧 = 𝑓(𝑥, 𝑦) = 𝑥+ 𝑦+𝑥𝑦. Ở đây 𝑓 : 𝑋 ×𝑌 → 𝑍 với 𝑋 ≡ R, 𝑌 ≡ R và 𝑍 ≡ R.

INFO-CIRCLE Example

Hàm số 𝑓 : R→ R cho bởi 𝑦 = 𝑓(𝑥) = 𝑥3 là song ánh.

INFO-CIRCLE Chứng minh

Ta thấy nếu 𝑓(𝑥1) = 𝑓(𝑥2), tương đương 𝑥31 = 𝑥32 nên 𝑥1 = 𝑥2. Do đó 𝑓 là đơn ánh.

Với mọi 𝑦 = 𝑥3 ∈ R, do căn bậc ba luôn tồn tại nên ta có 𝑥 = 3
√
𝑦, nghĩa là luôn tồn tại 𝑥 để 𝑓(𝑥) = 𝑦

với mọi 𝑦 ∈ R. Do đó 𝑓 là toàn ánh.

Kết luận 𝑓 là song ánh.

Đồng biến và nghịch biến

INFO-CIRCLE Definition (Hàm số đồng biến)

Xét hàm số 𝑓(𝑥) xác định trên khoảng (𝑎; 𝑏) ⊂ R. Ta nói 𝑓(𝑥) đồng biến (tăng) trên (𝑎; 𝑏) nếu với mọi
𝑥1, 𝑥2 ∈ (𝑎; 𝑏) mà 𝑥1 < 𝑥2 ta có 𝑓(𝑥1) < 𝑓(𝑥2).

Tương tự 𝑓(𝑥) nghịch biến (giảm) trên (𝑎; 𝑏) nếu với mọi 𝑥1, 𝑥2 ∈ (𝑎; 𝑏) mà 𝑥1 < 𝑥2 ta có 𝑓(𝑥1) > 𝑓(𝑥2).

Lưu ý ở các so sánh trên dấu bằng có thể xảy ra. Khi đó hàm số được gọi là tăng không nghiêm ngặt
(hoặc giảm không nghiêm ngặt).

Nếu hàm số đồng biến (hoặc nghịch biến) trên khoảng xác định nào đó thì ta nói hàm số đơn điệu trên
khoảng đó.

Đồ thị của hàm số khi đồng biến sẽ đi lên (theo chiều từ trái sang phải), và đi xuống nếu nghịch biến.

INFO-CIRCLE Example

Khảo sát sự biến thiên của hàm số 𝑓(𝑥) = 𝑥2 + 3.

Để khảo sát sự biến thiên, một cách làm đơn giản theo định nghĩa là ta xét 𝑥1 < 𝑥2 và so sánh 𝑓(𝑥1) với
𝑓(𝑥2).

2.1. Đại số 19
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Ta có

𝑓(𝑥1)− 𝑓(𝑥2) = 𝑥21 + 3− 𝑥22 − 3 = (𝑥1 − 𝑥2)(𝑥1 + 𝑥2).

Do 𝑥1 < 𝑥2, nên với 𝑥1, 𝑥2 > 0 thì 𝑥1 + 𝑥2 > 0 và 𝑥1 − 𝑥2 < 0. Ta suy ra 𝑓(𝑥1) − 𝑓(𝑥2) < 0 và từ đó
𝑓(𝑥1) < 𝑓(𝑥2). Như vậy 𝑓(𝑥) đồng biến trên (0;+∞).

Tương tự, khi 𝑥1, 𝑥2 < 0 thì 𝑥1 + 𝑥2 < 0. Khi đó 𝑓(𝑥1) > 𝑓(𝑥2) nên 𝑓(𝑥) nghịch biến trên (−∞; 0).

Để thể hiện sự biến thiên của hàm số ta sử dụng bảng biến thiên.

Đối với hàm số 𝑦 = 𝑥2 + 3 ở trên bảng biến thiên có dạng:

x

f(x) = x2 + 3

−∞ 0 +∞

+∞+∞

33

+∞+∞

Hình 2.8: Bảng biến thiên hàm số 𝑦 = 𝑥2 + 3

Ta đã chứng minh được hàm số nghịch biến trên (−∞; 0) và đồng biến trên (0;+∞), giá trị 𝑓(0) = 3 nên
bảng biến thiên thể hiện sự tăng giảm trên các khoảng. Dựa vào bảng biến thiên ta có thể hình dung ra
dạng của đồ thị hàm số.

Đồ thị hàm số

Để biểu diễn sự phụ thuộc của biến 𝑦 theo biến 𝑥, hay nói cách khác là biểu diễn hàm số 𝑦 = 𝑓(𝑥), ta có
thể dùng đồ thị.

Đồ thị được vẽ trên hệ tọa độ Descartes 𝑂𝑥𝑦. Bảng biến thiên cho ta thấy tính đơn điệu trên các khoảng
xác định, và đồ thị sẽ cho ta thấy rõ hơn độ "cong" của những đường cong.

INFO-CIRCLE Example

Với hàm số 𝑦 = 𝑥2 + 3 ở trên. Đồ thị hàm số có dạng như hình 2.9.

Với hàm số 𝑦 =
1

𝑥
. Ta thấy rằng hàm số không xác định tại 𝑥 = 0. Khảo sát sự biến thiên như bên trên

ta thấy hàm số nghịch biến ở hai khoảng xác định là (−∞; 0) và (0;+∞). Đồ thị hàm số có dạng như
hình 2.10.

20 Chapter 2. Toán khó quá người ơi



Math Book

x

y

y = x2 + 3

Hình 2.9: Đồ thị hàm số 𝑦 = 𝑥2 + 3

x

y

y =
1

x

y =
1

x

Hình 2.10: Đồ thị hàm số 𝑦 =
1

𝑥

Từ đồ thị của hai hàm số trên ta thấy rằng mặc dù cùng là nghịch biến trên (−∞; 0) nhưng nghịch biến của
𝑦 = 𝑥2 + 3 nhìn "nhẹ nhàng" hơn. Trong khi đồ thị 𝑦 =

1

𝑥
thì ban đầu "nhẹ nhàng", sau thì như "rơi tự
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do".

Một số loại hàm số

Một số hàm số có tính chất đặc biệt giúp chúng ta tiết kiệm công sức trong chứng minh, tính toán.

Hàm chẵn và hàm lẻ

Xét hàm số 𝑦 = 𝑓(𝑥) xác định trên miền 𝐷 có tính đối xứng, nghĩa là với mỗi phần tử dương 𝑥 ∈ 𝐷 thì có
phần tử đối −𝑥 ∈ 𝐷 hoặc ngược lại. Khi đó

INFO-CIRCLE Definition (Hàm số chẵn)

Hàm số 𝑦 = 𝑓(𝑥) được gọi là hàm số chẵn nếu với mọi 𝑥 ∈ 𝐷 ta có 𝑓(−𝑥) = 𝑓(𝑥).

Ví dụ như hàm số 𝑦 = 𝑥2 + 3 ở trên là một hàm chẵn vì với mọi 𝑥 ∈ R ta có

𝑓(𝑥) = 𝑥2 + 3 = (−𝑥)2 + 3 = 𝑓(−𝑥).

Dễ thấy rằng đồ thị của hàm chẵn đối xứng qua trục tung. Dựa vào tính chất này, trong lúc khảo sát hoặc
tính toán đôi khi ta chỉ cần quan tâm một bên trục tung, bên kia tương tự.

INFO-CIRCLE Definition (Hàm số lẻ)

Hàm số 𝑦 = 𝑓(𝑥) được gọi là hàm số lẻ nếu với mọi 𝑥 ∈ 𝐷 ta có 𝑓(−𝑥) = −𝑓(𝑥).

Ví dụ như hàm số 𝑦 =
1

𝑥
ở trên là một hàm lẻ vì với mọi 𝑥 ∈ (−∞; 0) ∪ (0;+∞) ta có

𝑓(−𝑥) = 1

−𝑥
= − 1

𝑥
= −𝑓(𝑥).

Dễ thấy rằng hàm lẻ đối xứng qua gốc tọa độ 𝑂(0, 0).

Hàm cộng tính

Xét hàm số 𝑦 = 𝑓(𝑥) xác định trên miền 𝐷.

INFO-CIRCLE Definition (Hàm cộng tính)

Hàm số 𝑦 = 𝑓(𝑥) được gọi là cộng tính nếu với mọi 𝑥, 𝑦 ∈ 𝐷 mà 𝑥+𝑦 ∈ 𝐷, ta có 𝑓(𝑥+𝑦) = 𝑓(𝑥)+𝑓(𝑦).

INFO-CIRCLE Example

Hàm số 𝑦 = 2𝑥 trên R là hàm cộng tính vì với mọi 𝑥, 𝑦 ∈ R, ta có

𝑓(𝑥+ 𝑦) = 2(𝑥+ 𝑦) = 2𝑥+ 2𝑦 = 𝑓(𝑥) + 𝑓(𝑦).
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Hàm nhân tính

Tương tự hàm cộng tính, ta định nghĩa hàm nhân tính.

INFO-CIRCLE Definition (Hàm nhân tính)

Hàm số 𝑦 = 𝑓(𝑥) được gọi là nhân tính nếu với mọi 𝑥, 𝑦 ∈ 𝐷 ta có 𝑓(𝑥𝑦) = 𝑓(𝑥) · 𝑓(𝑦).

Hàm nhân tính quan trọng được sử dụng trong số học là hàm 𝜙 Euler về số lượng các số nguyên tố cùng
nhau với số nguyên dương 𝑛. Nếu một hàm số học là nhân tính thì chúng ta chỉ cần quan tâm giá trị của
hàm số đó tại các số nguyên tố là đủ.

Hàm tuần hoàn

Xét hàm số 𝑦 = 𝑓(𝑥) xác định trên miền 𝐷.

INFO-CIRCLE Definition (Hàm tuần hoàn)

Hàm số 𝑦 = 𝑓(𝑥) được gọi là tuần hoàn nếu tồn tại số 𝑇 sao cho 𝑓(𝑥+ 𝑇 ) = 𝑓(𝑥) với mọi 𝑥 ∈ 𝐷.

Nói cách khác, hàm số sẽ lặp lại sau một đoạn nhất định.

Số 𝑇 nhỏ nhất thỏa mãn 𝑓(𝑥+ 𝑇 ) = 𝑓(𝑥) được gọi là chu kỳ của hàm tuần hoàn.

Vì sao số 𝑇 cần là nhỏ nhất?

Ta thấy rằng, nếu 𝑓(𝑥+𝑇 ) = 𝑓(𝑥) với mọi 𝑥 ∈ 𝐷, ta thay 𝑥 bởi 𝑥+𝑇 thì thu được 𝑓(𝑥+𝑇 +𝑇 ) = 𝑓(𝑥+𝑇 ),
hay 𝑓(𝑥+2𝑇 ) = 𝑓(𝑥+ 𝑇 ). Như vậy ta suy ra 𝑓(𝑥+2𝑇 ) = 𝑓(𝑥+ 𝑇 ) = 𝑓(𝑥). Tiếp tục như vậy, sau 2𝑇 hàm
số cũng lặp lại đúng trạng thái đó với 3𝑇 , 4𝑇 , ... Do đó số 𝑇 nhỏ nhất thỏa mãn đẳng thức 𝑓(𝑥+𝑇 ) = 𝑓(𝑥)
sẽ là chu kỳ.

INFO-CIRCLE Example

Hàm số 𝑦 = sin(𝑥) là hàm tuần hoàn với chu kỳ 𝑇 = 2𝜋. Do đó chúng ta chỉ cần khảo sát hàm số trong
khoảng (−𝜋;𝜋) thôi là đủ.

Các nghịch lý về tập vô hạn

Tiếp theo chúng ta sẽ xem hết những bài toán hết sức thú vị cùng những lập luận cũng thú vị không kém
để thấy rằng có nhiều điều bất ngờ sẽ xảy ra nếu vận dụng những lý luận chặt chẽ.

Nghịch lý Zeno

Zeno là nhà triết học cổ Hy Lạp nổi tiếng với bài toán Achilles và rùa (Achilles là anh hùng trong thần thoại
Hy Lạp). Bài toán được phát biểu đơn giản như sau:

Nếu Achilles chạy đua và xuất phát sau con rùa thì Achilles sẽ không bao giờ bắt kịp con rùa.

Bài toán nghe thật nực cười nhưng dưới lập luận của Zeno thì bài toán sẽ trở nên "có lý".

Zeno lập luận như sau: gọi 𝑑1 là khoảng cách ban đầu giữa Achilles và con rùa. Achilles sẽ mất một khoảng
thời gian 𝑡1 để đi tới vị trí con rùa. Tuy nhiên trong khoảng thời gian 𝑡1 đó con rùa cũng đã đi một đoạn
𝑑2 nào đó rồi. Dĩ nhiên 𝑑2 sẽ ngắn hơn 𝑑1. Nhưng nếu quá trình này lặp đi lặp lại, 𝑑𝑛 sẽ trở nên càng ngày
càng nhỏ, tuy nhiên không bao giờ bằng 0. Nói cách khác, Achilles không bao giờ bắt kịp con rùa.
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Dưới góc nhìn của toán học hiện đại, điều này chưa hẳn đúng. Vì thời Zeno chưa có nhiều khái niệm lẫn
công cụ về vô cực, nên người ta đã công nhận tổng vô hạn sẽ là vô hạn. Học sinh lớp 11 hiện nay khi học
tới cấp số nhân lùi vô hạn sẽ biết cách tính tổng

1

10
+

1

100
+ · · · 1

10𝑛
=

1

9

là hữu hạn.

So sánh N và Z

Hai tập hợp N và Z là các tập vô hạn, như vậy lực lượng của tập hợp nào lớn hơn?

Câu hỏi tưởng chừng như vô vị vì nhìn vào mọi người đều thấy rằng Z "bao trọn" N (số nguyên kéo dài vô
hạn về bên trái lẫn phải trong khi số tự nhiên chỉ kéo dài vô hạn về bên phải). Tuy nhiên, nhà toán học
Cantor đã tìm ra một lý luận đầy tính thuyết phục để chứng minh rằng lực lượng của hai tập là bằng nhau.

Ta xét ánh xạ 𝑓 : Z→ N như sau:

• 𝑓(0) = 0;

• các số âm của Z biến thành các số lẻ của N;

• các số dương của Z thì biến thành các số chẵn của N.

Ví dụ 𝑓(−1) = 1, 𝑓(−2) = 3, 𝑓(−3) = 5 và cứ như vậy tăng lên.

Tương tự với số dương 𝑓(1) = 2, 𝑓(2) = 4.

Ta có công thức

𝑧 = 𝑓(𝑛) =

{︃
2𝑛, nếu 𝑛 > 0

−1− 2𝑛, nếu 𝑛 < 0.

Như vậy 𝑓 là đơn ánh vì hai phần tử khác nhau của Z sẽ cho ra hai phần tử khác nhau thuộc N. Tương tự
𝑓 cũng là toàn ánh vì mọi phần tử thuộc N đều có một phần tử từ Z biến thành. Như vậy 𝑓 là song ánh.
Vậy lực lượng N và Z bằng nhau.

Bằng lập luận tương tự cũng có thể chứng minh số phần tử của Q bằng số phần tử của N. Những lập luận
này đã gây ra tiếng vang lớn vào thời đó.

Ở hình 2.11 cho thấy một cách xây dựng song ánh từ N tới Z2, trong đó:

• điểm (0, 0) tương ứng với 1;

• điểm (1, 0) tương ứng với 2;

• điểm (1, 1) tương ứng với 3;

• điểm (0, 1) tương ứng với 4;

• cứ tiếp tục như vậy theo hình xoắn vuông.

Vietsub cho hình 2.11: Không có chuyện N và Z2 có cùng số phần tử. Ở đây thuật ngữ "số phần tử" không
thực sự chính xác mà nên gọi là "lực lượng" vì khi nói đến các tập vô hạn (tức tập có vô hạn phần tử) thì
vô hạn không thể so sánh với vô hạn. Hai tập hợp vô hạn chỉ có thể có cùng lực lượng.
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Hình 2.11: Song ánh giữa N và Z2. Nguồn: https://vk.com/wall-91031095_82482.

Từ đây tập hợp vô hạn có thể chia ra đếm được (countable) và không đếm được (uncountable). Tiếp
theo ta định nghĩa hai dạng tập hợp này.

1. Tập hợp được gọi là đếm được khi tồn tại song ánh từ nó tới N.

2. Tập hợp được gọi là không đếm được khi nó không phải là tập đếm được.

Định lý về R

INFO-CIRCLE Theorem 1.1

Tập hợp số thực R là tập không đếm được.

Chúng ta cần một nhận xét sau:

Khoảng (0; 1) là tương đương với tập R.
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Chúng ta có thể xây dựng một song ánh từ R tới (0, 1), ví dụ 𝑓(𝑥) = 𝑒𝑥

𝑒𝑥 + 1
.

Khi đó, thay vì chứng minh R không đếm được, ta chỉ cần chứng minh đoạn (0; 1) không đếm được.

INFO-CIRCLE Chứng minh

Cantor đưa ra hai phương pháp chứng minh và cả hai đều độc đáo.

Phương án 1: Phương pháp chéo hóa (diagonalization).

Xét ánh xạ

0→ 0, 𝑎0,0𝑎0,1𝑎0,2 · · ·
1→ 0, 𝑎1,0𝑎1,1𝑎1,2 · · ·
2→ 0, 𝑎2,0𝑎2,1𝑎2,2 · · ·
· · ·

Ta chứng minh ánh xạ này không phải toàn ánh.

Xét số 𝑦 = 0, 𝑏0𝑏1𝑏2 . . . với 𝑏𝑖 ̸= 𝑎𝑖,𝑖 với mọi 𝑖, tức là trên đường chéo của các số trên ta chọn số 𝑏𝑖 khác
với số trên đường chéo. Như vậy số 𝑦 này có chữ số ở vị trí 0 khác 𝑓(0), chữ số ở vị trí 1 khác 𝑓(1), vân
vân và mây mây, nên không tìm được số 𝑛 nào mà 𝑓(𝑛) = 𝑦. Ta suy ra 𝑓 không phải toàn ánh và từ đó
không phải song ánh.

Phương án 2. Phương pháp dãy các đoạn thẳng đóng bị chặn lồng vào nhau (sequence of closed
bounded nested).

Giả sử đoạn (0; 1) đếm được. Khi đó ta có thể liệt kê các phần tử của đoạn là 𝐼 = {𝑥1, 𝑥2, . . .}.

Từ tập 𝐼 ta lấy ra một đoạn con 𝐼1 sao cho 𝑥1 ̸∈ 𝐼1.

Tiếp theo, từ tập 𝐼1 ta lấy ra một đoạn con 𝐼2 sao cho 𝑥2 ̸∈ 𝐼2.

Tiếp tục như vậy, ta lấy ra các đoạn con

· · · ⊂ 𝐼𝑛 ⊂ · · · ⊂ 𝐼2 ⊂ 𝐼1 ⊂ 𝐼

với 𝑥𝑛 ̸∈ 𝐼𝑛 với mọi 𝑛 ∈ N.

Theo định lý về các đoạn thẳng đóng bị chặn lồng vào nhau thì giao của chúng không rỗng, tức là tồn
tại số 𝑥 thuộc giao giao của các tập 𝐼1, ..., 𝐼𝑛. Phần tử 𝑥 ∈ 𝐼𝑛 với mọi 𝑛. Do 𝑥𝑛 ̸∈ 𝐼𝑛 và 𝑥 ∈ 𝐼𝑛 nên
𝑥 ̸= 𝑥𝑛 với mọi 𝑛, tức là không nằm trong tập 𝐼. Điều này mâu thuẫn với giả sử đoạn (0; 1) đếm được,
suy ra đoạn (0; 1) là tập không đếm được.

2.1.2 Đa thức
Một số vấn đề về đa thức.

Giới thiệu về đa thức

INFO-CIRCLE Definition 2.1 (Đa thức một biến)

Đa thức theo một biến 𝑥 là hàm số có dạng

𝑃 (𝑥) = 𝑎𝑛𝑥
𝑛 + 𝑎𝑛−1𝑥

𝑛−1 + · · ·+ 𝑎1𝑥+ 𝑎0.
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Các số 𝑎𝑖 được gọi là hệ số (hay coefficient, коэффициент).

Hệ số bậc cao nhất là 𝑎𝑛. Hệ số tự do là 𝑎0.

Biểu thức 𝑎𝑘𝑥𝑘 được gọi là hạng tử bậc 𝑘. Hạng tử bậc cao nhất là 𝑎𝑛𝑥𝑛.

1. Nếu 𝑎𝑖 ∈ R thì ta nói 𝑃 (𝑥) là đa thức với hệ số thực.

2. Nếu 𝑎𝑖 ∈ Q thì ta nói 𝑃 (𝑥) là đa thức với hệ số hữu tỷ.

3. Nếu 𝑎𝑖 ∈ Z thì ta nói 𝑃 (𝑥) là đa thức với hệ số nguyên.

INFO-CIRCLE Definition 2.2 (Bậc của đa thức)

Nếu 𝑎𝑛 ̸= 0 thì số tự nhiên 𝑛 được gọi là bậc của đa thức (hay degree, степень) và ta kí hiệu deg𝑃 = 𝑛.

So sánh, cộng, trừ và nhân hai đa thức một biến

Hai đa thức

𝑃 (𝑥) = 𝑎𝑚𝑥
𝑚 + 𝑎𝑚−1𝑥

𝑚−1 + · · ·+ 𝑎1𝑥+ 𝑎0

và

𝑄(𝑥) = 𝑏𝑛𝑥
𝑛 + 𝑏𝑛−1𝑥

𝑛−1 + · · ·+ 𝑏1𝑥+ 𝑏0

bằng nhau khi và chỉ khi 𝑚 = 𝑛, và 𝑎𝑘 = 𝑏𝑘 với mọi 𝑘 = 0, 1, . . . ,𝑚.

Khi cộng và trừ hai đa thức 𝑃 (𝑥) và 𝑄(𝑥) ta thực hiện theo từng hệ số của 𝑥𝑘, nghĩa là

𝑃 (𝑥)±𝑄(𝑥) =

max(𝑚,𝑛)∑︁
𝑘=0

(𝑎𝑘 ± 𝑏𝑘) 𝑥𝑘.

INFO-CIRCLE Example

Xét hai đa thức

𝑃 (𝑥) = 𝑥3 − 4𝑥2 − 5𝑥+ 3,

𝑄(𝑥) = 𝑥4 − 3𝑥3 + 5𝑥2 − 𝑥− 1.

Lúc này hệ số của hai đa thức 𝑃 (𝑥) và 𝑄(𝑥) là

𝑎4 = 0, 𝑎3 = 1, 𝑎2 = −4, 𝑎1 = −5, 𝑎0 = 3,

𝑏4 = 1, 𝑏3 = −3, 𝑏2 = 5, 𝑏1 = −1, 𝑏0 = −1.

Như vậy ta có tổng và hiệu

𝑃 (𝑥) +𝑄(𝑥) = (0 + 1) · 𝑥4 + [1 + (−3)] · 𝑥3 + (−4 + 5) · 𝑥2 + [−5 + (−1)] · 𝑥+ [3 + (−1)]
= 𝑥4 − 2𝑥3 + 𝑥2 − 6𝑥+ 2.

𝑃 (𝑥)−𝑄(𝑥) = (0− 1) · 𝑥4 + [1− (−3)] · 𝑥3 + (−4− 5) · 𝑥2 + [−5− (−1)] · 𝑥+ [3− (−1)]
= −𝑥4 + 4𝑥3 − 9𝑥2 − 4𝑥+ 4.
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Khi nhân hai đa thức 𝑃 (𝑥) và 𝑄(𝑥) ta nhận được đa thức bậc 𝑚+ 𝑛 là

𝑅(𝑥) =

𝑚+𝑛∑︁
𝑘=0

𝑐𝑘𝑥
𝑘

với hệ số 𝑐𝑘 được xác định bởi

𝑐𝑘 =

𝑘∑︁
𝑖=0

𝑎𝑖𝑏𝑘−𝑖.

INFO-CIRCLE Remark

Nếu đa thức 𝑃 (𝑥) nhận mọi giá trị 𝑥 ∈ R làm nghiệm thì 𝑃 (𝑥) ≡ 0.

INFO-CIRCLE Theorem (Bậc của tổng, hiệu và tích của các đa thức)

Cho 𝑃 (𝑥) và 𝑄(𝑥) là các đa thức bậc 𝑚 và 𝑛 tương ứng. Khi đó

1. deg(𝑃 ±𝑄) 6 max(𝑚,𝑛), trong đó

• Nếu deg𝑃 ̸= deg𝑄 thì dấu bằng xảy ra.

• Nếu deg𝑃 = deg𝑄, hay 𝑚 = 𝑛, thì deg(𝑃 ±𝑄) có thể nhận bất kì giá trị nào nhỏ hơn hoặc
bằng 𝑚.

2. deg(𝑃 ·𝑄) = 𝑚+ 𝑛.

INFO-CIRCLE Example

Xét đa thức 𝑃 (𝑥) = −𝑥+ 1 và 𝑄(𝑥) = 𝑥+ 1. Khi đó

deg𝑃 = 1, deg𝑄 = 1

và

𝑃 (𝑥) +𝑄(𝑥) = 2, 𝑃 (𝑥)−𝑄(𝑥) = −2𝑥.

Như vậy

deg(𝑃 +𝑄) = 0 < max(deg𝑃, deg𝑄),

deg(𝑃 −𝑄) = 1 = max(deg𝑃, deg𝑄).

Phép chia đa thức một biến

Khi chia đa thức 𝐴(𝑥) cho đa thức 𝐵(𝑥), ta tìm đa thức 𝑄(𝑥) và 𝑅(𝑥) sao cho

𝐴(𝑥) = 𝑄(𝑥) ·𝐵(𝑥) +𝑅(𝑥), và 0 6 deg𝑅(𝑥) < deg𝐵(𝑥).

Phân tích trên còn được gọi là phép chia Euclid cho đa thức.

Xét phép chia đa thức 𝑥3+4𝑥2−3 cho đa thức 𝑥−2. Tương tự phép chia hai số nguyên, đa thức 𝑥3+4𝑥2−3
là đa thức bị chia, 𝑥− 2 là đa thức chia, và ta cần tìm thương và số dư.
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Đầu tiên, ta viết tất cả hệ số của đa thức bị chia, bao gồm các hệ số 0:

𝑥3 + 4𝑥2 − 0𝑥− 3,

và viết lên sơ đồ.

x− 1
)

x3 + x2 − 1

Bước 1. Ta chia hạng tử có bậc cao nhất của đa thức bị chia là 𝑥3 cho đa thức chia là 𝑥 và nhận được
𝑥3 : 𝑥 = 𝑥2. Ta viết 𝑥2 vào phần thương (ở trên cùng).

x2

x− 1
)

x3 + x2 − 1

Bước 2. Ta nhân phần tử vừa nhận được của thương là 𝑥2 cho đa thức chia, tức là

𝑥2 · (𝑥− 2) = 𝑥3 − 2𝑥2,

và viết xuống hàng dưới.

x2

x− 1
)

x3 + x2 − 1
− x3 + x2

Bước 3. Ta trừ đa thức chia cho 𝑥3 − 2𝑥2.

x2

x− 1
)

x3 + x2 − 1
− x3 + x2

2x2

Lặp lại các bước 1, 2, 3 nhưng hạng tử lớn nhất hiện tại là 6𝑥2.

Bước 1a. Ta chia 6𝑥2 cho hạng tử bậc cao nhất của số chia và được 6𝑥2 : 𝑥 = 6𝑥. Ta viết +6𝑥 vào phần
thương ở trên cùng.

x2 + 2x

x− 1
)

x3 + x2 − 1
− x3 + x2

2x2

Bước 2a. Ta nhân 6𝑥 cho đa thức chia

6𝑥 · (𝑥− 2) = 6𝑥2 − 12𝑥,

và viết xuống hàng dưới.
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x2 + 2x

x− 1
)

x3 + x2 − 1
− x3 + x2

2x2

− 2x2 + 2x

Bước 3a. Ta trừ đa thức chia, lúc này là 6𝑥2, cho tích vừa tìm được.

x2 + 2x

x− 1
)

x3 + x2 − 1
− x3 + x2

2x2

− 2x2 + 2x

2x− 1

Tiếp tục lặp lại bước 1, 2, 3.

x2 + 2x+ 2

x− 1
)

x3 + x2 − 1
− x3 + x2

2x2

− 2x2 + 2x

2x− 1

x2 + 2x+ 2

x− 1
)

x3 + x2 − 1
− x3 + x2

2x2

− 2x2 + 2x

2x− 1
− 2x+ 2

x2 + 2x+ 2

x− 1
)

x3 + x2 − 1
− x3 + x2

2x2

− 2x2 + 2x

2x− 1
− 2x+ 2

1

Sau khi thực hiện phép trừ ở bước cuối ta có đa thức thương 𝑥2 +6𝑥+12 và đa thức dư 21 có bậc là 0, nhỏ
hơn bậc của đa thức chia 𝑥− 2 là 1.
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Phép chia đa thức nhiều biến

Ở phần này kí hiệu LT(𝑓) là leading term của đa thức nhiều biến theo thứ tự đơn thức (monomial order)
cho trước (lex, deglex, ...).

Input: hàm 𝑓 và các hàm 𝑔1, ..., 𝑔𝑎 trên vành đa thức 𝐾[𝑥1, . . . , 𝑥𝑛] với trường 𝐾 và thứ tự đơn thức nào
đó.

Output: số dư 𝑟 và các đa thức 𝑞1, ..., 𝑞𝑎 thỏa mãn

1. Không có đơn thức nào của 𝑟 chia hết LT(𝑔𝑖) với mọi 𝑖.

2. LT(𝑔𝑖 · 𝑞𝑖) 6 LT(𝑓).

Khi đó

𝑓 = 𝑟 + 𝑞1𝑔1 + · · ·+ 𝑞𝑎𝑔𝑔.

INFO-CIRCLE Algorithm

1. Khởi tạo 𝑝← 𝑓 ; 𝑓 , 𝑞1, ..., 𝑞𝑎 ← 0; 𝑖← 0

2. While 𝑝 ̸= 0 do

• 𝑖← 𝑖+ 1

• if LT(𝑔𝑖) | LT(𝑝) then

– 𝑞𝑖 ← 𝑞𝑖 + LT(𝑝)/LT(𝑔𝑖)

– 𝑝← 𝑝− LT(𝑝)/LT(𝑔𝑖)

– 𝑖← 0

• if 𝑖 = 𝑎 then

– 𝑟 ← 𝑟 + LT(𝑝)

– 𝑝← 𝑝− LT(𝑝)

– 𝑖← 0

3. Return 𝑟, 𝑞1, ..., 𝑞𝑎

Lưu ý:

• thứ tự đơn thức ảnh hưởng kết quả thuật toán;

• 𝑟 ̸= 0 không có nghĩa 𝑓 không là tổ hợp tuyến tính của các đa thức 𝑔𝑖.

Đa thức nội suy Lagrange

Trong đại số, công thức nội suy Lagrange cho phép chúng ta tìm được một đa thức 𝑓(𝑥) trên trường F bất
kì khi biết được một số cặp (𝑥𝑖, 𝑓(𝑥𝑖)) nhất định với 𝑥𝑖, 𝑓(𝑥𝑖) ∈ F.

Để tìm đa thức 𝑓(𝑥) có bậc 𝑛 ta cần ít nhất 𝑛 + 1 cặp (𝑥𝑖, 𝑓(𝑥𝑖) = 𝑦𝑖) với 0 6 𝑖 6 𝑛 và 𝑥𝑖 ̸= 𝑥𝑗 với mọi
𝑖 ̸= 𝑗.

Khi đó, ta có công thức nội suy Lagrange như sau:

𝑓(𝑥) =

𝑛∑︁
𝑖=0

⎛⎝𝑦𝑖 ·∏︁
𝑗 ̸=𝑖

𝑥− 𝑥𝑗
𝑥𝑖 − 𝑥𝑗

⎞⎠ .
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INFO-CIRCLE Example 2.3

Giả sử chúng ta có hàm 𝑓(𝑥) = 𝑥2 + 𝑥+ 1. Khi đó 𝑓(1) = 3, 𝑓(−1) = 1, 𝑓(0) = 1.

Từ ba cặp (𝑥𝑖, 𝑓(𝑥𝑖)) trên mình sẽ tìm ngược lại 𝑓(𝑥) ban đầu.

Theo công thức thì

𝑓(𝑥) =𝑦0 ·
(𝑥− 𝑥1)(𝑥− 𝑥1)
(𝑥0 − 𝑥1)(𝑥0 − 𝑥2)

+ 𝑦1 ·
(𝑥− 𝑥0)(𝑥− 𝑥2)
(𝑥1 − 𝑥0)(𝑥1 − 𝑥2)

+𝑦2 ·
(𝑥− 𝑥0)(𝑥− 𝑥1)
(𝑥2 − 𝑥0)(𝑥2 − 𝑥1)

Thay số vào thì ta có

𝑓(𝑥) = 3 · (𝑥− (−1))(𝑥− 0)

(1− (−1))(1− 0)
+ 1 · (𝑥− 1)(𝑥− 0)

(−1− 1)(−1− 0)
+ 1 · (𝑥− 1)(𝑥− (−1))

(0− 1)(0− (−1))

Thu gọn lại ta có 𝑓(𝑥) = 𝑥2 + 𝑥+ 1 (đúng với hàm cần tìm).

Phần tiếp theo sẽ liên quan đến phương pháp tính đa thức nội suy Lagrange được tham khảo ở [6] (bản dịch
tiếng Nga, chương 4). Nếu đặt

𝐿𝑖(𝑥) =
∏︁
𝑗 ̸=𝑖

𝑥− 𝑥𝑗
𝑥𝑖 − 𝑥𝑗

=
(𝑥− 𝑥0) · · · (𝑥− 𝑥𝑖−1)(𝑥− 𝑥𝑖+1) · · · (𝑥− 𝑥𝑛)

(𝑥𝑖 − 𝑥0) · · · (𝑥𝑖 − 𝑥𝑖−1)(𝑥𝑖 − 𝑥𝑖+1) · · · (𝑥𝑖 − 𝑥𝑛)

thì đa thức 𝐿𝑖(𝑥) được gọi là hệ số Lagrange. Đa thức này có tính chất:

• đều có bậc là 𝑛;

• 𝐿𝑖(𝑥𝑖) = 1;

• 𝐿𝑖(𝑥𝑗) = 0 với 𝑗 ̸= 𝑖.

Như vậy, nội suy Lagrange có thể biểu diễn dưới dạng

𝑓(𝑥) =

𝑛∑︁
𝑖=0

𝑦𝑖𝐿𝑖(𝑥)

thỏa mãn các điều kiện:

• 𝑓(𝑥) có bậc không quá 𝑛;

• 𝑓(𝑥𝑖) = 𝑦𝑖.

Ta sẽ gọi biểu diễn này là dạng Lagrange (hay форма Лагранжа).

Dễ thấy rằng biểu diễn của 𝐿𝑖 chứa rất nhiều phép nhân và việc tính toán sẽ khó khăn khi 𝑛 lớn. Do đó ta
sẽ xem xét công thức tỉ cự (hay барицентрическая формула).

Nếu ta chọn 𝑦𝑖 = 1 với mọi 𝑥𝑖 thì ta có 𝑔(𝑥) = 1 thỏa 𝑔(𝑥𝑖) = 𝑦𝑖. Khi đó

1 =

𝑛∑︁
𝑖=0

𝐿𝑖(𝑥),

𝑓(𝑥) =
𝑓(𝑥)

1
=
𝑦0𝐿0(𝑥) + 𝑦1𝐿1(𝑥) + · · ·+ 𝑦𝑛𝐿𝑛(𝑥)

𝐿0(𝑥) + 𝐿1(𝑥) + · · ·+ 𝐿𝑛(𝑥)
.
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nếu ta chia cả tử và mẫu của 𝑓(𝑥) cho

(𝑥− 𝑥0)(𝑥− 𝑥1) · · · (𝑥− 𝑥𝑛)

thì nhận được

𝑓(𝑥) =

𝑛∑︀
𝑖=0

𝑦𝑖𝑋𝑖

𝑥− 𝑥𝑖
𝑛∑︀

𝑖=0

𝑋𝑖

𝑥− 𝑥𝑖
với

𝑋𝑖 =
1

(𝑥𝑖 − 𝑥0) · · · (𝑥𝑖 − 𝑥𝑖−1)(𝑥𝑖 − 𝑥𝑖+1) · · · (𝑥𝑖 − 𝑥𝑛)
.

Biểu thức 𝑋𝑖 có dạng phức tạp nhưng chỉ phụ thuộc vào 𝑥𝑖. Do đó ta chỉ cần tính một lần cho mọi cặp
điểm. Công thức đó được gọi là công thức tỉ cự (hay барицентрическая формула).

Phương pháp tính giá trị đa thức

Cho đa thức

𝑝(𝑥) = 𝑎𝑛𝑥
𝑛 + 𝑎𝑛−1𝑥

𝑛−1 + · · ·+ 𝑎1𝑥+ 𝑎0,

ta cần tìm giá trị 𝑝(𝑥) tại 𝑥 = 𝑐, tức là tính 𝑝(𝑐).

Tính giá trị đa thức với phép thế trực tiếp

Cách đơn giản nhất để tìm 𝑝(𝑐) là thế trực tiếp giá trị 𝑐 vào đa thức

𝑝(𝑐) = 𝑎𝑛𝑐
𝑛 + 𝑎𝑛−1𝑐

𝑛−1 + · · ·+ 𝑎1𝑐+ 𝑎0.

Sau đó ta tính từng hạng tử

• 𝑎1𝑐 cần một phép nhân;

• 𝑎2𝑐
2 cần hai phép nhân 𝑎2 · 𝑐 · 𝑐;

• tương tự, a_i c^i cần 𝑖 phép nhân.

Tổng cộng chúng ta cần

1 + 2 + · · ·+ 𝑛 = 𝑛(𝑛+ 1)/2

phép nhân. Sau đó ta cộng tất cả hạng tử lại với 𝑛+ 1 phép cộng.

Vấn đề là số lượng phép nhân cần để tính rất lớn nên chúng ta sẽ tìm hiểu những phương án tính toán khác
hiệu quả hơn.

Tính giá trị đa thức với việc ghi nhớ lũy thừa

Mình đề xuất một giải pháp đơn giản cho việc tính lũy thừa 𝑐𝑖. Ở phần trên, mỗi hạng tử ta luôn phải tính
lại 𝑐 · 𝑐 · · · 𝑐 nên mình sẽ dùng dãy 𝑐𝑖 cho lũy thừa và dãy 𝑝𝑖 cho tổng:

• khởi tạo 𝑐0 = 1 và 𝑝0 = 𝑎0;

• tính 𝑐𝑖+1 = 𝑐𝑖 · 𝑐 với 0 6 𝑖 6 𝑛− 1;

• tính 𝑝𝑖+1 = 𝑝𝑖 + 𝑎𝑖+1 · 𝑐𝑖+1 với 0 6 𝑖 6 𝑛− 1.

Như vậy mình cần thực hiện 𝑛 phép cộng và 2𝑛 phép nhân (tính 𝑐𝑖 và 𝑎𝑖+1 · 𝑐𝑖+1).

Tiếp theo mình sẽ nói về phương pháp phổ biến để tính giá trị đa thức gọi là phương pháp Hoocner.
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Phương pháp Hoocner

Để tính giá trị đa thức

𝑝(𝑥) = 𝑎𝑛𝑥
𝑛 + 𝑎𝑛−1𝑥

𝑛−1 + · · ·+ 𝑎1𝑥+ 𝑎0

tại 𝑥 = 𝑐, ta thực hiện:

• khởi tạo 𝑝0 = 𝑎𝑛;

• tính 𝑝1 = 𝑝0𝑐+ 𝑎𝑛−1;

• tính 𝑝2 = 𝑝1𝑐+ 𝑎𝑛−2;

• tương tự, tính 𝑝𝑖 = 𝑝𝑖−1𝑐+ 𝑎𝑛−𝑖 với mọi 1 6 𝑖 6 𝑛.

Cuối cùng, 𝑝𝑛 chính là kết quả 𝑝(𝑐).

Phương pháp Hoocner tốn 𝑛 phép cộng và 𝑛 phép nhân (ở mỗi bước cần một phép cộng và một phép nhân).

Tuy nhiên, phương pháp Hoocner có hai ứng dụng quan trọng khác trong đại số là xác định đa thức khi
thay 𝑥 thành 𝑦 + 𝑐 (với 𝑐 là hằng số) và phân tích nhanh đa thức thành nhân tử khi biết một nghiệm.

Trước khi tìm hiểu phương pháp Hoocner tổng quát, mình sẽ trình bày phương pháp chia Hoocner trước.

Phương pháp chia Hoocner

Giả sử ta có đa thức

𝑝(𝑥) = 𝑎𝑛𝑥
𝑛 + · · · 𝑎1𝑥+ 𝑎0

và ta biết một nghiệm của đa thức 𝑥 = 𝑐. Khi đó ta có thể phân tích đa thức 𝑝(𝑥) thành nhân tử dạng

𝑝(𝑥) = (𝑥− 𝑐)𝑝1(𝑥)

với 𝑝1(𝑥) là đa thức bậc 𝑛− 1.

Đầu tiên ta viết các hệ số của đa thức theo bậc giảm dần 𝑎𝑛, 𝑎𝑛−1, ..., 𝑎1, 𝑎0 và giá trị 𝑐 vào bảng.

𝑎𝑛 𝑎𝑛−1 . . .
𝑥 = 𝑐

Tiếp theo ta điền các giá trị vào dưới chân các ô 𝑎𝑖 bắt đầu từ 𝑎𝑛 theo quy tắc "đầu rơi - nhân ngang - cộng
chéo", có nghĩa là:

• giữ nguyên 𝑎𝑛;

• các ô kế tiếp là kết quả của phép nhân ô trước đó với 𝑐 rồi cộng cho ô bên trên.

𝑎𝑛 𝑎𝑛−1 . . .
𝑥 = 𝑐 𝑎𝑛 𝑎𝑛 · 𝑐+ 𝑎𝑛−1

Ví dụ, phân tích đa thức

𝑝(𝑥) = 𝑥3 − 𝑥2 − 𝑥− 2

khi biết một nghiệm 𝑥 = 2 của nó.

Đầu tiên ta viết các hệ số thành bảng:
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1 −1 −1 −2
𝑥 = 2

Ta giữ lại hệ số bậc cao nhất 𝑎𝑛:

1 −1 −1 −2
𝑥 = 2 1

Tiếp theo, lấy kết quả vừa nhận được 1, nhân với 𝑥 = 2 rồi cộng ô chéo bên phải

1 −1 −1 −2
𝑥 = 2 1 1 · 2 + (−1) = 1

Như vậy kết quả dưới −1 là 1, thực hiện tương tự ta có

1 −1 −1 −2
𝑥 = 2 1 1 1 · 2 + (−1) = 1

Hệ số cuối cùng chắc chắn bằng 0

1 −1 −1 −2
𝑥 = 2 1 1 1 1 · 2 + (−2) = 0

Như vậy (1, 1, 1) là hệ số của đa thức 𝑝1(𝑥) theo bậc giảm dần, tức là

𝑝1(𝑥) = 𝑥2 + 𝑥+ 1.

Phương pháp Hoocner tổng quát

Cho đa thức

𝑝(𝑥) = 𝑎𝑛𝑥
𝑛 + 𝑎𝑛−1𝑥

𝑛−1 + · · ·+ 𝑎1𝑥+ 𝑎0,

ta sẽ xác định các hệ số của đa thức 𝑝(𝑦 + 𝑐) với 𝑦 là biến mới và 𝑐 là giá trị cho trước.

Giả sử

𝑝(𝑦 + 𝑐) = 𝑏𝑛𝑦
𝑛 + 𝑏𝑛−1𝑦

𝑛−1 + · · ·+ 𝑏1𝑦 + 𝑏0

với 𝑏𝑖 là các hệ số cần tìm.

Nếu 𝑦 = 0 thì 𝑝(𝑐) = 𝑏0. Ta tính được 𝑏0 bằng phương pháp Hoocner bên trên.

Đặt

𝑝(𝑥) = (𝑥− 𝑐)𝑝1(𝑥) + 𝑝(𝑐)

với 𝑝1(𝑥) là đa thức bậc 𝑛− 1. Khi đó

𝑝(𝑦 + 𝑐) = 𝑦(𝑏𝑛𝑦
𝑛−1 + 𝑏𝑛−1𝑦

𝑛−2 + · · ·+ 𝑏1) + 𝑏0
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và nếu ta đặt 𝑥 = 𝑦 + 𝑐 thì

𝑝(𝑥) = (𝑥− 𝑐)(𝑏𝑛𝑦𝑛−1 + 𝑏𝑛−1𝑦
𝑛−2 + · · · 𝑏1) + 𝑏0

thì khi đồng nhất hai biểu thức 𝑝(𝑥) ta được

𝑝1(𝑥) = 𝑏𝑛𝑦
𝑛−1 + 𝑏𝑛−1𝑦

𝑛−2 + · · · 𝑏1 = 𝑝1(𝑦 + 𝑐).

Lặp lại quá trình trên, cho 𝑦 = 0 thì 𝑝1(𝑐) = 𝑏1, nói cách khác ta có thể tính 𝑏1 từ phương pháp Hoocner ở
trên.

Tương tự ta tính 𝑏𝑖 = 𝑝𝑖(𝑐) với 𝑖 = 1, 2, . . . , 𝑛, trong đó 𝑝𝑖(𝑐) là giá trị đa thức bậc 𝑛− 𝑖 tại 𝑥 = 𝑐.

INFO-CIRCLE Example 2.4 (Ví dụ phương pháp Hoocner tổng quát)

Cho

𝑝(𝑥) = 2𝑥6 + 4𝑥5 − 𝑥2 + 𝑥+ 2,

tính 𝑝(𝑦 − 1).

Ở đây 𝑐 = −1, ta sử dụng phương pháp chia Hoocner ở trên khi 𝑥 = −1.

2 4 0 0 −1 1 2
𝑥 = −1 2 2 −2 2 −3 4 −2

Lúc này, hệ số 𝑏0 là giá trị ngoài cùng bên phải ở dòng thứ hai, nghĩa là 𝑏0 = −2.

Tiếp tục sử dụng phương pháp chia Hoocner để tìm hàng thứ ba từ hàng thứ hai

2 4 0 0 −1 1 2
𝑥 = −1 2 2 −2 2 −3 4 −2
𝑥 = −1 2 0 −2 4 7 11

Hệ số 𝑏1 là giá trị ngoài cùng bên phải ở dòng thứ ba, hay 𝑏1 = 11.

Tương tự, từ hàng trên ta áp dụng phương pháp chia Hoocner để tìm hàng dưới với độ dài trừ đi 1. Khi
độ dài hàng bằng 1 thì ta kết thúc thuật toán.

2 4 0 0 −1 1 2
𝑥 = −1 2 2 −2 2 −3 4 −2
𝑥 = −1 2 0 −2 4 7 11
𝑥 = −1 2 −2 0 4 −11
𝑥 = −1 2 −4 4 0
𝑥 = −1 2 −6 10
𝑥 = −1 2 −8
𝑥 = −1 2

Như vậy, lấy kết quả ngoài cùng bên phải ở mỗi hàng ta có hệ số của đa thức 𝑝(𝑦 − 1), ở đây là

𝑝(𝑦 − 1) = −2 + 11𝑥− 11𝑥2 + 10𝑥4 − 8𝑥5 + 2𝑥6.
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2.1.3 Phương pháp chứng minh toán học
Chứng minh trực tiếp

Giả sử chúng ta có điều kiện ban đầu là 𝑃 và ta cần chứng minh mệnh đề 𝑄.

Đối với chứng minh trực tiếp, từ 𝑃 chúng ta suy ra 𝑃1 nào đó, rồi lại suy ra 𝑃2 từ 𝑃1. Chúng ta làm vậy
cho đến khi nhận được mệnh đề 𝑄.

Chứng minh trực tiếp hữu dụng đối với những lời giải tuần tự từng bước.

INFO-CIRCLE Example 3.1

Cho tam giác 𝐴𝐵𝐶 với 𝐺, 𝐻, 𝑂 lần lượt là trọng tâm, trực tâm và tâm đường tròn ngoại tiếp tam giác
𝐴𝐵𝐶. Chứng minh rằng ba điểm 𝐺, 𝐻 và 𝑂 thẳng hàng.

Ở đây, với 𝑂 là tâm đường tròn ngoại tiếp tam giác, ta vẽ đường tròn đó trước (Hình 2.12).

Tiếp theo, ta vẽ đường kính 𝐴𝐷.

Lúc này, vì góc 𝐴𝐶𝐷 chắn nửa đường tròn (𝐴𝐷 là đường kính) nên 𝐴𝐶𝐷 là góc vuông, hay 𝐶𝐷 vuông
góc 𝐴𝐶.

Tiếp theo, vì 𝐻 là trực tâm nên 𝐵𝐻 vuông góc cạnh đối diện 𝐴𝐶.

Từ hai kết quả trên suy ra 𝐵𝐻//𝐶𝐷 vì cùng vuông góc 𝐴𝐶.

Tương tự ta cũng có 𝐶𝐻//𝐵𝐷.

Tứ giác 𝐵𝐻𝐶𝐷 có hai cặp cạnh song song là 𝐵𝐻//𝐶𝐷 và 𝐶𝐻//𝐵𝐷 nên 𝐵𝐻𝐶𝐷 là hình bình hành.

Giao điểm hai đường chéo của hình bình hành là trung điểm mỗi đường chéo. Gọi 𝐼1 là trung điểm 𝐵𝐶
thì 𝐼1 cũng là trung điểm 𝐻𝐷.

Vì 𝑂 là trung điểm 𝐴𝐷, 𝐼1 là trung điểm 𝐻𝐷 nên 𝑂𝐼1 là đường trung bình tam giác 𝐷𝐻𝐴, hay
−−→
𝑂𝐼1 =

1

2

−−→
𝐴𝐻.

Do 𝐺 là trọng tâm △𝐴𝐵𝐶 và 𝐴𝐼1 là trung tuyến (𝐼1 là trung điểm 𝐵𝐶) nên 𝐺 chia đoạn thẳng 𝐴𝐼1
theo tỉ lệ 2 : 1, nghĩa là

−→
𝐴𝐺 = 2

−−→
𝐺𝐼1.

Tiếp theo chúng ta biến đổi
−−→
𝐴𝐻 = 2

−−→
𝑂𝐼1

�
�−→𝐴𝐺+

−−→
𝐺𝐻 = 2(

−−→
𝑂𝐺+

−−→
𝐺𝐼1) = 2

−−→
𝑂𝐺+�

��2
−−→
𝐺𝐼1

−−→
𝐺𝐻 = 2

−−→
𝑂𝐺.

Biểu thức cuối cùng chứng tỏ 𝐺, 𝐻 và 𝑂 thẳng hàng, ngoài ra 𝐺 chia đoạn thẳng 𝐻𝑂 theo tỉ lệ 2 : 1.
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Hình 2.12: Đường thẳng Euler

Quy nạp toán học (cơ bản)

Giả sử ta muốn chứng minh một mệnh đề 𝑃 đúng với mọi 𝑛 > 1. Phép quy nạp toán học hoạt động theo
ba bước như sau:

1. Chứng minh mệnh đề 𝑃 đúng với 𝑛 = 1. Đây gọi là bước cơ sở.

2. Giả sử mệnh đề 𝑃 đúng với 𝑛 = 𝑘 > 1. Đây gọi là giả thiết quy nạp.

3. Chứng minh mệnh đề 𝑃 đúng với 𝑛 = 𝑘 + 1 từ giả thiết quy nạp ở bước 2.

Như vậy phép quy nạp toán học (hay mathematical induction, математическая индукция) hoạt
động theo bậc thang. Từ giả thiết quy nạp mệnh đề 𝑃 đúng với 𝑛 = 1, theo chứng minh ở bước 3 thì mệnh
đề 𝑃 cũng đúng ở bước 𝑛 = 1 + 1 = 2. Do 𝑃 đúng với 𝑛 = 2 nên cũng đúng ở 𝑛 = 3. Cứ tiếp tục như vậy
𝑃 sẽ đúng với mọi 𝑛 > 1. Đây là sự hiệu quả đáng kinh ngạc của phép quy nạp toán học.
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INFO-CIRCLE Example 3.2

Chứng minh công thức tổng quát cho tổng 1 + 2 + . . .+ 𝑛` là 𝑛(𝑛+ 1)

2
.

Với 𝑛 = 1 thì 1 =
1(1 + 1)

2
. Như vậy công thức đúng cho 𝑛 = 1. Đây là bước cơ sở.

Giả sử mệnh đề đúng với 𝑛 = 𝑘 > 1. Nghĩa là 1 + 2 + . . .+ 𝑘 =
𝑘(𝑘 + 1)

2
. Đây là giả thiết quy nạp.

Bây giờ ta cần chứng minh mệnh đề đúng với 𝑛 = 𝑘 + 1, nghĩa là ta cần chứng minh

1 + 2 + . . .+ 𝑘 + (𝑘 + 1) =
(𝑘 + 1)(𝑘 + 2)

2
.

Từ giả thiết quy nạp ta suy ra

1 + 2 + . . .+ 𝑘 + (𝑘 + 1) =
𝑘(𝑘 + 1)

2
+ (𝑘 + 1)

=
𝑘(𝑘 + 1) + 2(𝑘 + 1)

2

=
(𝑘 + 1)(𝑘 + 2)

2
.

Vậy là ta đã có điều cần chứng minh, và công thức đã được chứng minh đúng với mọi 𝑛 > 1.

INFO-CIRCLE Remark 3.1

Tùy thuộc bài toán, bước cơ sở có thể không phải bắt đầu từ 1 mà là một số nguyên dương nào đó khác.

Quy nạp toán học (mạnh)

Quy nạp toán học mạnh (strong induction) là một phiên bản mạnh hơn của phép quy nạp toán học ở trên.

Trong phép quy nạp toán học mạnh, giả thiết quy nạp sẽ được thay bằng: Giả sử mệnh đề 𝑃 ĐÚNG TỚI
𝑛 = 𝑘 > 1.

Điểm khác biệt của quy nạp mạnh với quy nạp ban đầu là việc giả thiết quy nạp đúng với mọi 𝑛 nhỏ hơn
hoặc bằng 𝑘 và chúng ta sẽ chứng minh mệnh đề đúng với 𝑛 = 𝑘 + 1. Trong khi đó ở quy nạp ban đầu thì
giả thiết quy nạp chỉ đúng với 𝑛 = 𝑘 thôi.

Tính đúng đắn của quy nạp mạnh vẫn giống như quy nạp thông thường, nghĩa là vẫn hoạt động theo bậc
thang. Khi mệnh đề đúng với 𝑛 = 1 (bước cơ sở) thì chứng minh ở bước 3 cho kết quả mệnh đề 𝑃 đúng với
𝑛 = 2. Do mệnh đề 𝑃 đúng với 𝑛 = 1, 2 nên sẽ đúng với 𝑛 = 3. Cứ tiếp tục như vậy thì 𝑃 sẽ đúng với mọi
𝑛 > 1.

Tại sao chúng ta cần dùng quy nạp toán học mạnh khi bản chất vẫn giống quy nạp thông thường?

Lý do là đôi khi chúng ta chứng minh 𝑛 = 𝑘 + 1 không dựa trên 𝑛 = 𝑘, mà là một điểm nào đó nhỏ hơn,
nghĩa là trong khoảng [1, 𝑘].

INFO-CIRCLE Example 3.3

Dãy số Fibonacci định nghĩa bởi 𝐹1 = 𝐹2 = 1 và 𝐹𝑛+2 = 𝐹𝑛+1 + 𝐹𝑛 với mọi 𝑛 > 1. Chứng minh rằng
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công thức tổng quát của dãy Fibonacci là

𝐹𝑛 =
1√
5

[︃(︃
1 +
√
5

2

)︃𝑛

−

(︃
1−
√
5

2

)︃𝑛]︃
.

Khi 𝑛 = 1 thì ta có 𝐹1 = 1, đúng với điều kiện ban đầu.

Khi 𝑛 = 2 thì ta có 𝐹2 = 1, đúng với điều kiện ban đầu.

Giả thiết quy nạp: giả sử với mọi 𝑛 = 𝑘 > 1 ta đều có 𝐹𝑘 =
1√
5

⎡⎣(︃1 +
√
5

2

)︃𝑘

−

(︃
1−
√
5

2

)︃𝑘
⎤⎦.

Khi đó, với 𝑛 = 𝑘 + 1, ta có

𝐹𝑘+1 = 𝐹𝑘 + 𝐹𝑘−1

=
1√
5

⎡⎣(︃1 +
√
5

2

)︃𝑘

−

(︃
1−
√
5

2

)︃𝑘
⎤⎦+

1√
5

⎡⎣(︃1 +
√
5

2

)︃𝑘−1

−

(︃
1−
√
5

2

)︃𝑘−1
⎤⎦

=
1√
5

⎡⎣(︃1 +
√
5

2

)︃𝑘

+

(︃
1 +
√
5

2

)︃𝑘−1
⎤⎦− 1√

5

⎡⎣(︃1−
√
5

2

)︃𝑘

+

(︃
1−
√
5

2

)︃𝑘−1
⎤⎦

=
1√
5

(︃
1 +
√
5

2

)︃𝑘−1(︃
1 +
√
5

2
+ 1

)︃
− 1√

5

(︃
1−
√
5

2

)︃𝑘−1(︃
1−
√
5

2
+ 1

)︃
.

Để ý rằng

1 +
√
5

2
+ 1 =

3 +
√
5

2
=

6 + 2
√
5

4
=

1 + 2
√
5 +

(︀√
5
)︀2

4

=

(︀
1 +
√
5
)︀2

22
=

(︃
1 +
√
5

2

)︃2

,

tương tự ta cũng có 1−
√
5

2
+ 1 =

(︃
1−
√
5

2

)︃2

, nên ở trên suy ra

𝐹𝑘+1 =
1√
5

(︃
1 +
√
5

2

)︃𝑘−1(︃
1 +
√
5

2

)︃2

+
1√
5

(︃
1−
√
5

2

)︃𝑘−1(︃
1−
√
5

2

)︃2

=
1√
5

⎡⎣(︃1 +
√
5

2

)︃𝑘+1

−

(︃
1−
√
5

2

)︃𝑘+1
⎤⎦ .

Như vậy mệnh đề đúng với 𝑛 = 𝑘 + 1 và ta có điều phải chứng minh.

Ở đây quy nạp mạnh thể hiện ở việc ta cần giả thiết đúng với 𝑛 = 𝑘 và 𝑛 = 𝑘 − 1 để chứng minh cho
𝑛 = 𝑘 + 1.
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Chứng minh bằng phản chứng

Giả sử chúng ta có điều kiện 𝑃 và cần chứng minh kết quả 𝑄. Điều này tương đương với mệnh đề logic
𝑃 ⇒ 𝑄. Chứng minh bằng phản chứng dựa trên sự tương đương của các mệnh đề logic, nghĩa là

(𝑃 ⇒ 𝑄)⇐⇒ (𝑄̄⇒ 𝑃 ).

Khi đó, từ kết quả 𝑄 cần chứng minh, chúng ta giả sử rằng đang có 𝑄̄, tức là phủ định của mệnh đề cần
chứng minh. Bằng các lập luận logic chúng ta sẽ suy ra được điều trái với điều kiện ban đầu, tức là 𝑃 . Đây
là cơ sở của phép chứng minh bằng phản chứng.

INFO-CIRCLE Example 3.4

Chứng minh rằng với mọi số tự nhiên 𝑛, nếu 𝑛3 chia hết cho 3 thì 𝑛 chia hết cho 3.

Ở đây:

1. Điều kiện, tức mệnh đề 𝑃 , là "𝑛3 chia hết cho 3".

2. Mệnh đề cần chứng minh 𝑄 là "𝑛 chia hết cho 3".

Ta suy ra:

1. Phủ định của mệnh đề 𝑃 là "𝑛3 không chia hết cho 3", tức mệnh đề 𝑃 .

2. Phủ định của mệnh đề 𝑄 là "𝑛 không chia hết cho 3", tức mệnh đề 𝑄̄.

Như vậy phép phản chứng đưa ta tới việc chứng minh: nếu số tự nhiên 𝑛 không chia hết cho 3 thì 𝑛3
không chia hết cho 3.

Nếu 𝑛 không chia hết cho 3 thì 𝑛 có dạng 3𝑘 + 1 hoặc 3𝑘 + 2 với 𝑘 ∈ Z.

• nếu 𝑛 = 3𝑘 + 1 thì 𝑛3 = 27𝑘3 + 27𝑘2 + 9𝑘 + 1, khi chia 3 sẽ dư 1. Khi đó 𝑛3 không chia hết cho 3;

• nếu 𝑛 = 3𝑘 + 2 thì 𝑛3 = 27𝑘3 + 54𝑘2 + 36𝑘 + 8, khi chia 3 sẽ dư 2 (vì 8 chia 3 dư 2). Khi đó 𝑛3
cũng không chia hết cho 3.

Như vậy khi 𝑛 không chia hết cho 3 (mệnh đề 𝑄̄) thì 𝑛3 cũng không chia hết cho 3 (mệnh đề 𝑃 ). Theo
phản chứng ta có, nếu 𝑛3 chia hết cho 3 (mệnh đề 𝑃 ) thì 𝑛 chia hết cho 3 (mệnh đề 𝑄). Đây là điều phải
chứng minh.
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2.1.4 Bảng thuật ngữ đại số

Tiếng Việt Tiếng Anh Tiếng Nga
tập hợp set множество
tập hợp rỗng empty set пустое множество
lực lượng (của tập hợp) cardinality мощность
phép giao tập hợp intersection of sets пересечение множеств
phép hợp tập hợp union of sets объединение множеств
phép hiệu hai tập hợp set difference разность двух множеств
ánh xạ map отображение
đơn ánh injection инъекция

one-to-one map инъективное отображение
toàn ánh surjection сюръекция

onto map сюръективное отображение
song ánh bijection биекция

one-to-one and onto map биективное отображение
взаимно однозначное отображение

hàm số function функция
hàm đơn điệu monotonic function монотонная функция
(hàm số) đồng biến increasing возрастающая
(hàm số) tăng nghiêm ngặt strictly increasing строго возрастающая
(hàm số) nghịch biến decresing убывающая
(hàm số) giảm nghiêm ngặt strictly increasing строго убывающая
hàm số chẵn even function четная функция
hàm số lẻ odd function нечетная функция
hàm cộng tính additive function аддитивная функция
hàm nhân tính multiplicative function мультипликативная функция
hàm tuần hoàn periodic function периодическая функция
đa thức polynomial многочлен
bậc (đa thức) degree степень
hệ số (đa thức) coefficient коэффициент
quy nạp (toán học) (mathematical) induction (математическая) индукция
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2.2 Lý thuyết nhóm

2.2.1 Lý thuyết nhóm

Hình 2.13: Évariste Galois (1811-1832)

Nhóm

Nhóm và nhóm con

INFO-CIRCLE Definition 1.16 (Nhóm)

Một tập hợp 𝐺 và toán tử hai ngôi ⋆ trên 𝐺 tạo thành một nhóm (hay group, группа) nếu:

1. Tồn tại phần tử 𝑒 ∈ 𝐺 sao cho với mọi 𝑔 ∈ 𝐺 thì

𝑔 ⋆ 𝑒 = 𝑒 ⋆ 𝑔 = 𝑔.

Khi đó 𝑒 được gọi là phần tử đơn vị của 𝐺.

2. Với mọi 𝑔 ∈ 𝐺, tồn tại 𝑔′ ∈ 𝐺 sao cho

𝑔 ⋆ 𝑔′ = 𝑔′ ⋆ 𝑔 = 𝑒.

Khi đó 𝑔′ được gọi là phần tử nghịch đảo của 𝑔.

3. Tính kết hợp: với mọi 𝑎, 𝑏, 𝑐 ∈ 𝐺 thì

𝑎 ⋆ (𝑏 ⋆ 𝑐) = (𝑎 ⋆ 𝑏) ⋆ 𝑐.

INFO-CIRCLE Definition 1.17 (Nhóm Abel)
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Nếu nhóm 𝐺 có thêm tính giao hoán, tức là với mọi 𝑎, 𝑏 ∈ 𝐺 thì 𝑎 ⋆ 𝑏 = 𝑏 ⋆ 𝑎 thì 𝐺 gọi là nhóm giao
hoán (commutative group, коммутативная группа) hoặc nhóm Abel (abelian group, абелева
группа).

INFO-CIRCLE Example 1.12

Xét tập hợp số nguyên Z và phép cộng hai số nguyên.

1. Phần tử đơn vị là 0 vì với mọi 𝑎 ∈ Z thì 𝑎+ 0 = 0 + 𝑎 = 𝑎.

2. Với mọi 𝑎 ∈ Z, phần tử nghịch đảo là −𝑎 vì 𝑎+ (−𝑎) = (−𝑎) + 𝑎 = 0.

3. Phép cộng số nguyên có tính kết hợp do đó thỏa mãn điều kiện về tính kết hợp.

Như vậy (Z,+) tạo thành nhóm. Lưu ý do phép cộng hai số nguyên có tính giao hoán nên đây cũng là
nhóm Abel.

INFO-CIRCLE Example 1.13

Xét tập hợp số hữu tỉ khác 0 là Q* và phép nhân hai số hữu tỉ. Do 𝑎, 𝑏 ∈ Q* nên tích 𝑎 · 𝑏 cũng khác 0,
do đó cũng thuộc Q*.

1. Phần tử đơn vị là 1 vì với mọi 𝑎 ∈ Q* thì 𝑎 · 1 = 1 · 𝑎 = 𝑎.

2. Với mọi 𝑎 ∈ Q*, phần tử nghịch đảo là 1

𝑎
vì 𝑎 · 1

𝑎
=

1

𝑎
· 𝑎 = 1.

3. Phép nhân hai số hữu tỉ có tính kết hợp do đó thỏa mãn điều kiện về tính kết hợp.

Tương tự như nhóm (Z,+), nhóm (Q*, ·) cũng là nhóm Abel.

INFO-CIRCLE Definition 1.18 (Order của nhóm)

Order (hay порядок) của nhóm 𝐺 là lực lượng (hay số phần tử, carninality, мощность) của nhóm
đó và kí hiệu là |𝐺|.

Đối với nhóm có vô hạn phần tử, ta quy ước order của nhóm bằng 0, ví dụ như với hai nhóm (Z,+) và
(Q*, ·) ở trên.

Nhóm con

INFO-CIRCLE Definition 1.19 (Nhóm con)

Cho nhóm (𝐺, ⋆). Tập hợp 𝐻 ⊂ 𝐺 được gọi là nhóm con (hay subgroup, подгруппа) của 𝐺 nếu với
mọi 𝑎, 𝑏 ∈ 𝐻 thì 𝑎 ⋆ 𝑏 ∈ 𝐻.

Nói cách khác, toán tử ⋆ đóng với các phần tử trong 𝐻.
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INFO-CIRCLE Example 1.14

Xét nhóm (Z,+) như trên. Ta xét tập con gồm các số chẵn của nó

2Z = {. . . ,−4,−2, 0, 2, 4, . . .}.

Ta thấy rằng tổng hai số chẵn vẫn là số chẵn, nghĩa là phép cộng số nguyên đóng trên 2Z.

Do đó (2Z,+) là nhóm con của (Z,+).

Tổng quát, mọi tập hợp có dạng 𝑛Z đều là nhóm con của (Z,+).

INFO-CIRCLE Theorem 1.2 (Định lý Lagrange)

Order của nhóm luôn chia hết order của một nhóm con bất kì của nó.

Nhóm vòng

INFO-CIRCLE Definition 1.20 (Nhóm vòng)

Nhóm 𝐺 được gọi là nhóm vòng (hay cyclic group, циклическая группа) nếu tồn tại phần tử
𝑔 ∈ 𝐺 mà mọi phần tử trong 𝐺 đều được biểu diễn dưới dạng 𝑔𝑖. Khi đó ta kí hiệu 𝐺 = ⟨𝑔⟩ hoặc
𝐺 = {𝑔, 𝑔1, . . . , 𝑔𝑛}.

Thông thường ta quy ước 𝑔𝑛 = 𝑔0 = 𝑒.

Đối với nhóm (Z𝑛,+𝑛) xác định phép cộng modulo 𝑛, ta kí hiệu

𝑖𝑔 = 𝑔 + 𝑔 + . . .+ 𝑔⏟  ⏞  
𝑖 lần

.

Ta viết

𝐺 = {1𝑔, 2𝑔, 3𝑔, . . . , 𝑛𝑔}.

Phần tử 𝑔 được gọi là phần tử sinh (hay образующий элемент) của nhóm vòng 𝐺.

Như vậy, số lượng phần tử sinh của Z𝑛 là 𝜙(𝑛) với 𝜙 là hàm Euler. Lúc này điều kiện để phần tử 𝑗 là phần
tử sinh tương đương với

⟨𝑗⟩ = Z𝑛 ⇐⇒ (𝑗, 𝑛) = 1.

INFO-CIRCLE Definition 1.21 (Elementary abelian group)

Nhóm vòng được gọi là elementary abelian (hay примарная абелева группа) nếu bậc của nhóm
là số nguyên tố.
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Coset

INFO-CIRCLE Definition 1.22 (Coset, lớp kề)

Cho nhóm 𝐺 và nhóm con 𝐻 của 𝐺.

Coset trái của 𝐻 đối với phần tử 𝑔 ∈ 𝐺 là tập hợp

𝑔𝐻 = {𝑔ℎ : ℎ ∈ 𝐻}.

Tương tự, coset phải là tập hợp

𝐻𝑔 = {ℎ𝑔 : ℎ ∈ 𝐻}.

Từ đây nếu không nói gì thêm ta ngầm hiểu là coset trái.

Ví dụ với nhóm con 2Z của Z, ta thấy rằng:

1. Nếu 𝑔 ∈ Z là lẻ thì khi cộng với bất kì phần tử nào của 2Z ta nhận được số lẻ.

2. Nếu 𝑔 ∈ Z là chẵn thì khi cộng với bất kì phần tử nào của 2Z ta nhận được số chẵn.

Nói cách khác, coset của 2Z chia tập Z thành

0 + 2Z = {. . . ,−4,−2, 0, 2, 4, . . .},
1 + 2Z = {. . . ,−3,−1, 1, 3, 5, . . .}.

Rõ ràng hai coset trên rời nhau.

INFO-CIRCLE Remark 1.2

Hai coset bất kì hoặc rời nhau, hoặc trùng nhau.

INFO-CIRCLE Chứng minh

Nếu hai coset rời nhau thì không có gì phải nói. Ta chứng minh trường hợp còn lại.

Giả sử 𝑔1𝐻 ∩ 𝑔2𝐻 ̸= ∅. Như vậy tồn tại ℎ1, ℎ2 ∈ 𝐻 mà 𝑔1ℎ1 = 𝑔2ℎ2.

Do ℎ−1
1 ∈ 𝐻, ta có 𝑔1 = 𝑔2ℎ2ℎ

−1
1 , nghĩa là 𝑔1 ∈ 𝑔2𝐻.

Mà mọi phần tử trong 𝑔1𝐻 có dạng 𝑔1ℎ nên 𝑔1ℎ = 𝑔2ℎ2ℎ
−1
1 ℎ. Do 𝐻 là nhóm con của 𝐺 nên ℎ2ℎ−1

1 ℎ ∈ 𝐻.

Từ đó 𝑔1𝐻 ⊆ 𝑔2𝐻. Tương tự ta cũng có 𝑔2𝐻 ⊆ 𝑔1𝐻. Vậy 𝑔1𝐻 = 𝑔2𝐻.

Normal Subgroup

INFO-CIRCLE Definition 1.23 (Normal Subgroup)

Nhóm con 𝐻 của 𝐺 được gọi là normal subgroup (hay нормальная подгруппа, nhóm con chuẩn
tắc) nếu với mọi 𝑔 ∈ 𝐺 ta có coset trái trùng với coset phải.

𝑔𝐻 = 𝐻𝑔 với mọi 𝑔 ∈ 𝐺.
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Nếu 𝐻 là normal subgroup của 𝐺 ta kí hiệu 𝐻 ▷ 𝐺. Khi đó, với mọi 𝑎, 𝑏 ∈ 𝐺 thì (𝑎𝐻)(𝑏𝐻) = (𝑎𝑏)𝐻.

INFO-CIRCLE Definition 1.24 (Quotient Group)

Với nhóm 𝐺 và normal subgroup của nó là 𝐻.

Quotient Group (hay nhóm thương) được kí hiệu là 𝐺/𝐻 và được định nghĩa là tập hợp các coset
tương ứng với normal subgroup 𝐻.

𝐺/𝐻 = {𝑔𝐻 : 𝑔 ∈ 𝐻}.

Ta thấy rằng điều này chỉ xảy ra nếu 𝐻 là normal subgroup.

Quotient Group còn được gọi là Factor Group (hay nhóm nhân tử).

INFO-CIRCLE Example 1.15

Với nhóm Z và normal subgroup của nó là 2Z.

Ta thấy

Z/2Z = {0 + 2Z, 1 + 2Z}.

Direct sum of modules

Có hai dạng tổng là external và internal.

INFO-CIRCLE Definition 1.25 (External direct sum)

Giả sử ta có các nhóm (𝐺1, *), (𝐺2, ⋆), ..., (𝐺𝑡, ∘). Khi đó externel direct sum của các nhóm 𝐺1, ..., 𝐺𝑡

là:

𝐺 = 𝐺1 ×𝐺2 ×𝐺𝑡, (𝐺,�).

Giả sử 𝑔 = (𝑔1, 𝑔2, . . . , 𝑔𝑡) ∈ 𝐺 với 𝑔𝑖 ∈ 𝐺𝑖, và 𝑔′ = (𝑔′1, 𝑔
′
2, . . . , 𝑔

′
𝑡) ∈ 𝐺 với 𝑔′𝑖 ∈ 𝐺𝑖. Khi đó:

𝑔�𝑔′ = (𝑔1 * 𝑔′1, 𝑔2 ⋆ 𝑔′2, . . . , 𝑔𝑡 ∘ 𝑔′𝑡).

INFO-CIRCLE Definition 1.26 (Internal direct sum)

Giả sử ta có nhóm (𝐺, ∘) và các nhóm con 𝐺1, 𝐺2, ..., 𝐺𝑡 của 𝐺. Khi đó internal direct sum là:

1. Với mọi 𝑔 ∈ 𝐺 thì 𝑔 = 𝑔1 ∘ 𝑔2 ∘ . . . ∘ 𝑔𝑡 với 𝑔𝑖 ∈ 𝐺𝑖.

2. Với mọi 𝑖, 𝑗 mà 𝑖 ̸= 𝑗, 1 6 𝑖, 𝑗 6 𝑡 ta có

𝑔𝑖 ∘ 𝑔𝑗 = 𝑔𝑗 ∘ 𝑔𝑖

với mọi 𝑔𝑖 ∈ 𝐺𝑖 và 𝑔𝑗 ∈ 𝐺𝑗 .

2.2. Lý thuyết nhóm 47



Math Book

Nhóm hoán vị

Nhóm hoán vị

Xét tập hợp {1, 2, . . . , 𝑛}.

Ta gọi 𝒮𝑛 là tập tất cả hoán vị của tập hợp trên. Như vậy 𝒮𝑛 có 𝑛! phần tử.

Nếu ta lấy hoán vị gốc là (1, 2, . . . 𝑛), mỗi hoán vị đều có thể được biểu diễn bằng hai hàng như sau:

𝜎 =

(︂
1 2 . . . 𝑛

𝜎(1) 𝜎(2) . . . 𝜎(𝑛)

)︂
.

Ta định nghĩa toán tử trên 𝒮𝑛. Với hai hoán vị 𝜎 và 𝜏 , hoán vị 𝜎 ⋆ 𝜏 là vị trí của 𝜎 theo 𝜏 . Nói cách khác,
nếu

𝜎 =

(︂
1 2 . . . 𝑛

𝜎(1) 𝜎(2) . . . 𝜎(𝑛)

)︂
và

𝜏 =

(︂
1 2 . . . 𝑛

𝜏(1) 𝜏(2) . . . 𝜏(𝑛)

)︂
thì

𝜎 ⋆ 𝜏 =

(︂
1 2 . . . 𝑛

𝜎(𝜏(1)) 𝜎(𝜏(2)) . . . 𝜎(𝜏(𝑛))

)︂
Tập các hoán vị 𝒮𝑛 và toán tử như trên tạo thành một nhóm và được gọi là nhóm hoán vị.

INFO-CIRCLE Example

Xét nhóm hoán vị 𝒮5.

Gọi 𝑥 =

(︂
1 2 3 4 5
4 3 1 2 5

)︂
và 𝑦 =

(︂
1 2 3 4 5
5 1 4 3 2

)︂
.

Khi đó, đặt 𝑧 = 𝑥 ⋆ 𝑦 thì

𝑧(1) = 𝑥(𝑦(1)) = 𝑥(5) = 5,

𝑧(2) = 𝑥(𝑦(2)) = 𝑥(1) = 4,

𝑧(3) = 𝑥(𝑦(3)) = 𝑥(4) = 2,

𝑧(4) = 𝑥(𝑦(4)) = 𝑥(3) = 1,

𝑧(5) = 𝑥(𝑦(5)) = 𝑥(2) = 3.

Như vậy

𝑧 = 𝑥 ⋆ 𝑦 =

(︂
1 2 3 4 5
5 4 2 1 3

)︂
.

INFO-CIRCLE Remark

Trong một hoán vị, khi biểu diễn trên hai hàng thì thứ tự viết không quan trọng, miễn là đảm bảo 𝑖
tương ứng với 𝜎(𝑖) trên từng cột.
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INFO-CIRCLE Example

Xét hoán vị 𝜎 =

(︂
1 2 3 4 5
4 3 1 2 5

)︂
thuộc 𝒮5.

Ta có 𝜎(1) = 4, 𝜎(2) = 3, 𝜎(3) = 1, 𝜎(4) = 2 và 𝜎(5) = 5. Như vậy hai cách viết sau là giống nhau

𝜎 =

(︂
1 2 3 4 5
4 3 1 2 5

)︂
=

(︂
3 4 5 1 2
1 2 5 4 3

)︂
.

Chu trình độc lập

Xét nhóm hoán vị 𝒮𝑛 và hoán vị 𝜎 thuộc 𝒮𝑛.

Khi đó tồn tại các tập {𝑖1, 𝑖2, . . . , 𝑖𝑘} ⊂ {1, 2, . . . , 𝑛} sao cho 𝜎(𝑖1) = 𝑖2, 𝜎(𝑖2) = 𝑖3, ..., 𝜎(𝑖𝑘−1) = 𝜎(𝑖𝑘) và
𝜎(𝑖𝑘) = 𝑖1.

INFO-CIRCLE Example

Xét 𝒮5 và hoán vị 𝜎 =

(︂
1 2 3 4 5
5 1 4 3 2

)︂
.

Ta thấy rằng 𝜎(1) = 5, 𝜎(5) = 2, 𝜎(2) = 1. Như vậy ta có chu trình 1→ 5→ 2→ 1.

Tương tự, 𝜎(3) = 4 và 𝜎(4) = 3. Như vậy ta có thêm chu trình 3→ 4→ 3.

Hai chu trình trên không chứa phần tử chung nên chúng được gọi là hai chu trình độc lập.

INFO-CIRCLE Remark

Mọi hoán vị đều có thể viết được dưới dạng tích của các chu trình độc lập.

Chu trình có thể chứa một phần tử, tức 𝜎(𝑖) = 𝑖 với mọi 𝑖.

INFO-CIRCLE Example

Hoán vị 𝜎 =

(︂
1 2 3 4 5
5 1 4 3 2

)︂
như trên thì ta có thể viết lại thành 𝜎 = (1, 5, 2)(3, 4).

INFO-CIRCLE Remark

Thứ tự của chu trình trong tích không quan trọng. Điều này dễ thấy vì các chu trình độc lập nhau, do
đó dù viết trước hay sau thì hoán vị vẫn nằm trong chu trình đó.

Để giải thích rõ hơn, chúng ta có thể xem mỗi chu trình độc lập như một hoán vị, trong đó các phần tử
không thuộc chu trình đứng yên.

Ví dụ với chu trình (1, 5, 2) = (1, 5, 2)(3)(4) ở trên tương đương với

𝑝1 =

(︂
1 2 3 4 5
5 1 3 4 2

)︂
,
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và với chu trình (3, 4) = (3, 4)(1)(2)(5) tương đương với

𝑝2 =

(︂
1 2 3 4 5
1 2 4 3 5

)︂
=

(︂
5 1 3 4 2
5 1 4 3 2

)︂
.

Do đó tích của chúng (hay toán tử trên nhóm hoán vị) sẽ cho ra kết quả hoán vị ban đầu:(︂
1 2 3 4 5
5 1 4 3 2

)︂
⏟  ⏞  

𝜎

=

(︂
1 2 3 4 5
5 1 3 4 2

)︂
⏟  ⏞  

𝑝1

⋆

(︂
5 1 3 4 2
5 1 4 3 2

)︂
⏟  ⏞  

𝑝2

.

Quasigroup

INFO-CIRCLE Definition 1.27 (Quasigroup)

Tập 𝑄 và phép toán hai ngôi ⋆ được gọi là quasigroup (hay квазигруппа) nếu với mọi 𝑎, 𝑏 ∈ 𝑄, tồn
tại duy nhất hai phần tử 𝑥, 𝑦 ∈ 𝑄 sao cho

𝑎 ⋆ 𝑥 = 𝑏, 𝑦 ⋆ 𝑎 = 𝑏.

INFO-CIRCLE Example 1.20

Mọi nhóm đều là quasigroup.

INFO-CIRCLE Example 1.21

(Z,−) không phải là nhóm nhưng là quasigroup.

INFO-CIRCLE Chứng minh

Với mọi 𝑎, 𝑏,∈ Z ta tìm 𝑥, 𝑦 sao cho 𝑎− 𝑥 = 𝑏 và 𝑦 − 𝑎 = 𝑏.

Khi đó 𝑥 = 𝑎− 𝑏 và 𝑦 = 𝑎+ 𝑏, nói cách khác là tồn tại hai phần tử duy nhất 𝑥, 𝑦

INFO-CIRCLE Remark 1.6

Quasigroup không có tính kết hợp nên chúng ta không thể định nghĩa phép tính 𝑎𝑛 như với nhóm.

INFO-CIRCLE Definition 1.28 (𝑑-quasigroup)

Xét quasigroup (𝑄, 𝑔) với 𝑔 là ánh xạ

𝑔 : 𝑄𝑑 → 𝑄, 𝑑 > 2

được gọi là 𝑑-quasigroup và 𝑔 được gọi là toán tử quasigroup.
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Định nghĩa quasigroup ở đầu bài tương ứng với 𝑑 = 2 (với 𝑔 là toán tử hai ngôi).

INFO-CIRCLE Definition 1.29 (Bảng Latin)

Bảng Latin là bảng gồm 𝑘 hàng và 𝑘 cột. Ta viết các số từ 0 tới 𝑘 − 1 lên bảng sao cho mỗi hàng có 𝑘
phần tử khác nhau và mỗi cột cũng có 𝑘 phần tử khác nhau.

Ví dụ, với 𝑘 = 2 ta có bảng

0 1
1 0

Ví dụ, với 𝑘 = 3 ta có bảng

0 2 1
1 0 2
2 1 0

Mỗi ô được biểu diễn bởi bộ ba (тройка) (𝑖, 𝑗, 𝑡) với

• 𝑖 là vị trí hàng;

• 𝑗 là vị trí cột;

• 𝑡 là giá trị tại ô (𝑖, 𝑗).

INFO-CIRCLE Definition 1.30 (Homotopy)

Giả sử (𝑃, ⋆) và (𝑄, *) là hai quasigroup. Khi đó quasigroup homotopy từ 𝑃 tới 𝑄 là bộ ba (𝛼, 𝛽, 𝛾)
biểu diễn ba ánh xạ từ 𝑃 tới 𝑄 thỏa

𝛼(𝑥) * 𝛽(𝑦) = 𝛾(𝑥 ⋆ 𝑦)

với mọi 𝑥, 𝑦 ∈ 𝑃 .

INFO-CIRCLE Definition 1.31 (Isotopy)

Khi cả ba ánh xạ 𝛼, 𝛽 và 𝛾 đều là song ánh thì ta nói homotopy là isotopy (hay изотопия).

INFO-CIRCLE Definition 1.32 (Autotopy)

Autotopy là isotopy tới chính nó, nghĩa là 𝑃 ≡ 𝑄.

INFO-CIRCLE Remark 1.7
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Isotopy là quan hệ tương đương.

𝑄1 ∼ 𝑄2 ⇐⇒ 𝑄1 isotopy với 𝑄2.

INFO-CIRCLE Definition 1.33 (Parastrophe)

Từ toán tử ban đầu ⋆ ta định nghĩa thêm năm toán tử khác là:

1. Toán tử ∘ với 𝑥 ∘ 𝑦 = 𝑦 ⋆ 𝑥 là toán tử đối của toán tử ⋆.

2. Toán tử ∖ với 𝑥 ∖ 𝑦 = 𝑧 tương đương với 𝑦 = 𝑥 ⋆ 𝑧.

3. Toán tử đối của ∖.

4. Toán tử /.

5. Toán tử đối của /.

Như vậy có tất cả sáu toán tử quasigroup và ta gọi tập các toán tử đó là parastrophe (hay conjugation,
парастрофия).

INFO-CIRCLE Definition 1.34 (Loop)

Loop (hay лупа) là quasigroup (𝑄, ⋆) với phần tử đơn vị 𝑒 sao cho với mọi 𝑥 ∈ 𝑄 thì

𝑒 ⋆ 𝑥 = 𝑥 ⋆ 𝑒 = 𝑥.

Khi đó mỗi phần tử trong quasigroup sẽ có phần tử nghịch đảo (inverse) trái và phải tương ứng. Lưu ý rằng
hai nghịch đảo không nhất thiết phải bằng nhau.

INFO-CIRCLE Definition 1.35 (Nhóm nhân)

Ta định nghĩa phép nhân (toán tử nhân)

𝐿𝑥 : 𝑄→ 𝑄, 𝐿𝑥(𝑦) = 𝑥 ⋆ 𝑦,

𝑅𝑥 : 𝑄→ 𝑄, 𝑅𝑥(𝑦) = 𝑦 ⋆ 𝑥.

Đặt

mult(𝑄) = ⟨𝐿𝑞, 𝑅𝑞 : 𝑞 ∈ 𝑄⟩.

Ta nói mult(𝑄) là nhóm nhân của quasigroup (hay группа умножений квазигруппы).

INFO-CIRCLE Definition 1.36 (Chỉ số kết hợp)

Ta gọi bộ ba kết hợp (hay ассоциативная тройка) là ba phần tử 𝑎, 𝑏, 𝑐 ∈ 𝑄 sao cho

𝑎 ⋆ (𝑏 ⋆ 𝑐) = (𝑎 ⋆ 𝑏) ⋆ 𝑐,
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hay tương đương với

𝑅𝑐(𝐿𝑎(𝑏)) = 𝐿𝑎(𝑅𝑐(𝑏)).

Khi đó chỉ số kết hợp (hay индекс ассоциативности) là số lượng bộ ba kết hợp trong quasigroup.

INFO-CIRCLE Remark 1.8

Mục tiêu của quasigroup trong mật mã học là làm yếu tính kết hợp xuống. Như vậy nếu quasigroup có
càng nhiều bộ ba kết hợp thì càng dễ bị tấn công hơn.

INFO-CIRCLE Remark 1.9

Số lượng bộ ba kết hợp của quasigroup với order 𝑛 thì không nhỏ hơn 𝑛.

[TODO] Chứng minh tính chất này.

2.2.2 Homomorphisms
Group homomorphism

Đồng cấu nhóm

INFO-CIRCLE Definition 2.3 (Homomorphism, Đồng cấu nhóm)

Xét hai nhóm (𝐺, ⋆) và (𝐻, *) và một ánh xạ 𝑓 : 𝐺→ 𝐻.

Ánh xạ 𝑓 được gọi là đồng cấu (hay homomorphism) nếu với mọi 𝑔1, 𝑔2 thuộc 𝐺 ta có 𝑓(𝑔1 ⋆ 𝑔2) =
𝑓(𝑔1) * 𝑓(𝑔2).

Do 𝑔1, 𝑔2 là các phần tử thuộc 𝐺 nên toán tử giữa chúng là ⋆. Trong khi đó 𝑓(𝑔1), 𝑓(𝑔2) là các phần tử
thuộc 𝐻 nên toán tử giữa chúng là *.

INFO-CIRCLE Remark 2.2

1. Gọi 𝑒𝐺 là phần tử đơn vị của 𝐺 và 𝑒𝐻 là phần tử đơn vị của 𝐻. Khi đó 𝑓(𝑒𝐺) = 𝑒𝐻 .

2. Với mọi phần tử 𝑔 ∈ 𝐺, nếu 𝑔−1 là nghịch đảo của 𝑔 trong 𝐺 thì 𝑓(𝑔−1) = 𝑓(𝑔)−1.

INFO-CIRCLE Chứng minh

1. Nếu 𝑒𝐺 là phần tử đơn vị của 𝐺 thì với mọi 𝑔 ∈ 𝐺 ta có 𝑔 ⋆ 𝑒𝐺 = 𝑒𝐺 ⋆ 𝑔 = 𝑔. Ta lấy 𝑓 cả ba vế và
theo định nghĩa homomorphism thu được

𝑓(𝑔 ⋆ 𝑒𝐺) = 𝑓(𝑒𝐺 ⋆ 𝑔) = 𝑓(𝑔)⇒ 𝑓(𝑔) * 𝑓(𝑒𝐺) = 𝑓(𝑒𝐺) * 𝑓(𝑔) = 𝑓(𝑔).

Đẳng thức trên đúng với mọi 𝑔 ∈ 𝐺 nên đúng với mọi 𝑓(𝑔), suy ra 𝑓(𝑒𝐺) là phần tử đơn vị trong nhóm
(𝐻, *) và do đó 𝑓(𝑒𝐺) = 𝑒𝐻 .

2.2. Lý thuyết nhóm 53



Math Book

2. Từ việc tìm ra phần tử đơn vị, ta cũng chứng minh được tính chất nghịch đảo trên.

Các loại homomorphism

Tương tự như ánh xạ, chúng ta có các loại homomorphism sau

INFO-CIRCLE Definition 2.4 (Monomorphism, Đơn cấu)

Ánh xạ được gọi là đơn cấu (hay monomorphism) nếu nó là ánh xạ one-to-one (đơn ánh). Nói cách
khác, với mọi 𝑔1, 𝑔2 ∈ 𝐺 mà 𝑔1 ̸= 𝑔2 thì 𝑓(𝑔1) ̸= 𝑓(𝑔2).

INFO-CIRCLE Definition 2.5 (Epimorphism, Toàn cấu)

Ánh xạ được gọi là toàn cấu (hay epimorphism) nếu nó là ánh xạ onto (toàn ánh). Nói cách khác,
với mọi ℎ ∈ 𝐻 thì tồn tại 𝑔 ∈ 𝐺 mà 𝑓(𝑔) = ℎ.

INFO-CIRCLE Definition 2.6 (Isomorphism, Đẳng cấu)

Ánh xạ được gọi là đẳng cấu (hay isomorphism) nếu nó là ánh xạ one-to-one và onto (song ánh). Nói
cách khác, ánh xạ này vừa là đơn cấu, vừa là toàn cấu.

INFO-CIRCLE Theorem 2.2 (Định lí Cayley)

Mọi nhóm hữu hạn đều đẳng cấu (isomorphism) với một nhóm con nào đó của nhóm hoán vị.

INFO-CIRCLE Chứng minh định lí Cayley

Giả sử ta có nhóm hữu hạn 𝐺 = {𝑔1, 𝑔2, . . . 𝑔𝑛}.

Với mỗi 𝑔 ∈ 𝐺, ta xây dựng hoán vị 𝜙𝑔 theo 𝑔:(︂
𝑔1 𝑔2 . . . 𝑔𝑖 . . . 𝑔𝑛
𝑔1𝑔 𝑔2𝑔 . . . 𝑔𝑖𝑔 . . . 𝑔𝑛𝑔

)︂
= 𝜙𝑔

Ta chọn 𝑔′, 𝑔′′ ∈ 𝐺. Khi đó:

𝜙𝑔′𝑔′′ =

(︂
𝑔1 𝑔2 . . . 𝑔𝑖 . . . 𝑔𝑛

𝑔1𝑔
′𝑔′′ 𝑔2𝑔

′𝑔′′ . . . 𝑔𝑖𝑔
′𝑔′′ . . . 𝑔𝑛𝑔

′𝑔′′

)︂
=

(︂
𝑔1 𝑔2 . . . 𝑔𝑖 . . . 𝑔𝑛
𝑔1𝑔

′ 𝑔2𝑔
′ . . . 𝑔𝑖𝑔

′ . . . 𝑔𝑛𝑔
′

)︂
×
(︂

𝑔1𝑔
′ 𝑔2𝑔

′ . . . 𝑔𝑖𝑔
′ . . . 𝑔𝑛𝑔

′

(𝑔1𝑔
′)𝑔′′ (𝑔2𝑔

′)𝑔′′ . . . (𝑔𝑖𝑔
′)𝑔′′ . . . (𝑔𝑛𝑔

′)𝑔′′

)︂
.

Do (︂
𝑔1 𝑔2 . . . 𝑔𝑖 . . . 𝑔𝑛
𝑔1𝑔

′ 𝑔2𝑔
′ . . . 𝑔𝑖𝑔

′ . . . 𝑔𝑛𝑔
′

)︂
= 𝜙𝑔′ ,
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và (︂
𝑔1𝑔

′ 𝑔2𝑔
′ . . . 𝑔𝑖𝑔

′ . . . 𝑔𝑛𝑔
′

(𝑔1𝑔
′)𝑔′′ (𝑔2𝑔

′)𝑔′′ . . . (𝑔𝑖𝑔
′)𝑔′′ . . . (𝑔𝑛𝑔

′)𝑔′′

)︂
= 𝜙(𝑔′′)

nên 𝜙𝑔′𝑔′′ = 𝜙(𝑔′) · 𝜙(𝑔′′) nên 𝜙 là đồng cấu (homomorphism).

Để chứng minh 𝜙 là song ánh, ta chứng minh 𝜙 là đơn ánh và toàn ánh.

Giả sử 𝜙(𝑔) = 𝜙(𝑔′). Theo định nghĩa hoán vị thì 𝑔 = 𝑔′ nên 𝜙 là đơn ánh.

Giả sử ta có hoán vị

𝜎 =

(︂
𝑔1 𝑔2 . . . 𝑔𝑛
𝑔1𝑔

′ 𝑔2𝑔
′ . . . 𝑔𝑛𝑔

′

)︂
,

ta nhân với 𝑔′−1 thì tìm được hoán vị ngược của 𝜎. Như vậy 𝜙 là toàn ánh.

Kết luận: 𝜙 là song ánh và là đẳng cấu (isomorphism).

INFO-CIRCLE Definition 2.7 (Automorphism, Tự đẳng cấu)

Ánh xạ được gọi là tự đẳng cấu (hay automorphism) nếu nó là song ánh từ nó lên chính nó. Ta kí
hiệu tự đồng cấu nhóm 𝐺 là Aut(𝐺).

Hạt nhân và ảnh

Xét một homomorphism 𝑓 từ nhóm (𝐺, ⋆) tới nhóm (𝐻, *).

INFO-CIRCLE Definition 2.8 (Kernel, Hạt nhân)

Hạt nhân (hay kernel) của 𝑓 là tập hợp các phần tử của 𝐺 cho ảnh là 𝑒𝐻 , kí hiệu là ker 𝑓 . Nói cách
khác

ker 𝑓 = {𝑔 ∈ 𝐺 : 𝑓(𝑔) = 𝑒𝐻}.

Như vậy $ker f$ là tập con của 𝐺.

INFO-CIRCLE Remark 2.3

𝐾 = ker 𝑓 là normal subgroup của 𝐺.

INFO-CIRCLE Chứng minh

Để chứng minh, ta thấy rằng theo định nghĩa homomorphism, với 𝑔1, 𝑔2 ∈ 𝐾 thì 𝑓(𝑔1) = 𝑓(𝑔2) = 𝑒𝐻 .

Ta có

𝑓(𝑔1 ⋆ 𝑔2) = 𝑓(𝑔1) * 𝑓(𝑔2) = 𝑒𝐻 * 𝑒𝐻 = 𝑒𝐻 .

Như vậy 𝑔1 ⋆ 𝑔2 ∈ 𝐾 nên 𝐾 là nhóm con của 𝐺.
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Tiếp theo để chứng minh 𝐾 là normal subgroup, ta chứng minh 𝑔𝐾𝑔−1 = 𝐾 với mọi 𝑔 ∈ 𝐺.

Do 𝑔𝐾𝑔−1 = {𝑔 ⋆ 𝑘 ⋆ 𝑔−1 : 𝑘 ∈ 𝐾}, lấy 𝑓 mỗi phần tử bên trong ta có

𝑓(𝑔 ⋆ 𝑘 ⋆ 𝑔−1) = 𝑓(𝑔) * 𝑓(𝑘) * 𝑓(𝑔−1) = 𝑓(𝑔) * 𝑒𝐻 * 𝑓(𝑔−1) = 𝑓(𝑔) * 𝑓(𝑔−1),

mà theo tính chất của homomorphism thì

𝑓(𝑔−1) = 𝑓(𝑔)−1 ⇒ 𝑓(𝑔 ⋆ 𝑘 ⋆ 𝑔−1) = 𝑓(𝑔) * 𝑓(𝑔)−1 = 𝑒𝐻 ,

suy ra 𝑔 ⋆ 𝑘 ⋆ 𝑔−1 ∈ 𝐾 với mọi 𝑔 ∈ 𝐺, với mọi 𝑘 ∈ 𝐾. Do đó 𝑔𝐾𝑔−1 = 𝐾 và ta có điều phải chứng minh.

INFO-CIRCLE Definition 2.9 (Image, Ảnh)

Ảnh (hay image) của 𝑓 là tập hợp tất cả giá trị nhận được khi biến các phần tử thuộc 𝐺 thành phần
tử thuộc 𝐻. Nói cách khác

im𝑓 = {𝑓(𝑔) : 𝑔 ∈ 𝐺}.

Như vậy im𝑓 là tập con của 𝐻.

Dựa trên hai khái niệm này, chúng ta có một định lý quan trọng trong lý thuyết nhóm là Định lí thứ nhất
về sự đẳng cấu (First isomorphism theorem).

INFO-CIRCLE Theorem 2.3 (Định lí thứ nhất về sự đẳng cấu)

Với hai nhóm (𝐺, ⋆) và (𝐻, *). Xét homomorphism 𝑓 : 𝐺→ 𝐻. Khi đó im𝑓 đẳng cấu (isomorphism) với
nhóm thương 𝐺/ ker 𝑓 .

INFO-CIRCLE Chứng minh

Gọi 𝐺, 𝐻 là hai nhóm và homomorphism 𝑓 : 𝐺→ 𝐻.

Đặt 𝐾 = ker 𝑓 . Ta xét biến đổi

𝜃 : im𝑓 → 𝐺/𝐾, 𝑓(𝑔)→ 𝑔𝐾

với 𝑔 ∈ 𝐺.

Ta cần chứng minh biến đổi này là ánh xạ xác định (well-defined, nghĩa là tuân theo quy tắc ánh ánh
xạ, mỗi phần tử tập nguồn biến thành một và chỉ một phần tử tập đích), là homomorphism, là đơn
ánh và là toàn ánh.

Đầu tiên ta chứng minh ánh xạ xác định. Giả sử ta có 𝑔1𝐾 = 𝑔2𝐾, do 𝑔1 và 𝑔2 thuộc cùng coset nên
𝑔−1
1 𝑔2 ∈ 𝐾, hay 𝑓(𝑔−1

1 𝑔2) = 𝑒𝐻 .

Với 𝑓 là homomorphism, ta có

𝑓(𝑔−1
1 𝑔2) = 𝑓(𝑔−1

1 )𝑓(𝑔2) = 𝑓(𝑔1)
−1𝑓(𝑔2) = 𝑒𝐻 .

Suy ra 𝑓(𝑔1) = 𝑓(𝑔2). Như vậy nếu 𝑓(𝑔1) = 𝑓(𝑔2) thì 𝜃(𝑓(𝑔1)) = 𝜃(𝑓(𝑔2)).
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Tiếp theo ta chứng minh 𝜃 là homomorphism. Do 𝐾 là normal subgroup của 𝐺 nên với mọi 𝑔1, 𝑔2 thuộc
𝐺 thì 𝑔1𝑔2𝐾 = (𝑔1𝐾)(𝑔2𝐾).

Do 𝑓(𝑔1𝑔2) = 𝑓(𝑔1)𝑓(𝑔2) nên

𝜃(𝑓(𝑔1𝑔2)) = 𝑔1𝑔2𝐾 = (𝑔1𝐾)(𝑔2𝐾) = 𝜃(𝑓(𝑔1))𝜃(𝑓(𝑔2)).

Suy ra 𝜃 là homomorphism.

Dễ thấy với mọi 𝑔 ∈ 𝐺 ta đều tìm được 𝑓(𝑔) và 𝑔𝐾 tương ứng. Do đó 𝜃 là toàn ánh.

Để chứng minh 𝜃 là đơn ánh, giả sử 𝑔1𝐾 = 𝑔2𝐾 ta có 𝑔−1
1 𝑔2 ∈ 𝐾 nên 𝑓(𝑔−1

1 𝑔2) = 𝑒𝐻 , suy ra

𝑓(𝑔−1
1 )𝑓(𝑔2) = 𝑒𝐻 ⇒ 𝑓(𝑔1)

−1𝑓(𝑔2) = 𝑒𝐻 ⇒ 𝑓(𝑔1) = 𝑓(𝑔2).

Như vậy 𝜃 là đơn ánh.

Kết luận, 𝜃 là song ánh. Định lí thứ nhất về sự đẳng cấu được chứng minh.

INFO-CIRCLE Example 2.5 (Bài tập sưu tầm từ LAPLAS)

Chứng minh rằng GL𝑛(C)/𝐻 ∼= R+, với 𝐻 là nhóm con các ma trận có định thức bằng 1.

INFO-CIRCLE Giải

Để ý rằng 𝐻 là nhóm con chuẩn tắc của GL𝑛(C). Xét ánh xạ:

𝑓 : GL𝑛(C)→ R+, 𝑓(𝐴) = |det(𝐴)|.

Vì det(𝐴 ·𝐵) = det(𝐴) · det(𝐵) nên 𝑓 là đồng cấu nhóm. Khi đó với mọi số thực dương 𝑟, tồn tại ma
trận 𝐴 ∈ GL𝑛(C) sao cho 𝑓(𝐴) = |det(𝐴)| = 𝑟, ví dụ như⎛⎜⎜⎜⎝

𝑟 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

⎞⎟⎟⎟⎠ .

Như vậy 𝑓 cũng là toàn cấu.

Ở đây ker 𝑓 = 𝐻 nên theo định lí thứ nhất về sự đẳng cấu, ta có

GL𝑛(C)/𝐻 ∼= R+.

2.2.3 Tác động nhóm
Tác động nhóm

Tác động nhóm (Group Action) cho phép chúng ta đếm những cấu hình tổ hợp mà việc vét cạn rồi loại bỏ
sẽ tốn nhiều công sức cũng như sai sót.

Cho tập hợp 𝑀 và nhóm 𝐺. Ta nói 𝐺 tác động trái lên 𝑀 với ánh xạ:

𝛼 : 𝐺×𝑀 →𝑀
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thỏa mãn hai tiên đề sau:

• identity: 𝛼(𝑒,𝑚) = 𝑚 với mọi 𝑚 ∈𝑀 và 𝑒 là phần tử đơn vị của 𝐺;

• compatibility: 𝛼(𝑔, 𝛼(ℎ,𝑚)) = 𝛼(𝑔ℎ, 𝑥).

Ta thường kí hiệu 𝛼(𝑔,𝑚) bởi 𝑔(𝑚) hay thậm chí đơn giản hơn là 𝑔𝑚. Kí hiệu 𝑔𝑚 sẽ được sử dụng từ đây
về sau.

Khi đó hai tiên đề trên tương đương với:

• identity: 𝑒𝑚 = 𝑚 với mọi 𝑚 ∈𝑀 ;

• compatibility: 𝑔(ℎ𝑚) = (𝑔ℎ)𝑚 với mọi 𝑚 ∈𝑀 và 𝑔, ℎ ∈ 𝐺.

INFO-CIRCLE Definition 3.1 (Nhóm con ổn định)

Với phần tử 𝑚 ∈𝑀 cho trước, tập hợp các phần tử 𝑔 ∈ 𝐺 mà 𝑔𝑚 = 𝑚 được gọi là nhóm con ổn định
(hay stabilizer) của nhóm 𝐺. Ta kí hiệu

𝐺𝑚 = {𝑔 ∈ 𝐺 : 𝑔𝑚 = 𝑚}.

INFO-CIRCLE Definition 3.2 (Quỹ đạo)

Quỹ đạo (hay orbit) của phần tử 𝑚 ∈𝑀 là tập hợp

𝐺(𝑚) = {𝑔𝑚 : 𝑔 ∈ 𝐺}.

INFO-CIRCLE Remark 3.2

Hai orbit của hai phần tử bất kì hoặc rời nhau, hoặc trùng nhau.

INFO-CIRCLE Chứng minh

Giả sử ta có 𝑚1,𝑚2 ∈𝑀 mà 𝐺(𝑚1) ∩𝐺(𝑚2) ̸= ∅.

Khi đó tồn tại 𝑔1, 𝑔2 ∈ 𝐺 để 𝑔1𝑚1 = 𝑔2𝑚2, suy ra 𝑚1 = 𝑔−1
1 𝑔2𝑚2.

Thêm nữa, mọi phần tử trong 𝐺(𝑚1) có dạng 𝑔𝑚1 nên 𝑔𝑚1 = 𝑔𝑔−1
1 𝑔2𝑚2, suy ra 𝐺(𝑚1) ⊆ 𝐺(𝑚2).

Chứng minh tương tự ta cũng có 𝐺(𝑚2) ⊆ 𝐺(𝑚1) nên 𝐺(𝑚1) ≡ 𝐺(𝑚2).

INFO-CIRCLE Remark 3.3

Tập hợp 𝑀 là giao của các orbit rời nhau. Giả sử ta có 𝑡 orbit rời nhau 𝐺(𝑚1), 𝐺(𝑚2), ..., 𝐺(𝑚𝑡) thì

𝑀 = 𝐺(𝑚1) ∪𝐺(𝑚2) ∪ . . . ∪𝐺(𝑚𝑡).
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INFO-CIRCLE Example 3.5

Cho nhóm 𝒮3 có 6 phần tử (1)(2)(3), (1)(2, 3), (2)(1, 3), (3)(1, 2), (1, 2, 3), (1, 3, 2).

Xét tập hợp 𝑀 = {1, 2, 3}. Khi đó, xét từng hoán vị trên, ta có:

𝐺1 = {(1)(2)(3), (1)(2, 3)}

và

𝐺(1) = {1, 2, 3}.

Ta nhận thấy 𝐺(1) = 𝐺(2) = 𝐺(3), và |𝐺| = 6 = |𝐺1| · |𝐺(1)|.

Hay nói cách khác, |𝐺(𝑚)| = [𝐺 : 𝐺𝑚] với 𝐺𝑚 là stabilizer của phần tử 𝑚 và [𝐺 : 𝐺𝑚] là subgroup index

của 𝐺𝑚 ⊂ 𝐺, và bằng |𝐺|
|𝐺𝑚|

nếu là nhóm hữu hạn.

INFO-CIRCLE Definition 3.3

Hai phần tử 𝑚,𝑛 ∈ 𝑀 được gọi là có quan hệ với nhau dưới tác động của nhóm 𝐺 nếu tồn tại phần tử
𝑔 ∈ 𝐺 sao cho 𝑚 = 𝑔𝑛.

Ta kí hiệu là 𝑚𝐺̃𝑛.

INFO-CIRCLE Remark 3.4

Quan hệ được định nghĩa như trên là quan hệ tương đương.

INFO-CIRCLE Chứng minh

Để chứng minh một quan hệ là tương đương, ta cần chứng minh tính phản xạ, đối xứng và bắc cầu.

Đối với tính phản xạ, mọi vector đều có quan hệ với chính nó qua phần tử đơn vị 𝑒 ∈ 𝐺.

Đối với tính đối xứng, nếu 𝑚 có quan hệ với 𝑛 thì tồn tại 𝑔 ∈ 𝐺 sao cho 𝑚 = 𝑔𝑛. Theo tính chất nhóm
thì tồn tại phần tử 𝑔−1 là nghịch đảo của 𝑔 trong 𝐺. Do đó 𝑔−1𝑚 = 𝑛. Nói cách khác 𝑛 cũng có quan
hệ với 𝑚. Như vậy ta có tính đối xứng.

Đối với tính bắc cầu, nếu 𝑚 có quan hệ với 𝑛 thì tồn tại 𝑔1 ∈ 𝐺 sao cho 𝑚 = 𝑔1𝑛. Tiếp theo, nếu 𝑛 có
quan hệ với 𝑝 thì tồn tại 𝑔2 ∈ 𝐺 sao cho 𝑛 = 𝑔2𝑝, suy ra

𝑚 = 𝑔1𝑛 = 𝑔1(𝑔2𝑝) = (𝑔1𝑔2)𝑝.

Do 𝑔1, 𝑔2 ∈ 𝐺 nên 𝑔1𝑔2 ∈ 𝐺. Như vậy 𝑚 cũng có quan hệ với 𝑝 nên quan hệ có tính bắc cầu.

Vậy quan hệ được định nghĩa như trên là quan hệ tương đương.

2.2. Lý thuyết nhóm 59



Math Book

Bổ đề Burnside

Các trạng thái khác nhau của tập hợp 𝑀 là tương đương nhau nếu chúng nằm trong cùng lớp tương
đương dưới tác động của nhóm 𝐺.

Các ví dụ về bổ đề Burnside và định lý Polya được tham khảo tại [7].

INFO-CIRCLE Lemma 3.1 (Bổ đề Burnside)

Với nhóm 𝐺 tác động lên tập hợp 𝑀 , ta có:

𝑡𝐺 =
1

|𝐺|
∑︁
𝑔∈𝐺

|𝑀𝑔|,

trong đó:

• 𝑡𝐺 là số lớp tương đương của tập 𝑀 dưới tác động của nhóm 𝐺;

• |𝑀𝑔| là số điểm bất động của tập 𝑀 dưới tác động của phần tử 𝑔, nghĩa là 𝑀𝑔 = {𝑚 ∈𝑀 : 𝑔𝑚 =
𝑚}.

INFO-CIRCLE Chứng minh

Xét tập hợp

𝑆 = {(𝑔,𝑚) ∈ 𝐺×𝑀 : 𝑔𝑚 = 𝑚}.

Ta đếm số phần tử của 𝑆 theo hai cách.

Cách 1: đếm theo từng phần tử $g in G$.

Với mỗi phần tử 𝑔, số phần tử 𝑚 ∈ 𝑀 cố định dưới tác động của 𝑔 là |𝑀𝑔|. Khi đó lấy tổng các phần
tử 𝑔 lại ta được

|𝑆| =
∑︁
𝑔∈𝐺

|𝑀𝑔|.

Cách 2: đếm theo từng phần tử $m in M$.

Với mỗi 𝑚, stabilizer

𝐺𝑚 = {𝑔 ∈ 𝐺 : 𝑔𝑚 = 𝑚}

có số phần tử là |𝐺𝑚|. Khi đó

|𝑆| =
∑︁
𝑚∈𝑀

|𝐺𝑚|.

Ở trên mình đã nói về một công thức là

|𝐺| = |𝐺(𝑚)| · |𝐺𝑚|,

tương đương với |𝐺𝑚| =
|𝐺|
|𝐺(𝑚)|

.

Giả sử 𝑀 có 𝑛 orbit là 𝐺(𝑚1), 𝐺(𝑚2), ..., 𝐺(𝑚𝑛). Với mỗi orbit 𝐺(𝑚𝑖) thì mọi 𝑚 ∈ 𝐺(𝑚𝑖) có cùng kích
thước |𝐺𝑚|. Khi đó ∑︁

𝑚∈𝐺(𝑚𝑖)

|𝐺𝑚| =
∑︁

𝑚∈𝐺(𝑚𝑖)

|𝐺|
|𝐺(𝑚𝑖)|

= |𝐺|.
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Cộng tất cả quỹ đạo lại ta có ∑︁
𝑚∈𝑀

|𝐺𝑚| = |𝐺|+ · · ·+ |𝐺|⏟  ⏞  
𝑛 lần

= 𝑛 · |𝐺|.

Kết hợp hai cách đếm suy ra ∑︁
𝑔∈𝐺

|𝑀𝑔| =
∑︁
𝑚∈𝑀

|𝐺𝑚| = 𝑛 · |𝐺|,

tương đương với

𝑛 =
1

|𝐺|
∑︁
𝑔∈𝐺

|𝑀𝑔|.

Ở đây 𝑛 = 𝑡𝐺 và ta có điểm phải chứng minh.

Bài toán tô màu bốn đỉnh tứ diện

Cho hình tứ diện đều. Ta tô bốn đỉnh của nó bằng ba màu xanh, đỏ, vàng. Hỏi có bao nhiêu cách tô như
vậy?

Ta cần lưu ý một điều, hai cách tô là tương đương nhau (giống nhau) nếu tồn tại một phép quay các đỉnh
biến cách tô này thành cách tô kia (ví dụ như hình 2.14 và hình 2.15).

Hình 2.14: Cách tô 1

Hình 2.15: Cách tô 2

Như hình trên ta thấy nếu chọn trục quay là đường thẳng nối trung điểm hai cạnh đối diện (hai điểm xanh
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lá) thì đỉnh trên và đỉnh dưới đổi chỗ cho nhau (xanh và vàng), đỉnh trái và đỉnh phải đổi chỗ cho nhau
(xanh và đỏ).

Ta giải bài này như sau:

Đầu tiên ta đánh số các đỉnh của tứ diện như hình 2.16.

1

2

3

4

Hình 2.16: Đánh số các đỉnh tứ diện

Ta có ba trường hợp biến đổi sau:

Trường hợp 1. Giữ nguyên một đỉnh và trục quay là đường thẳng đi qua đỉnh đó và tâm của mặt đối diện.

1

2

3

4

Hình 2.17: Trường hợp 1

Khi đó phép quay (ngược chiều đồng hồ) tương ứng hoán vị (1)(2, 3, 4) (quay 60 độ) và (1)(2, 4, 3) (quay 120
độ).

Do ta chọn một đỉnh cố định thì ta có 4 cách chọn, và với mỗi cách chọn đỉnh cố định ta có thể quay hai
cách nên ta có tổng là 8 hoán vị.

Trường hợp 2. Ta chọn trung điểm hai cạnh đối nhau và nối lại thành trục quay như hình trong ví dụ. Khi
đó tương ứng với hoán vị (1, 4)(2, 3).
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1

2

3

4

Hình 2.18: Trường hợp 2

Ta có 𝐶2
4

2!
= 3 hoán vị.

Trường hợp 3. Hoán vị đồng nhất (1)(2)(3)(4).

Tóm lại, tập hợp 𝑀 ở đây là tập hợp 4 đỉnh của tứ diện, và nhóm tác động lên 𝑀 là nhóm con 12 phần tử
của 𝒮4.

Như vậy, ví dụ với hoán vị (1)(2, 3, 4), nếu ta muốn sau phép quay giữ nguyên trạng thái (hay nói cách khác
là tìm 𝑀𝑔) thì ta tô màu đỉnh 1 tùy ý, các đỉnh 2− 3− 4 chung màu (cũng tùy ý).

Suy ra ta có 3 · 3 cách tô. Tương tự với các hoán vị dạng (1, 4)(2, 3).

Như vậy có tất cả

𝑡𝐺 =
1

12
(1 · 34 + 8 · 32 + 3 · 32) = 15

cách tô màu khác nhau.

Tổng quát, nếu có 𝑘 màu thì số lớp tương đương là

𝑡𝐺 =
1

12

(︀
1 · 𝑘4 + 8 · 𝑘2 + 3 · 𝑘2

)︀
=

1

12
(𝑘4 + 11𝑘2).

Tác động nhóm lên vector

Xét nhóm 𝐺 và không gian vector F𝑛
2 , 𝑛 ∈ N. Khi đó hai vector 𝑥 và 𝑦 thuộc F𝑛

2 được gọi là quan hệ với
nhau nếu tồn tại 𝑔 ∈ 𝐺 mà 𝑥 = 𝑔𝑦.

Ví dụ, xét nhóm hoán vị 𝒮3. Giả sử các vector trong F3
2 có dạng

𝑥 = (𝑥1, 𝑥2, 𝑥3) ∈ F3
2.

Khi đó vector (1, 0, 0) có quan hệ với (0, 0, 1) với hoán vị (1, 3)(2). Cụ thể là (𝑥1, 𝑥2, 𝑥3)
(1,3)(2)−−−−−→ (𝑥3, 𝑥2, 𝑥1).

Tương tự, vector (1, 0, 0) cũng có quan hệ với (0, 1, 0) với hoán vị (1, 2)(3).

Thêm nữa, vector (1, 0, 0) có quan hệ với chính nó qua hoán vị đồng nhất (1)(2)(3).

Câu hỏi đặt ra là, có bao nhiêu lớp tương đương dưới tác động của nhóm 𝒮3?

Để giải quyết vấn đề này ta sử dụng bổ đề Burnside.

Nhóm 𝒮3 có các hoán vị

𝒮3 = {(1)(2)(3), (1, 2)(3), (1, 3)(2), (2, 3)(1), (1, 3, 2), (1, 2, 3)}.
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Lần lượt xét từng hoán vị. Đầu tiên, với (1)(2)(3) thì các phần tử trong vector đứng yên. Do đó dưới tác
động của hoán vị này, 𝑥1 biến thành 𝑥1, 𝑥2 biến thành 𝑥2 và 𝑥3 biến thành 𝑥3. Số cách chọn cho mỗi 𝑥𝑖 là
2 nên theo quy tắc nhân ta có 23 = 8 cách.

Tiếp theo, với hoán vị (1, 2)(3) thì 𝑥1 → 𝑥2, 𝑥2 → 𝑥1 và 𝑥3 → 𝑥3. Do đó 𝑥1 và 𝑥2 có cùng giá trị (nằm cùng
chu trình), thành ra có 2 cách chọn, 𝑥3 cũng có 2 cách chọn nên tổng số cách là 2 · 2 = 4. Hoán vị (1, 3)(2)
và (2, 3)(1) tương tự.

Với hoán vị (1, 2, 3) thì 𝑥1 → 𝑥2, 𝑥2 → 𝑥3 và 𝑥3 → 𝑥1 nên 𝑥1 = 𝑥2 = 𝑥3, có 2 cách chọn trong trường hợp
này. Hoán vị (1, 3, 2) tương tự.

Như vậy, theo bổ đề Burnside, số lớp tương đương các vector trong F3
2 là

𝑡(𝒮3) =
1

6
(1 · 23 + 3 · 22 + 2 · 2) = 4.

Thật vậy, ta có thể chia các vector thành 4 lớp tương đương là

{000}, {001, 010, 011}, {011, 101, 110}, {111}.

Ngoài nhóm 𝒮3 ra còn các nhóm khác cũng tác động lên các vector. Một số nhóm hay được sử dụng là:

1. Nhóm general linear: gồm các ma trận khả nghịch 𝑛 × 𝑛 trên F2. Tác động nhóm lúc này là phép
nhân ma trận 𝐴 ∈ GL(𝑛, 2) với vector 𝑥 ∈ F𝑛

2 , hay 𝐴 · 𝑥.

2. Nhóm general affine: gồm các ma trận khả nghịch 𝑛× 𝑛 trên F2 và vector bất kì trong F𝑛
2 . Tác động

nhóm lúc này là biến đổi affine 𝐴 · 𝑥+ 𝑏 với 𝐴 ∈ GL(𝑛, 2) và 𝑏 ∈ F𝑛
2 .

INFO-CIRCLE Remark 3.5

Số lượng phần tử của nhóm GL(𝑛, 2) là

(2𝑛 − 1) · (2𝑛 − 2) · · · (2𝑛 − 2𝑛−1).

Ví dụ, khi 𝑛 = 3 thì

|GL(3, 2)| = (23 − 1) · (23 − 2) · (23 − 4) = 168

ma trận.

Tác động nhóm lên hàm boolean

Ta tiếp tục xét nhóm 𝐺 và không gian vector F𝑛
2 , 𝑛 ∈ N. Khi đó hai hàm boolean 𝑛 biến 𝑓(𝑥1, . . . , 𝑥𝑛) và

𝑔(𝑥1, . . . , 𝑥𝑛) được gọi là quan hệ với nhau nếu tồn tại 𝑔 ∈ 𝐺 mà 𝑔(𝑥) = 𝑓(𝑔𝑥) với mọi 𝑥 ∈ F𝑛
2 .

Ta cũng xét hoán vị 𝒮3 làm ví dụ. Ta cũng lần lượt xét các phần tử của nhóm.

Đặt 𝑓0, 𝑓1, ..., 𝑓7 lần lượt là các giá trị hàm 𝑓 với các vector 𝑥 ∈ F3
2.

Đầu tiên, với (1)(2)(3), ta có bảng chuyển vector như hình 2.19.
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x1 x2 x3 f

0 0 0 f0

0 0 1 f1

0 1 0 f2

0 1 1 f3

1 0 0 f4

1 0 1 f5

1 1 0 f6

1 1 1 f7

x1 x2 x3 f

0 0 0 f0

0 0 1 f1

0 1 0 f2

0 1 1 f3

1 0 0 f4

1 0 1 f5

1 1 0 f6

1 1 1 f7

(1)(2)(3)

Hình 2.19: Hoán vị (1)(2)(3)

Ta thấy rằng 𝑓0 → 𝑓0, 𝑓1 → 𝑓1, ..., 𝑓7 → 𝑓7 nên có 8 chu trình. Vậy số lượng cách chọn là 28.

Tiếp theo, xét các hoán vị dạng (1)(2, 3), ta có bảng chuyển vector như hình 2.20.

x1 x2 x3 f

0 0 0 f0

0 0 1 f1

0 1 0 f2

0 1 1 f3

1 0 0 f4

1 0 1 f5

1 1 0 f6

1 1 1 f7

x1 x3 x2 f

0 0 0 f0

0 1 0 f2

0 0 1 f1

0 1 1 f3

1 0 0 f4

1 1 0 f6

1 0 1 f5

1 1 1 f7

(1)(2, 3)

Hình 2.20: Hoán vị (1)(2, 3)

Ta thấy rằng 𝑓0 → 𝑓0, 𝑓1 → 𝑓2 → 𝑓1, 𝑓3 → 𝑓3, 𝑓4 → 𝑓4, 𝑓5 → 𝑓6 → 𝑓5, 𝑓7 → 𝑓7. Ở đây có 6 chu trình nên
số cách chọn là 26.

Tiếp theo ta xét các hoán vị dạng (1, 2, 3) (Hình 2.21).
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x1 x2 x3 f

0 0 0 f0

0 0 1 f1

0 1 0 f2

0 1 1 f3

1 0 0 f4

1 0 1 f5

1 1 0 f6

1 1 1 f7

x2 x3 x1 f

0 0 0 f0

0 1 0 f2

1 0 0 f4

1 1 0 f6

0 0 1 f1

0 1 1 f3

1 0 1 f5

1 1 1 f7

(1, 2, 3)

Hình 2.21: Hoán vị (1, 2, 3)

Ta thấy rằng 𝑓0 → 𝑓0, 𝑓1 → 𝑓2 → 𝑓4 → 𝑓1, 𝑓3 → 𝑓6 → 𝑓5 → 𝑓3, 𝑓7 → 𝑓7 nên ở đây có 4 chu trình. Số cách
chọn là 24.

Như vậy theo bổ đề Burnside, số lớp hàm bool tương đương dưới tác động của nhóm 𝒮3 là

𝑡(𝒮3) =
1

6
(28 + 3 · 26 + 2 · 24) = 80.

Định lý Polya

Với mỗi hoán vị trong tập 𝐺, ta viết dưới dạng các chu trình độc lập

(𝑔1)(𝑔2) . . . (𝑔𝑡1)⏟  ⏞  
𝑡1

(𝑔𝑗1𝑔𝑗2)(𝑔𝑗3𝑔𝑗4)⏟  ⏞  
𝑡2

. . .

Nếu ta viết hoán vị dưới dạng các chu trình rời nhau, ta gọi

Kí hiệu Ý nghĩa
𝑡1 số chu trình có độ dài 1
𝑡2 số chu trình có độ dài 2
... tương tự
𝑡𝑛 số chu trình có độ dài 𝑛

Khi đó, cycle index (hay chỉ số chu trình) của hoán vị ứng các biến 𝑧1, 𝑧2, ..., 𝑧𝑛 là

𝐼𝑔(𝑧1, 𝑧2, , . . . , 𝑧𝑛) = 𝑧𝑡11 𝑧
𝑡2
2 · · · 𝑧𝑡𝑛𝑛 .

INFO-CIRCLE Example 3.6

Xét hoán vị (1, 2, 3)(4)(5)(6, 7) ∈ 𝒮7.

Ta có hai chu trình độ dài 1, một chu trình độ dài 2 và một chu trình độ dài 3 và không có chu trình độ
dài 4, 5, 6, 7.
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Do đó chỉ số chu trình là

𝐼𝑔(𝑧1, 𝑧2, 𝑧3) = 𝑧21𝑧
1
2𝑧

1
3 .

INFO-CIRCLE Remark 3.6

Bất kì hoán vị nào thuộc 𝒮𝑛 đều thỏa

1 · 𝑡1 + 2 · 𝑡2 + . . .+ 𝑛 · 𝑡𝑛 = 𝑛.

INFO-CIRCLE Definition 3.4 (Cyclic index, chỉ số chu trình)

Chỉ số chu trình của nhóm 𝐺 là:

𝑃𝐺(𝑧1, 𝑧2, . . . , 𝑧𝑛) =
1

𝐺

∑︁
𝑔∈𝐺

𝐼𝑔(𝑧1, 𝑧2, . . . , 𝑧𝑛).

Nhìn lại ví dụ về tứ diện bên trên, các đỉnh nằm trong cùng chu trình cần được tô cùng màu. Từ đó ta có
chỉ số chu trình

𝑃𝐺(𝑧1, 𝑧2, 𝑧3) =
1

12

(︀
𝑧41 + 8𝑧1𝑧3 + 3𝑧22

)︀
.

Cho mỗi 𝑧𝑖 = 3 ta có kết quả phép tính theo bổ đề Burnside.

Định lý Polya là một mở rộng cho bổ đề Burnside, cho phép chúng ta đếm số lớp tương đương thỏa mãn
điều kiện nhất định (về số lượng phần tử).

Ví dụ với hình tứ diện như trên nhưng ta thêm điều kiện tô hai đỉnh màu vàng, một đỉnh màu đỏ và một
đỉnh màu xanh.

Ta kí hiệu tập 𝑅 là tập hợp các trạng thái có thể nhận của mỗi phần tử 𝑚 ∈𝑀 .

𝑅 = {𝑟1, 𝑟2, . . . , 𝑟𝑐}.

Ở ví dụ trên thì 𝑅 = {đỏ, xanh, vàng}.

Ta thay mỗi 𝑧𝑖 trong chỉ số chu trình bằng tổng
∑︀
𝑟∈𝑅

𝑟𝑖.

INFO-CIRCLE Example 3.7

Giả sử ta tô màu bốn đỉnh tứ diện với hai màu 𝑅 = {𝑟1, 𝑟2}.

Với 𝑧1 ta thay bằng 𝑟1 + 𝑟2.

Với 𝑧2 ta thay bằng 𝑟21 + 𝑟22.

Với 𝑧3 ta thay bằng 𝑟31 + 𝑟32.

Khi đó 𝑃𝐺 tương đương với

1

12

[︀
(𝑟1 + 𝑟2)

4 + 8 · (𝑟1 + 𝑟2)(𝑟
3
1 + 𝑟32) + 3 · (𝑟21 + 𝑟22)

2
]︀
.
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Ta khai triển 𝑃𝐺 (lưu ý là ở đây không có tính giao hoán phép nhân).

(𝑟1 + 𝑟2)
4 =𝑟1𝑟1𝑟1𝑟1 + 𝑟1𝑟1𝑟1𝑟2 + 𝑟1𝑟1𝑟2𝑟1 + 𝑟1𝑟1𝑟2𝑟2

+𝑟1𝑟2𝑟1𝑟1 + 𝑟1𝑟2𝑟1𝑟2 + 𝑟1𝑟2𝑟2𝑟1 + 𝑟1𝑟2𝑟2𝑟2

+𝑟2𝑟1𝑟1𝑟1 + 𝑟2𝑟1𝑟1𝑟2 + 𝑟2𝑟1𝑟2𝑟1 + 𝑟2𝑟1𝑟2𝑟2

+𝑟2𝑟2𝑟1𝑟1 + 𝑟2𝑟2𝑟1𝑟2 + 𝑟2𝑟2𝑟2𝑟1 + 𝑟2𝑟2𝑟2𝑟2.

Mình thấy rằng có 16 cấu hình khác nhau tương ứng 16 cách tô hai màu cho bốn đỉnh. Tương tự

(𝑟1 + 𝑟2)(𝑟
3
1 + 𝑟32) = 𝑟41 + 𝑟1𝑟

3
2 + 𝑟2𝑟

3
1 + 𝑟42

= 𝑟1𝑟1𝑟1𝑟1 + 𝑟1𝑟2𝑟2𝑟2 + 𝑟2𝑟1𝑟1𝑟1 + 𝑟2𝑟2𝑟2𝑟2.

Cuối cùng là

(𝑟21 + 𝑟22)
2 = 𝑟41 + 𝑟21𝑟

2
2 + 𝑟22𝑟

2
1 + 𝑟42

= 𝑟1𝑟1𝑟1𝑟1 + 𝑟1𝑟1𝑟2𝑟2 + 𝑟2𝑟2𝑟1𝑟1 + 𝑟2𝑟2𝑟2𝑟2.

Việc không có tính giao hoán với phép nhân làm biểu thức cồng kềnh và phức tạp.

Do đó mình thêm một tập hợp 𝑊 là vành giao hoán, và xét ánh xạ 𝑤 : 𝑅 ↦→𝑊 với:math:w(r_i) = w_i.

Khi đó nếu thay 𝑟𝑖 bởi 𝑤𝑖 vào bên trên biểu thức sẽ rất đẹp:

𝑃𝐺(𝑤1, 𝑤2) =
1

12

[︀
(𝑤1 + 𝑤2)

4 + 8(𝑤1 + 𝑤2)(𝑤
3
1 + 𝑤3

2) + 3(𝑤2
1 + 𝑤2

2)
2
]︀
.

Khai triển và thu gọn ta có

𝑃𝐺(𝑤1, 𝑤2) =
1

12

[︀
12𝑤4

1 + 12𝑤3
1𝑤2 + 12𝑤2

1𝑤
2
2 + 12𝑤1𝑤

3
2 + 12𝑤4

2

]︀
= 𝑤4

1 + 𝑤3
1𝑤2 + 𝑤2

1𝑤
2
2 + 𝑤1𝑤

3
2 + 𝑤4

2.

Ở đây, định lý Polya nói rằng, số mũ của 𝑤𝑖 thể hiện số lượng phần tử của tập 𝑀 nhận giá trị 𝑟𝑖, và hệ
số trước mỗi toán hạng là số lớp tương đương tương ứng với số lượng phần tử của tập 𝑀 nhận các giá
trị 𝑟𝑖.

Nói cách khác:

• có 1 lớp tương đương mà 4 đỉnh nhận màu 𝑟1;

• có 1 lớp tương đương mà 3 đỉnh nhận màu 𝑟1 và 1 đỉnh nhận màu 𝑟2;

• có 1 lớp tương đương mà 2 đỉnh nhận màu 𝑟1 và 2 đỉnh nhận màu 𝑟2;

• có 1 lớp tương đương mà 1 đỉnh nhận màu 𝑟1 và 3 đỉnh nhận màu 𝑟2;

• có 1 lớp tương đương mà 4 đỉnh nhận màu 𝑟2.

Quay lại vấn đề tô bốn đỉnh tứ diện với ba màu xanh, đỏ, vàng. Tìm số cách tô hai đỉnh màu vàng, một
đỉnh màu đỏ và một đỉnh màu xanh.

Đặt

𝑤(vàng) = 𝑥,𝑤(đỏ) = 𝑦, 𝑤(xanh) = 𝑧.

Ta có:

𝑃𝐺 =
1

12

[︀
(𝑥+ 𝑦 + 𝑧)4 + 8 · (𝑥+ 𝑦 + 𝑧)(𝑥3 + 𝑦3 + 𝑧3) + 3 · (𝑥2 + 𝑦2 + 𝑧2)2

]︀
.
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Như vậy đề bài tương ứng việc tìm hệ số của hạng tử 𝑥2𝑦𝑧 trong biểu thức trên. Kết quả là 1.

2.2.4 Vành
Vành

INFO-CIRCLE Definition 4.1 (Vành)

Cho tập hợp 𝑅, trên đó ta định nghĩa hai toán tử cộng (kí hiệu là +) và nhân (kí hiêu là ×).

Khi đó, (𝑅,+,×) tạo thành vành (hay ring, кольцо) nếu

1. (𝑅,+) là nhóm Abel.

2. (𝑅,×) có tính kết hợp với phép nhân: với mọi 𝑎, 𝑏, 𝑐 ∈ 𝑅 thì 𝑎× (𝑏× 𝑐) = (𝑎× 𝑏)× 𝑐.

3. Tính phân phối của phép cộng và phép nhân: với mọi 𝑎, 𝑏, 𝑐 ∈ 𝑅 thì (𝑎+ 𝑏)× 𝑐 = 𝑎× 𝑐+ 𝑏× 𝑐.

Tóm lại, (𝑅,+,×) là vành nếu nó là nhóm Abel đối với phép cộng và có tính kết hợp với phép nhân.

Ta thường kí hiệu 0𝑅 (hoặc ngắn gọn là 0) là phần tử đơn vị của phép cộng (𝑅,+) và gọi là phần tử trung
hòa.

Khi đó phần tử nghịch đảo của phép cộng gọi là phần tử đối và được kí hiệu là −𝑎, chỉ phần tử đối của
phần tử 𝑎.

INFO-CIRCLE Remark 4.1

Phép nhân ở đây không nhất thiết có phần tử đơn vị, hay phần tử nghịch đảo như trong định nghĩa
nhóm. Trong trường hợp này (𝑅,×) gọi là semigroup (hay nửa nhóm).

INFO-CIRCLE Property 4.1 (Tính chất của vành)

1. Với mọi 𝑎 ∈ 𝑅 thì 𝑎× 0𝑅 = 0𝑅 × 𝑎 = 0𝑅.

2. Với mọi 𝑎, 𝑏 ∈ 𝑅 thì (−𝑎)× 𝑏 = −(𝑎× 𝑏).

INFO-CIRCLE Chứng minh

Để chứng minh hai tính chất trên ta dùng định nghĩa vành.

1. Với mọi 𝑎 ∈ 𝑅, ta có

𝑎× 0𝑅 = 𝑎× (0𝑅 + 0𝑅) = 𝑎× 0𝑅 + 𝑎× 0𝑅.

Rút gọn 𝑎× 0𝑅 hai vế ta có 𝑎× 0𝑅 = 0𝑅. Tương tự cho 0𝑅 × 𝑎 = 0𝑅.

2. Vì (−𝑎) + 𝑎 = 0𝑅 với mọi 𝑎 ∈ 𝑅, nhân 𝑏 hai vế và dùng tính chất đầu suy ra

(−𝑎)× 𝑏+ 𝑎× 𝑏 = 0𝑅 × 𝑏 = 0𝑅.

Chuyển vế ta có (−𝑎)× 𝑏 = −(𝑎× 𝑏).

2.2. Lý thuyết nhóm 69



Math Book

INFO-CIRCLE Definition 4.2 (Vành với đơn vị)

Nếu có phần tử 1𝑅 ̸= 0𝑅 ∈ 𝑅 sao cho với mọi 𝑟 ∈ 𝑅 ta đều có

1𝑅 × 𝑟 = 𝑟 × 1𝑅 = 𝑟

thì 1𝑅 được gọi là phần tử đơn vị đối với phép nhân và 𝑅 được gọi là vành với đơn vị (hay ring
with identity, кольцо с единицей).

Ta kí hiệu 1𝑅 (hoặc ngắn gọn là 1) là phần tử đơn vị đối với phép nhân (𝑅,×).

Từ phần tử đơn vị đối với phép nhân ta có khái niệm đặc số (hay số đặc trưng, characteristic) của vành
với đơn vị.

INFO-CIRCLE Definition 4.3 (Characteristic)

Xét trường 𝑅 với phần tử đơn vị là 1 và phần tử trung hòa là 0. Số dương 𝑝 nhỏ nhất sao cho

1 + 1 + . . .+ 1 + 1⏟  ⏞  
𝑝 lần

= 0

được gọi là đặc số (hay characteristic, характеристика) của 𝑅.

INFO-CIRCLE Definition 4.4 (Vành giao hoán)

Nếu ta có tính giao hoán đối với phép nhân, nghĩa là với mọi 𝑎, 𝑏 ∈ 𝑅 đều thỏa

𝑎× 𝑏 = 𝑏× 𝑎,

thì ta nói 𝑅 là vành giao hoán (hay commutative ring, коммутативное кольцо).

2.2.5 Trường
Trường

INFO-CIRCLE Definition 5.1 (Trường)

Cho tập hợp 𝐹 và hai toán tử hai ngôi trên 𝐹 là phép cộng + và phép nhân ×. Khi đó (𝐹,+,×) là
trường (hay field, поля) nếu

1. (𝐹,+,×) là vành giao hoán với đơn vị.

2. Với mọi phần tử 𝑓 ̸= 0𝐹 , tồn tại nghịch đảo 𝑓−1 của 𝑓 đối với phép nhân, nghĩa là

𝑓 × 𝑓−1 = 𝑓−1 × 𝑓 = 1𝐹 .

Nói cách khác, (𝐹,×) là nhóm Abel. Trên trường ta thực hiện được bốn phép tính cộng, trừ, nhân, chia.

INFO-CIRCLE Example 5.1
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Các tập hợp sau với phép cộng và nhân là trường.

1. Tập hợp số thực R.

2. Tập hợp các số phức C.

3. Tập hợp các số dạng 𝑎+ 𝑏
√
2 với 𝑎, 𝑏 ∈ Q.

Những trường trên được gọi là trường vô hạn vì có vô số phần tử.

Ngược lại, chúng ta cũng có các trường hữu hạn.

Trường hữu hạn

Trường hữu hạn modulo nguyên tố

Cho 𝑝 là số nguyên tố. Khi đó tập hợp các số dư khi chia cho 𝑝 cùng với phép cộng và nhân modulo 𝑝 tạo
thành trường.

INFO-CIRCLE Chứng minh

Xét tập hợp các số dư khi chia cho 𝑝 là

𝑆 = {0, 1, . . . , 𝑝− 2, 𝑝− 1}.

Ta thấy rằng với mọi 𝑎, 𝑏 ∈ 𝑆 thì 𝑎+ 𝑏 (mod 𝑝) và 𝑎 · 𝑏 (mod 𝑝) đều thuộc 𝑆.

1. Vì 0 + 𝑎 = 𝑎+ 0 = 𝑎 (mod 𝑝) với mọi 𝑎 ∈ 𝑆 nên 0 là phần tử đơn vị của phép cộng.

2. Với mọi 𝑎 ∈ 𝑆, ta có (𝑝− 𝑎) + 𝑎 = 𝑎+ (𝑝− 𝑎) ≡ 0 (mod 𝑝) nên phần tử nghịch đảo của 𝑎 đối với
phép cộng là 𝑝− 𝑎 ∈ 𝑆.

3. Phép cộng modulo có tính kết hợp.

4. Phép cộng modulo có tính giao hoán.

Như vậy (𝑆,+) là nhóm Abel.

Tiếp theo, ta thấy rằng phép cộng và nhân có tính phân phối trên modulo.

Đồng thời phép nhân modulo cũng có tính kết hợp. Do đó (𝑆,+, ·) là vành.

1. Phần tử đơn vị của phép nhân là 1.

2. Phép nhân modulo có tính giao hoán.

3. Do mọi phần tử thuộc 𝑆 đều nguyên tố cùng nhau với 𝑝 nên luôn tồn tại nghịch đảo của phần tử
khác 0 trong 𝑆.

Kết luận: (𝑆,+, ·) là trường.

Ta thường kí hiệu trường này là GF(𝑝) (GF là viết tắt của Galois Field để tưởng nhớ người có đóng góp
quan trọng trong lý thuyết nhóm).

2.2. Lý thuyết nhóm 71



Math Book

Trường hữu hạn modulo đa thức

Xét các đa thức với hệ số nguyên

𝑓(𝑥) = 𝑎𝑛𝑥
𝑛 + 𝑎𝑛−1𝑥

𝑛−1 + . . .+ 𝑎2𝑥
2 + 𝑎1𝑥+ 𝑎0.

Ta thấy rằng phép cộng và nhân hai đa thức tạo thành một vành giao hoán với đơn vị là đa thức 𝑓(𝑥) ≡ 1.

Thêm nữa vành này có vô số phần tử. Ta cần một phương án để số phần tử là hữu hạn, và đồng thời là
trường.

Với 𝑝 là số nguyên tố và 𝑛 là số nguyên dương. Mình xét các đa thức có bậc tối đa là 𝑛− 1 với hệ số nằm
trong tập hợp các số dư khi chia cho 𝑝. Như vậy mình có 𝑝𝑛 đa thức như vậy.

INFO-CIRCLE Example 5.2

Với 𝑝 = 3 và 𝑛 = 2. Khi đó các đa thức có thể có là

{0, 1, 2, 𝑥, 𝑥+ 1, 𝑥+ 2, 2𝑥, 2𝑥+ 1, 2𝑥+ 2}.

Tương tự với việc modulo cho một số nguyên tố, ở đây mình xét phép cộng và nhân trên modulo một đa
thức tối giản (irreducible polynomial) có bậc 𝑛 (vì khi modulo một đa thức bậc bất kì cho đa thức bậc 𝑛 ta
có đa thức bậc nhỏ hơn 𝑛).

Đồng thời hệ số của đa thức từ phép cộng và nhân cũng được modulo 𝑝 (nằm trong GF(𝑝)).

Với trường hợp 𝑝 = 3 và 𝑛 = 2 ở trên mình có thể chọn đa thức modulo là 𝑚(𝑥) = 𝑥2 + 2𝑥+ 2.

Sau đây là bảng phép cộng hai đa thức bậc nhỏ hơn 2 trong modulo 𝑚(𝑥).

0 1 2 𝑥 𝑥+ 1 𝑥+ 2 2𝑥 2𝑥+ 1 2𝑥+ 2
0 0 1 2 𝑥 𝑥+ 1 𝑥+ 2 2𝑥 2𝑥+ 1 2𝑥+ 2
1 1 2 0 𝑥+ 1 𝑥+ 2 𝑥 2𝑥+ 1 2𝑥+ 2 2𝑥
2 2 0 1 𝑥+ 2 𝑥 𝑥+ 1 2𝑥+ 2 2𝑥 2𝑥+ 1
𝑥 𝑥 𝑥+ 1 𝑥+ 2 2𝑥 2𝑥+ 1 2𝑥+ 2 0 1 2

𝑥+ 1 𝑥+ 1 𝑥+ 2 𝑥 2𝑥+ 1 2𝑥+ 2 2𝑥 1 2 0
𝑥+ 2 𝑥+ 2 𝑥 𝑥+ 1 2𝑥+ 2 2𝑥 2𝑥+ 1 2 0 1
2𝑥 2𝑥 2𝑥+ 1 2𝑥+ 2 0 1 2 𝑥 𝑥+ 1 𝑥+ 2

2𝑥+ 1 2𝑥+ 1 2𝑥+ 2 2𝑥 1 2 0 𝑥+ 1 𝑥+ 2 𝑥
2𝑥+ 2 2𝑥+ 2 2𝑥 2𝑥+ 1 2 0 1 𝑥+ 2 𝑥 𝑥+ 1

Tương tự, sau đây là bảng phép nhân hai đa thức bậc nhỏ hơn 2 trong modulo 𝑚(𝑥).

0 1 2 𝑥 𝑥+ 1 𝑥+ 2 2𝑥 2𝑥+ 1 2𝑥+ 2
0 0 0 0 0 0 0 0 0 0
1 0 1 2 𝑥 𝑥+ 1 𝑥+ 2 2𝑥 2𝑥+ 1 2𝑥+ 2
2 0 2 1 2𝑥 2𝑥+ 2 2𝑥+ 1 𝑥 𝑥+ 2 𝑥+ 1
𝑥 0 2𝑥 𝑥+ 1 2𝑥 2𝑥+ 1 1 2𝑥+ 2 2 𝑥+ 2

𝑥+ 1 0 𝑥+ 1 2𝑥+ 2 2𝑥+ 1 2 𝑥 𝑥+ 2 2𝑥 1
𝑥+ 2 0 𝑥+ 2 2𝑥+ 1 1 𝑥 2𝑥+ 2 2 𝑥+ 1 2𝑥
2𝑥 0 2𝑥 𝑥 2𝑥+ 2 𝑥+ 2 2 𝑥+ 1 1 2𝑥+ 1

2𝑥+ 1 0 2𝑥+ 1 𝑥+ 2 2 2𝑥 𝑥+ 1 1 2𝑥+ 2 𝑥
2𝑥+ 2 0 2𝑥+ 2 𝑥+ 1 𝑥+ 2 1 2𝑥 2𝑥+ 1 𝑥 2
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Ta thấy rằng bảng phép nhân đối xứng qua đường chéo chính. Điều này chứng tỏ phép nhân có tính giao
hoán. Thêm nữa ở mỗi hàng hoặc cột khác 0 đều có 9 phần tử khác nhau.

Ideal

INFO-CIRCLE Definition 5.2 (Ideal)

Xét vành (𝑅,+,×). Một tập con 𝐼 của 𝑅 được gọi là ideal trái (hay left ideal, левый идеал) nếu:

1. (𝐼,+) là nhóm con của (𝑅,+).

2. Với mọi 𝑟 ∈ 𝑅, với mọi 𝑥 ∈ 𝐼 thì 𝑟𝑥 ∈ 𝐼.

Ta định nghĩa tương tự với ideal phải, khi đó 𝑥𝑟 ∈ 𝐼. Từ đây về sau nếu không nói gì thêm nghĩa là mình
xét ideal trái.

INFO-CIRCLE Definition 5.3 (Principal Ideal)

Nếu 𝐼 = 𝑎 với 𝑎 là phần tử nào đó trong 𝑅 thì 𝐼 được gọi là principal ideal (hay ideal chính, главный
идеал).

Nói cách khác, nếu có một phần tử trong 𝑅 "sinh" ra được 𝐼 thì 𝐼 là principal.

INFO-CIRCLE Definition 5.4 (Maximal Ideal)

Nếu 𝐼 là một ideal của 𝑅 và không tồn tại tập con 𝐼 ′ mà 𝐼 ⊂ 𝐼 ′ ⊂ 𝑅 (tập con thực thụ) thì 𝐼 được gọi
là maximal ideal (hay максимальный идеал).

INFO-CIRCLE Remark 5.1

Xét vành số nguyên Z. Khi đó mọi ideal của Z đều là principal.

INFO-CIRCLE Chứng minh

Giả sử ideal 𝐼 của Z có phần tử dương nhỏ nhất là 𝑛.

Theo định nghĩa của ideal thì với mọi 𝑞 ∈ Z ta có 𝑞𝑛 ∈ 𝐼.

Nếu phần tử 𝑎 ∈ 𝐼, theo phép chia Euclid ta có 𝑎 = 𝑞𝑛 + 𝑟 với 0 6 𝑟 < 𝑛, mà 𝑎 ∈ 𝐼 và 𝑞𝑛 ∈ 𝐼 nên
𝑟 = 𝑎− 𝑞𝑛 ∈ 𝐼.

Tuy nhiên phần tử dương nhỏ nhất thuộc 𝐼 là 𝑛, do đó 𝑟 = 0.

Nói cách khác mọi phần tử 𝑎 ∈ 𝐼 đều có dạng 𝑞𝑛 với 𝑞 ∈ Z.

Vậy mọi ideal đều là principal.

INFO-CIRCLE Remark 5.2
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Ideal 𝐼 của Z là maximal khi và chỉ khi 𝐼 = 𝑛Z với 𝑛 là số nguyên tố.

INFO-CIRCLE Chứng minh

Ta chứng minh chiều thuận, chiều ngược tương tự. Sử dụng phản chứng, ta giả sử 𝑛 là hợp số. Khi đó
𝑛 = 𝑛1𝑛2 với 𝑛1 > 𝑛2 > 1.

Khi đó 𝑛Z ⊂ 𝑛1Z ⊂ Z, suy ra ideal không phải maximal. Ta có điều phải chứng minh.

INFO-CIRCLE Theorem 5.1

Gọi 𝑅 là vành giao hoán với đơn vị. Khi đó, nếu 𝐼 là ideal của 𝑅 thì 𝑅/𝐼 là trường khi và chỉ khi 𝐼 là
maximal ideal.

INFO-CIRCLE Chứng minh

Ta chứng minh điều kiện cần và điều kiện đủ.

Điều kiện cần. Ta có 𝐼 là maximal ideal. Ta thấy rằng 𝑎+ 𝐼 ̸= 0 khi và chỉ khi 𝑎 ̸∈ 𝐼, vì nếu 𝑎 ∈ 𝐼 thì
tồn tại −𝑎 ∈ 𝐼. Theo định nghĩa vành thì 𝑎𝑅 cũng là ideal nên 𝐼 + 𝑎𝑅 là ideal, mà 𝑎 ̸∈ 𝐼 và 𝑎 ∈ 𝐼 + 𝑎𝑅
nên suy ra 𝐼 ⊂ 𝐼 + 𝑎𝑅.

Ta lại có 𝐼 là maximal nên 𝐼 + 𝑎𝑅 = 𝑅, do đó tồn tại 𝑛 ∈ 𝐼 và 𝑏 ∈ 𝑅 sao cho 𝑛+ 𝑎𝑏 = 1. Tóm lại là tồn
tại nghịch đảo của phép nhân, do đó 𝑅/𝐼 là trường.

Điều kiện đủ. Với 𝑅/𝐼 là trường. Ta giả sử 𝐼 không là maximal ideal. Khi đó tồn tại 𝐼 ′ sao cho
𝐼 ⊂ 𝐼 ′ ⊂ 𝑅.

Khi đó tồn tại phần tử 𝑎 ∈ 𝐼 ′ và 𝑎 ̸∈ 𝐼 mà 𝑎 + 𝐼 ̸= 0. Do đó (𝑎 + 𝐼)(𝑏 + 𝐼) = 1 + 𝐼, suy ra tồn tại
𝑛 ∈ 𝐼 ⊂ 𝐼 ′ sao cho 𝑎𝑏 = 1 + 𝑛. Vì 𝑎, 𝑏 ∈ 𝐼 ′ nên 1 ∈ 𝐼 ′, từ đó 1 ∈ 𝑅 nên 𝐼 ′ không phải maximal.

INFO-CIRCLE Example 5.3

Xét tập hợp Z là vành giao hoán với đơn vị. Nếu 𝑛 là số nguyên tố thì 𝑛Z là maximal ideal (đã chứng
minh ở trên).

Khi đó tập Z/𝑛Z là trường hữu hạn modulo nguyên tố gồm các phần tử {0, 1, . . . , 𝑝− 1}.

Ring kernel và ring homomorphism

Xét vành (𝑅,+,×). Khi đó:

• với mọi 𝑎 ∈ 𝑅, 𝑎× 0 = 0× 𝑎 = 0;

• (−𝑎)× 𝑏 = −(𝑎× 𝑏).

INFO-CIRCLE Definition 5.5 (Ring homomorphism)

Xét hai vành là (𝑅1,+,×) và (𝑅2,�,⊗) và ánh xạ 𝑓 : 𝑅1 → 𝑅2.
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Ánh xạ 𝑓 được gọi là homomorphism trên hai vành nếu 𝑓 là homomorphism trên phép cộng và phép
nhân, nghĩa là:

• với mọi 𝑎, 𝑏 ∈ 𝑅1, 𝑓(𝑎)� 𝑓(𝑏) = 𝑓(𝑎+ 𝑏);

• với mọi 𝑎, 𝑏 ∈ 𝑅1, 𝑓(𝑎)⊗ 𝑓(𝑏) = 𝑓(𝑎× 𝑏).

INFO-CIRCLE Definition 5.6 (Hạt nhân)

Hạt nhân (hay kernel, ядро) của 𝑓 là

ker 𝑓 = {𝑥 : 𝑥 ∈ 𝑅1, 𝑓(𝑥) = 02}

với 02 là phần tử trung hòa của 𝑅2.

INFO-CIRCLE Theorem 5.2

ker 𝑓 là một ideal của 𝑅1.

INFO-CIRCLE Chứng minh

Ta có 𝑓(01) = 02 theo định nghĩa homomorphism. Do đó với mọi 𝑎 ∈ 𝑅1 và với mọi 𝑏 ∈ ker 𝑓 thì

𝑓(𝑎)⊗ 𝑓(𝑏) = 𝑓(𝑎)⊗ 02 = 02 = 𝑓(𝑎× 𝑏).

Do đó 𝑎× 𝑏 ∈ ker 𝑓 , suy ra ker 𝑓 là ideal trái của 𝑅1.

Tương tự cho với mọi 𝑎 ∈ 𝑅1 và với mọi 𝑏 ∈ ker 𝑓 thì

𝑓(𝑏)⊗ 𝑓(𝑎) = 02 = 𝑓(𝑏× 𝑎),

suy ra 𝑏× 𝑎 ∈ ker 𝑓 nên ker 𝑓 cũng là ideal phải của 𝑅1.

Kết luận: ker 𝑓 là ideal của 𝑅1.

2.2.6 Lý thuyết Galois
Tài liệu tham khảo trong phần này lấy từ sách [8] và khóa học Math 4120 [9] (bài giảng Visual Group
Theory).

Extension Fields

Extension Fields

INFO-CIRCLE Definition (Mở rộng trường)

Trường 𝐸 được gọi là mở rộng trường (hay extension field) của trường 𝐹 nếu 𝐹 là trường con của
𝐸. Khi đó 𝐹 được gọi là trường cơ sở (hay base field) và kí hiệu 𝐹 ⊂ 𝐸.
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INFO-CIRCLE Example

Trường nào nhỏ nhất chứa Q và
√
2?

Đáp án là trường

Q(
√
2) = {𝑎+ 𝑏

√
2 : 𝑎, 𝑏 ∈ Q}.

Việc chứng minh Q(
√
2) là trường khá đơn giản, phần tử nghịch đảo đối với phép nhân của 𝑎+ 𝑏

√
2 là

𝑎

𝑎2 − 2𝑏2
+

−2𝑏
𝑎2 − 2𝑏2

√
2.

INFO-CIRCLE Example

Trường nào nhỏ nhất chứa Q và 𝑖 (ở đây 𝑖 là đơn vị ảo, 𝑖2 = −1)?

Đáp án là trường

Q(𝑖) = {𝑎+ 𝑏𝑖 : 𝑎, 𝑏 ∈ Q}.

Tương tự, ở đây phần tử nghịch đảo đối với phép nhân của 𝑎+ 𝑏𝑖 là

𝑎

𝑎2 + 𝑏2
+

−𝑏
𝑎2 + 𝑏2

𝑖.

Ở đây Q(
√
2) và Q(𝑖) đều là mở rộng của Q và đều là tập con của C. Tuy nhiên hai trường này không phải

tập con của nhau.

Như vậy, bằng việc mở rộng Q với
√
2 ta có trường Q(

√
2).

Tương tự, bằng việc mở rộng Q với 𝑖 ta có trường Q(𝑖).

Vậy trường nào chứa Q,
√
2 và 𝑖?

INFO-CIRCLE Example

Trường chứa cả Q,
√
2 và 𝑖 là tập hợp

Q(
√
2, 𝑖) = {𝑎+ 𝑏

√
2 + 𝑐𝑖+ 𝑑

√
2𝑖 : 𝑎, 𝑏, 𝑐, 𝑑 ∈ Q}.

Trường trên có thể suy ra từ logic sau. Ta đã có Q(𝑖) chứa Q và 𝑖. Ta muốn thêm
√
2 vào trường Q(𝑖) nên

ta sẽ muốn mở rộng Q(𝑖) lên Q(𝑖)(
√
2).

Khi đó Q(𝑖)(
√
2) tương tự sẽ có dạng

Q(𝑖)(
√
2) = {𝛼+ 𝛽

√
2 : 𝛼, 𝛽 ∈ Q(𝑖)}.

Nói cách khác 𝛼 = 𝑎+ 𝑏𝑖 và 𝛽 = 𝑐+ 𝑑𝑖, 𝑎, 𝑏, 𝑐, 𝑑 ∈ Q, nên ta có

𝛼+ 𝛽
√
2 = 𝑎+ 𝑏𝑖+ 𝑐

√
2 + 𝑑

√
2𝑖, 𝑎, 𝑏, 𝑐, 𝑑 ∈ Q.

Khi đó ta viết

Q(𝑖)(
√
2) = Q(

√
2, 𝑖) = {𝑎+ 𝑏

√
2 + 𝑐𝑖+ 𝑑

√
2𝑖 : 𝑎, 𝑏, 𝑐, 𝑑 ∈ Q}.
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INFO-CIRCLE Remark

1. Q(
√
2) là trường con của R nhưng Q(𝑖) không phải.

2. Q(𝑖) nhỏ hơn C rất nhiều (không chứa
√
2).

3. Q(
√
2) chứa tất cả nghiệm của đa thức 𝑓(𝑥) = 𝑥2 − 2 trên Q. Do đó Q(

√
2) được gọi là trường

phân rã của đa thức 𝑓(𝑥).

Biểu diễn quan hệ giữa các trường qua lattice

Ở phần trước, Q(
√
2) là mở rộng của Q và với hai phần tử 𝑎, 𝑏 ∈ Q xác định một phần tử 𝑎+ 𝑏

√
2 ∈ Q(

√
2).

Do 𝑎+ 𝑏
√
2 = 𝑎 · 1+ 𝑏 ·

√
2 nên {1,

√
2} là cơ sở (hay basis) của Q(

√
2). Cơ sở chứa hai phần tử nên ta nói

bậc của mở rộng đơn (hay degree) từ Q lên Q(
√
2) là 2.

Tương tự, mở rộng từ Q lên Q(𝑖) cũng có bậc là 2 với cơ sở là {1, 𝑖}.

Ta kí hiệu bậc của mở rộng đơn là

[𝐸 : 𝐹 ].

Như vậy ta cũng các trường Q(
√
2), Q(

√
3) và Q(

√
6) là các mở rộng đơn bậc 2 của Q (Hình 2.22).

Q

Q(
√
2) Q(

√
6) Q(

√
3)

2
2

2

Hình 2.22: Mở rộng trường Q lên Q(
√
2), Q(

√
3) và Q(

√
6)

Do
√
6 =
√
2 ·
√
3 dẫn ta tới câu hỏi, trường nào nhỏ nhất chứa cả

√
2 và

√
3?

Thực hiện tương tự với Q(
√
2, 𝑖) ở trên ta có trường

Q(
√
2,
√
3) = Q(

√
2)(
√
3) = {𝑎+ 𝑏

√
2 + 𝑐

√
3 + 𝑑

√
6 : 𝑎, 𝑏, 𝑐, 𝑑 ∈ Q}

là trường nhỏ nhất chứa cả
√
2 và

√
3.

Ở đây, Q(
√
2,
√
3) là mở rộng bậc 4 của Q với cơ sở là {1,

√
2,
√
3,
√
6}.

Bằng việc mở rộng từ Q(
√
2) lên Q(

√
2,
√
3) = Q(

√
2)(
√
3) ta cũng có đây là mở rộng bậc 2 (tương tự chứng

minh phía trên cho Q(
√
2, 𝑖)). Như vậy mở rộng từ Q(

√
3) lên Q(

√
2,
√
3) cũng là mở rộng bậc 2.

Vậy mở rộng từ Q(
√
6) lên Q(

√
2,
√
3) là bậc mấy? Để xác định ta cần chứng minh nhận xét sau

INFO-CIRCLE Remark

Q(
√
2,
√
3) ≡ Q(

√
2 +
√
3), trong đó Q(

√
2 +
√
3) là trường nhỏ nhất chứa Q và

√
2 +
√
3.
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INFO-CIRCLE Chứng minh

Ta chứng minh Q(
√
2,
√
3) ⊂ Q(

√
2 +
√
3).

Do
√
2 +
√
3 nên nghịch đảo 1√

2 +
√
3
=
√
3−
√
2 ∈ Q(

√
2 +
√
3).

Khi đó, 1
2
· (
√
2 +
√
3)± 1

2
· (
√
3−
√
2) ∈ Q(

√
2 +
√
3).

Vế trái sẽ bằng
√
2 hoặc

√
3. Như vậy

√
2,
√
3 ∈ Q(

√
2 +
√
3).

Phép nhân trên trường cho ta
√
2 ·
√
3 =
√
6 ∈ Q(

√
2 +
√
3).

Như vậy với mọi 𝑎, 𝑏, 𝑐, 𝑑 ∈ Q ta có 𝑎 + 𝑏
√
2 + 𝑐

√
3 + 𝑑

√
6 ∈ Q(

√
2 +
√
3). Điều này tương đương với

Q(
√
2,
√
3) ⊂ Q(

√
2 +
√
3).

Nhưng mà Q(
√
2 +
√
3) là trường nhỏ nhất chứa Q và

√
2 +
√
3, và Q(

√
2,
√
3) là trường nhỏ nhất chứa√

2 và
√
3, kéo theo chứa cả

√
2 +
√
3 nên Q(

√
2 +
√
3) ≡ Q(

√
2,
√
3).

Ta có Q(
√
6) = {𝑎+ 𝑏

√
6 : 𝑎, 𝑏 ∈ Q}. Khi đó

Q(
√
6)(
√
2 +
√
3) = {𝛼+ 𝛽(

√
2 +
√
3) : 𝛼, 𝛽 ∈ Q(

√
6)}. (2.1)

Đặt 𝛼 = 𝑎+ 𝑏
√
6 và 𝛽 = 𝑐+ 𝑑

√
6, như vậy mỗi phần tử trong Q(

√
6)(
√
2 +
√
3) có dạng

𝑎+ 𝑏
√
6 + (𝑐+

√
6)(
√
2 +
√
3) =𝑎+ (𝑐+ 3𝑑)

√
2 + (𝑐+ 2𝑑)

√
3 + 𝑏

√
6

=𝑎′ + 𝑏′
√
2 + 𝑐′

√
3 + 𝑑′

√
6,

với 𝑎→ 𝑎′, 𝑐+ 3𝑑→ 𝑏′, 𝑐+ 2𝑑→ 𝑐′ và 𝑏→ 𝑑′.

Biến đổi này tương đương với hệ phương trình tuyến tính⎛⎜⎜⎝
1 0 0 0
0 0 1 3
0 0 1 2
0 1 0 0

⎞⎟⎟⎠
⎛⎜⎜⎝
𝑎
𝑏
𝑐
𝑑

⎞⎟⎟⎠ =

⎛⎜⎜⎝
𝑎′

𝑏′

𝑐′

𝑑′

⎞⎟⎟⎠
Ma trận trên khả nghịch trên Q, do đó Q(

√
6)(
√
2+
√
3) ≡ Q(

√
2,
√
3). Ở dạng biểu diễn (2.1) ta suy ra mở

rộng từ Q(
√
6) lên Q(

√
2,
√
3) là mở rộng bậc 2.

Sơ đồ mở rộng trường bây giờ như sau

Q

Q(
√
2) Q(

√
6) Q(

√
3)

Q(
√
2,
√
3)

2
2

2

2
2

2
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Splitting Field

INFO-CIRCLE Definition (Trường phân rã)

Xét trường 𝐹 và đa thức khác hằng

𝑝(𝑥) = 𝑎𝑛𝑥
𝑛 + 𝑎𝑛−1𝑥

𝑛−1 + . . .+ 𝑎1𝑥+ 𝑎0

trên 𝐹 [𝑥], ở đây 𝑎𝑖 ∈ 𝐹 với mọi 𝑖 = 1, 2, . . .

Trường mở rộng 𝐸 của trường 𝐹 được gọi là trường phân rã (hay splitting field) của 𝑝(𝑥) nếu tồn
tại các phần tử 𝛼1, 𝛼2, ..., 𝛼𝑛 thuộc 𝐸 sao cho 𝐸 = 𝐹 (𝛼1, 𝛼2, . . . , 𝛼𝑛) và

𝑝(𝑥) = (𝑥− 𝛼1)(𝑥− 𝛼2) · · · (𝑥− 𝛼𝑛).

Khi đó ta nói đa thức 𝑝(𝑥) ∈ 𝐹 [𝑥] phân rã (split) trong 𝐸 nếu nó phân tích thành các nhân tử bậc nhất
(tuyến tính) trong 𝐸[𝑥].

Nói nôm na, nếu đa thức có hệ số trong một trường 𝐹 nào đó (tức thuộc 𝐹 [𝑥]) thì các nghiệm của nó nằm
trong một trường lớn hơn chứa 𝐹 .

INFO-CIRCLE Example

Đa thức 𝑓(𝑥) = 𝑥2 − 2 trên Q[𝑥] không có nghiệm trên Q. Tuy nhiên Q(
√
2) là trường chứa Q và các

nghiệm của 𝑓(𝑥) là ±
√
2. Vì vậy Q(

√
2) là trường phân rã của 𝑓(𝑥).

INFO-CIRCLE Example

Đa thức 𝑔(𝑥) = 𝑥2 + 1 trên Q[𝑥] không có nghiệm trên Q. Tuy nhiên 𝑔(𝑥) có hai nghiệm là ±𝑖 và Q(𝑖)
chứa cả Q và ±𝑖 nên Q(𝑖) là một trường phân rã của 𝑔(𝑥).

Ở đây, bậc của đa thức 𝑓(𝑥) = 𝑥2 − 2 bằng với bậc của mở rộng trường từ Q lên Q(
√
2).

Tương tự, bậc của mở rộng trường từ Q lên Q(
√
3) bằng bậc đa thức 𝑔(𝑥) = 𝑥2 − 3, và bậc của mở rộng

trường từ Q lên Q(
√
6) bằng với bậc đa thức ℎ(𝑥) = 𝑥2 − 6.

Ở trên ta đã chứng minh bậc của mở rộng trường từ Q(
√
2) lên Q(

√
2,
√
3) là 2, điều này tương ứng với bậc

của đa thức

𝑘(𝑥) = (𝑥2 − 2)(𝑥2 − 3) = 𝑥4 − 5𝑥+ 6.

Tổng kết lại, nếu 𝐸 là trường phân rã của 𝐹 trên đa thức 𝑓(𝑥) ∈ 𝐹 [𝑥] thì bậc của mở rộng trường từ 𝐹 lên
𝐸 bằng với bậc của 𝑓(𝑥).

Từ sơ đồ mở rộng trường bên trên ta có sơ đồ với đa thức tương ứng.
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Q

Q(
√
2) Q(

√
6) Q(

√
3)

Q(
√
2,
√
3)

x 2
−
2

x
2
−

6

x
2 − 3

x
2 − 3

?

x 2
−
2

Vậy còn mở rộng từ Q(
√
6) thành Q(

√
2,
√
3)? Ở trên ta đã chứng minh rằng đây là mở rộng bậc 2. Vậy

chúng ta cần tìm một đa thức bậc 2 có hệ số trong Q(
√
6) mà không có nghiệm trong Q(

√
6).

Quay lại một chút, ta đã mở rộng Q(
√
6) lên Q(

√
2,
√
3) với sự trợ giúp của phần tử

√
2 +
√
3. Từ đây ta

có thể xây dựng đa thức

𝑚(𝑥) = 𝑥2 − (
√
2 +
√
3)2 = 𝑥2 − 5− 2

√
6.

Đa thức 𝑚(𝑥) có hệ số trong Q(
√
6) nhưng không có nghiệm trong Q(

√
6), mà trong Q(

√
2,
√
3). Ta có điều

phải chứng minh.

Field automorphism

INFO-CIRCLE Remark

Tập hợp tất cả tự đẳng cấu (automorphism) trên trường 𝐹 là nhóm với toán tử là hợp của các hàm. Kí
hiệu là 𝐴𝑢𝑡(𝐹 ).

INFO-CIRCLE Chứng minh

Dễ thấy nếu 𝜎 và 𝜏 là tự đẳng cấu trên 𝐹 thì 𝜎𝜏 và 𝜎−1 cũng là tự đẳng cấu trên 𝐹 (đều là song ánh).
Ánh xạ đồng nhất hiển nhiên là tự đẳng cấu nên sẽ là phần tử đơn vị của nhóm.

INFO-CIRCLE Remark

Gọi 𝐸 là mở rộng trường của 𝐹 . Khi đó tập hợp tất cả tự đẳng cấu trên 𝐸 mà cố định phần tử của
𝐹 tạo thành một nhóm, nghĩa là tập hợp tất cả các tự đẳng cấu 𝜎 : 𝐸 → 𝐸 sao cho 𝜎(𝛼) = 𝛼 với mọi
𝛼 ∈ 𝐹 tạo thành một nhóm.

INFO-CIRCLE Chứng minh

Từ nhận xét ở trên thì tập hợp tất cả tự đẳng cấu trên 𝐸 tạo thành một nhóm 𝐴𝑢𝑡(𝐸). Như vậy để
chứng minh nhận xét này thì chúng ta chỉ cần chỉ ra tập hợp tất cả tự đẳng cấu của 𝐸 mà cố định phần
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tử trong 𝐹 là một nhóm con của 𝐴𝑢𝑡(𝐸).

Gọi 𝜎 và 𝜏 là hai tự đẳng cấu của 𝐸 sao cho 𝜎(𝛼) = 𝛼 và 𝜏(𝛼) = 𝛼 với mọi 𝛼 ∈ 𝐹 .

Khi đó 𝜎(𝜏(𝛼)) = 𝜎(𝛼) = 𝛼 nên ánh xạ hợp 𝜎𝜏 cũng nằm trong tập các tự đẳng cấu trên 𝐸 mà cố định
phần tử trên 𝐹 .

Ngoài ra, 𝜎−1(𝛼) = 𝛼 và ánh xạ đồng nhất cố định mọi phần tử trên 𝐸. Như vậy tập tất cả tự đẳng cấu
trên 𝐸 mà cố định mọi phần tử trong 𝐹 là nhóm con của 𝐴𝑢𝑡(𝐸).

Ở trên ta kí hiệu nhóm tất cả các tự đẳng cấu trên 𝐸 là 𝐴𝑢𝑡(𝐸). Bây giờ ta sẽ định nghĩa nhóm Galois.

INFO-CIRCLE Definition (Nhóm Galois)

Gọi 𝐸 là mở rộng trường của 𝐹 . Ta nói nhóm Galois (hay Galois group) của 𝐸 trên 𝐹 là nhóm tất
cả tự đẳng cấu của 𝐸 mà cố định phần tử trên 𝐹 , nghĩa là

𝐺(𝐸/𝐹 ) = {𝜎 ∈ 𝐴𝑢𝑡(𝐸) : 𝜎(𝛼) = 𝛼 với mọi 𝜎 ∈ 𝐹}.

Nếu 𝑓(𝑥) là đa thức trong 𝐹 [𝑥] và 𝐸 là trường phân rã của 𝑓(𝑥) theo 𝐹 thì ta định nghĩa nhóm Galois của
𝑓(𝑥) theo 𝐺(𝐸/𝐹 ).

INFO-CIRCLE Example

Liên hợp của số phức xác định bởi ánh xạ quen thuộc

𝜎 : 𝑎+ 𝑏𝑖→ 𝑎− 𝑏𝑖

là một tự đẳng cấu trên tập các số phức C. Vì R ⊂ C và

𝜎(𝑎) = 𝜎(𝑎+ 0𝑖) = 𝑎− 0𝑖 = 𝑎

nên ánh xạ 𝜎 thuộc 𝐺(C/R).

INFO-CIRCLE Example

Xét các trường Q ⊂ Q(
√
5) ⊂ Q(

√
3,
√
5). Khi đó với 𝑎, 𝑏 ∈ Q(

√
5) thì ánh xạ

𝜎(𝑎+ 𝑏
√
3) = 𝑎− 𝑏

√
3

là tự đẳng cấu trên Q(
√
3,
√
5) mà cố định Q(

√
5).

Thật vậy, giả sử 𝑎 = 𝑠+ 𝑡
√
5 và 𝑏 = 𝑢+ 𝑣

√
5 với 𝑠, 𝑡, 𝑢, 𝑣 ∈ Q. Khi đó

𝜎(𝑎+ 𝑏
√
3) = 𝑎− 𝑏

√
3 = 𝑠+ 𝑡

√
5− (𝑢+ 𝑣

√
5)
√
3 = (𝑠− 𝑢

√
3) + (𝑡− 𝑣

√
3)
√
5.

Ta có

𝑎+ 𝑏
√
3 = (𝑠+ 𝑢

√
3) + (𝑡+ 𝑣

√
3)
√
5 ∈ Q(

√
5)

khi và chỉ khi 𝑠+ 𝑢
√
3 ∈ Q và 𝑡+ 𝑣

√
3 ∈ Q. Nói cách khác 𝑢 = 𝑣 = 0. Như vậy

𝜎(𝑎+ 𝑏
√
3) = 𝜎(𝑠+ 𝑡

√
5) = 𝑠+ 𝑡

√
5.
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Phần tử 𝑠+ 𝑡
√
5 ∈ Q(

√
5) nên 𝜎 cố định các phần tử trên Q(

√
5).

Tương tự ta cũng có ánh xạ

𝜏(𝑎+ 𝑏
√
5) = 𝑎− 𝑏

√
5

là tự đẳng cấu trên Q(
√
3,
√
5) mà cố định Q(

√
3).

Tuy nhiên ánh xạ hợp 𝜇 = 𝜎𝜏 không cố định cả Q(
√
3) lẫn Q(

√
5).

Chúng ta cũng chứng minh được rằng {𝑖𝑑, 𝜎, 𝜏, 𝜇} là nhóm Galois của Q(
√
3,
√
5) trên Q vì các ánh xạ đó

cố định phần tử thuộc Q (không chứa căn).

Như vậy nhóm Galois của Q(
√
3,
√
5) có 4 phần tử, tức là |𝐺(Q(

√
3,
√
5)/Q)| = 4. Ở trên phần trường phân

rã mình cũng đã chỉ ra rằng [Q(
√
3,
√
5) : Q] = 4 nên ở đây

|𝐺(Q(
√
3,
√
5)/Q)| = [Q(

√
3,
√
5) : Q] = 4.

Một điều nữa là trường Q(
√
3,
√
5) cũng chính là không gian vector trên Q với cơ sở là tập {1,

√
3,
√
5,
√
15}.

Tập này cũng có 4 phần tử.

Một câu hỏi tự nhiên được đặt ra ở đây: việc số lượng phần tử của các tập hợp ở đây bằng nhau là ngẫu
nhiên hay có lý do?

INFO-CIRCLE Remark

Cho 𝐸 là một mở rộng trường của 𝐹 và 𝑓(𝑥) là đa thức trên 𝐹 [𝑥]. Khi đó mỗi tự đẳng cấu trong 𝐺(𝐸/𝐹 )
xác định một hoán vị các nghiệm của 𝑓(𝑥) trên 𝐸.

INFO-CIRCLE Chứng minh

Đặt

𝑓(𝑥) = 𝑎0 + 𝑎1𝑥+ 𝑎2𝑥
2 + · · ·+ 𝑎𝑛𝑥

𝑛

và giả sử 𝛼 ∈ 𝐸 là một nghiệm của 𝑓(𝑥). Khi đó với tự đẳng cấu 𝜎 ∈ 𝐺(𝐸/𝐹 ) ta có

0 = 𝜎(0)

= 𝜎(𝑓(𝛼))

= 𝜎(𝑎0 + 𝑎1𝛼+ 𝑎2𝛼
2 + · · ·+ 𝑎𝑛𝛼

𝑛)

= 𝜎(𝑎0) + 𝜎(𝑎1𝛼) + 𝜎(𝑎2𝛼
2) + · · ·+ 𝜎(𝑎𝑛𝛼

𝑛)

= 𝜎(𝑎0) + 𝜎(𝑎1)𝜎(𝛼) + 𝜎(𝑎2)𝜎(𝛼
2) + · · ·+ 𝜎(𝑎𝑛)𝜎(𝛼

𝑛).

Trong đó hai dòng cuối là từ định nghĩa của tự đẳng cấu. Thêm nữa 𝜎(𝛼𝑘) = 𝜎(𝛼)𝑘 và do 𝜎 ∈ 𝐺(𝐸/𝐹 )
nên 𝜎(𝑎𝑖) = 𝑎𝑖 với mọi 0 6 𝑖 6 𝑛. Như vậy có thể suy ra

0 = 𝑎0 + 𝑎1𝜎(𝛼) + 𝑎2𝜎(𝛼)
2 + · · ·+ 𝑎𝑛𝜎(𝛼)

𝑛,

nói cách khác 𝜎(𝛼) cũng là nghiệm của 𝑓(𝑥).

Cho 𝐸 là mở rộng trường của trường 𝐹 . Hai phần tử 𝛼, 𝛽 ∈ 𝐸 được gọi là liên hợp trên 𝐹 nếu chúng có
cùng đa thức tối tiểu. Ở đây, đa thức tối tiểu được hiểu là đa thức có bậc nhỏ nhất nhận 𝛼 và 𝛽 làm nghiệm.
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Ví dụ, trên trường Q(
√
2) thì hai phần tử

√
2 và −

√
2 là liên hợp trên Q vì chúng đều là nghiệm của đa thức

tối giản 𝑥2 − 2.

INFO-CIRCLE Remark

Nếu 𝛼 và 𝛽 liên hợp trên 𝐹 thì tồn tại đẳng cấu 𝜎 : 𝐹 (𝛼)→ 𝐹 (𝛽) sao cho 𝜎 đồng nhất các phần tử trên
𝐹 .

Khi đó ta có định lí quan trọng sau về số phần tử của nhóm Galois. Phần chứng minh hiện tại mình bỏ qua
vì cần một vài bổ đề khá dài.

INFO-CIRCLE Theorem

Đặt 𝑓(𝑥) là đa thức trên 𝐹 [𝑥] và giả sử 𝐸 là trường phân rã của 𝑓(𝑥) trên 𝐹 . Nếu 𝑓(𝑥) không có nghiệm
bội thì

|𝐺(𝐸/𝐹 )| = [𝐸 : 𝐹 ].

2.2.7 Bảng thuật ngữ lý thuyết nhóm

Bảng 2.1: Ý nghĩa thuật ngữ

Kí hiệu Ý nghĩa
𝒮𝑛 Nhóm đối xứng 𝑛 phần tử
ker 𝑓 Hạt nhân (kernel) của ánh xạ 𝑓
im𝑓 Ảnh (Image) của ánh xạ 𝑓
∼= Đẳng cấu nhóm (group isomorphism)
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Bảng 2.2: Bảng thuật ngữ

Tiếng Việt Tiếng Anh Tiếng Nga
nhóm group группа
nhóm con subgroup подгруппа
nhóm đối xứng symmetric group симметричная группа
nhóm hoán vị permutation group группа постановок
chu trình cycle цикл
chu trình độc lập independent cycles независимые циклы
đồng cấu nhóm group homomorphism гомоморфизм групп
đơn cấu monomorphism
toàn cấu epimorphism
đẳng cấu isomorphism
tự đẳng cấu automorphism
hạt nhân (đồng cấu) kernel ядро
ảnh (đồng cấu) image
tác động nhóm group action действие групп
vành ring кольцо
vành với đơn vị ring with identity кольцо с единицей
vành giao hoán commutative ring коммутативное кольцо
trường field поле
trường hữu hạn finite field конечное поле
mở rộng truòng extension field
trường phân rã splitting field

2.3 Hình học

2.3.1 Hình học giải tích
Theo dòng lịch sử

Hình học xuất hiện từ thời xa xưa, xuất phát từ những nhu cầu thực tế nhất của con người là đo đạc để
phân chia đất đai, xây dựng, canh tác, ... Từ đó con người đã có nhận thức rất sớm về quan hệ song song
và vuông góc giữa hai đường thẳng.

Một cách hình ảnh (mà thật ra hình học là môn học về hình ảnh) thì hai đường thẳng song song không cắt
nhau dù có kéo dài chúng ra vô tận. Các đường thẳng song song luôn có nhiều điều thú vị, cả ở mặt phẳng
Euclid lẫn trong không gian. Đầu tiên phải kể đến định lý mang tên triết gia vĩ đại của Hy Lạp: Thales.

Thales của Miletus

Thales của Miletus được cho rằng sinh vào khoảng năm 624 Trước Công nguyên (TCN) và mất năm 547
TCN tại Miletus (Thổ Nhĩ Kì ngày nay)1.

1 https://mathshistory.st-andrews.ac.uk/Biographies/Thales/
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Hình 2.23: Thales của Miletus

Ông được xem là nhà triết học đầu tiên khi không cố gắng giải thích tự nhiên bằng thần thoại hay các thế
lực siêu nhiên như trước. Trường phái triết học do ông sáng lập, trường phái Milet, cho rằng mọi vật có
nguồn gốc từ nước. Nhà triết học nổi tiếng Aristotle đánh giá rằng Thales là người sáng lập ra triết học
duy vật sơ khai.

Trong toán học, Thales được biết tới với định lý mang tên ông về các đường song song. Định lý Thales được
phát biểu như sau:

INFO-CIRCLE Theorem 1.3 (Định lý Thales)

Trong một tam giác, đường thẳng song song với một cạnh chắn trên hai cạnh còn lại các đoạn thẳng
tương ứng tỉ lệ.

2.3. Hình học 85



Math Book

A

B C

E F

Hình 2.24: Định lý Thales trên mặt phẳng

Theo định lý Thales, nếu $EF$ song song với $BC$ thì ta có $dfrac{AE}{AB} = dfrac{AF}{AC} =
dfrac{EF}{BC}$ ({numref}`thales1`).

Không dừng lại ở mặt phẳng, khi mở rộng lên không gian định lý Thales cũng cho chúng ta một kết quả
quan trọng khi nói tới các mặt phẳng song song nhau.

INFO-CIRCLE Theorem 1.4 (Định lý Thales trong không gian)

Trong khối chóp, mặt phẳng song song mặt đáy chắn các cạnh nối từ đỉnh hình chóp tới các đỉnh của
mặt phẳng đáy các đoạn thẳng tương ứng tỉ lệ.

S

A
D

D′
A′

C

C ′

B

B′

Hình 2.25: Định lý Thales trong không gian

Theo định lý Thales, nếu mặt phẳng $(ABCD)$ song song với mặt phẳng $(A'B'C'D')$ thì $dfrac{SA}{SA'}
= dfrac{SB}{SB'} = dfrac{SC}{SC'} = dfrac{SD}{SD'}$ ({numref}`thales2`).

Pythagoras của Samos

Khi nhắc tới vuông góc, chúng ta thường nhớ tới định lý ngày nào được học ở thời học sinh: định lý
Pythagoras. Định lý này nói về quan hệ giữa độ dài các cạnh trong một tam giác vuông. Định lý tuy đơn
giản nhưng có ý nghĩa rất quan trọng trong đời sống và khoa học của con người suốt chiều dài lịch sử. Đây
cũng là tiền đề cho định lý mang tính lịch sử của nhân loại: định lý cuối cùng của Fermat.
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Hình 2.26: Pythagoras của Samos

Pythagoras của Samos cũng là nhà triết học Hy Lạp cổ, được cho rằng sinh vào khoảng năm 570 TCN và
mất năm 490 TCN2.

Ông được học tập từ nhà triết học Thales và cũng có nhiều đóng góp cho sự phát triển của toán học, thiên
văn học và âm nhạc. Tuy nhiên khác với thầy mình, trường phái triết học của ông cho rằng những con số
là nguồn gốc của vạn vật và sử dụng những con số để giải thích những hiện tượng khoa học. Từ đây, các lý
thuyết về âm nhạc được ra đời, cụ thể là các mối liên hệ về tần số với sự rung của dây nhạc cụ.

Ông là một trong những người hiếm hoi cho phép cả phụ nữ đi học ở lớp của mình vào thời ấy. Điều đó
giúp phổ biến toán học nói riêng và kiến thức nói chung tới nhiều tầng lớp nhân dân. Tuy nhiên ông cũng
có một hội kín rất thú vị. Như đã nói ở trên, trường phái triết học Pythagoras cố gắng giải thích nguồn gốc
vạn vật bằng những con số. Điều này đã dẫn họ tới những khám phá động trời vào thời ấy.

Một trong những khám phá đó là về sự tồn tại của số vô tỉ dựa vào định lý mang tên ông. Lịch sử đã chỉ
ra rằng trước Pythagoras, người Babylon và Ai Cập đã tìm ra rất nhiều bộ số nguyên $(a, b, c)$ thỏa mãn
$a^2 + b^2 = c^2$ là độ dài ba cạnh tam giác vuông. Định lý Pythagoras mà ngày nay chúng ta biết được
phát biểu rằng:

INFO-CIRCLE Theorem 1.5 (Định lý Pythagoras)

Trong một tam giác vuông, bình phương độ dài cạnh huyền bằng tổng bình phương độ dài hai cạnh góc
vuông.

2 https://mathshistory.st-andrews.ac.uk/Biographies/Pythagoras/
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Như vậy nếu gọi độ dài cạnh huyền là 𝑐, độ dài hai cạnh góc vuông lần lượt là 𝑎 và 𝑏 thì $a^2 + b^2 =
c^2$ ({numref}`pythagoras1`).

c

a

b

Hình 2.27: Định lý Pythagoras

Nếu 𝑎 = 𝑏 = 1 thì sao? Khi đó bình phương độ dài cạnh huyền $c^2 = 2$. Tuy nhiên không thể tìm ra một
số hữu tỉ nào để bình phương lên là 2 cả. Phát hiện này là một chấn động đối với thời Pythagoras và ông
yêu cầu tất cả thành viên trong hội phải giữ kín bí mật về sự phát hiện này. Tuy nhiên thông tin vẫn lọt ra
ngoài và truyền thuyết kể rằng ông đã xử tội chết cho thành viên của hội không tuân thủ.

Pythagoras đã đưa một khái niệm cực kì quan trọng trong toán học, gọi là chứng minh (hay proof,
доказательство). Để chứng minh một mệnh đề là đúng, chúng ta cần các mệnh đề (thường đơn giản hơn)
đúng trước đó. Bằng các phép suy luận thích hợp dựa trên các mệnh đề đúng trước đó, chúng ta có thể kết
luận rằng mệnh đề cần chứng minh là đúng. Phép chứng minh có thể gọi là "xương sống" của toán học, vì
nếu không có một phép chứng minh đúng đắn thì một mệnh đề không thể được xác định được là có đúng
hay không. Trong trường hợp của Fermat, khi ông đưa ra định lý Fermat nhưng không kèm chứng minh (vì
lề sách quá chật nên không viết lời giải được) thì chúng ta không thể biết định lý Fermat có đúng hay không
(?).

Nếu việc suy luận dựa trên các mệnh đề, hoặc định lý, đã đúng trước đó, thì phải có một lúc nào đó việc này
dừng lại. Chúng ta không thể suy ngược tới vô hạn lần được. Do đó chúng ta cần những mệnh đề luôn đúng
nhưng tính đúng đắn của nó được kiểm nghiệm trong thực tiễn. Chúng được gọi là tiên đề (hay axiom,
аксиома). Nhân vật tiếp theo được đề cập tới sẽ dẫn chúng ta tới hệ thống tiên đề làm nền tảng cho hình
học.

Euclid của Alexandria

Đúng vậy, Euclid là người đặt nền móng cho hình học với bộ sách nổi tiếng Elements của mình. Trong bộ
sách này đề cập tới những tiên đề, định lý làm nền tảng cho bộ môn hình học và vẫn còn ý nghĩa cho tới
tận ngày nay. Những gì viết trong đó không quá xa lạ với những gì được giảng dạy trong nhà trường.
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Hình 2.28: Euclid của Alexandria

Euclid của Alexandria sinh vào khoảng năm 325 TCN và mất vào khoảng năm 265 TCN3. Thông tin về ông
không có nhiều. Nhưng chỉ mỗi bộ sách Elements cũng đủ để người đời sau cho rằng ông là người có ảnh
hưởng nhất trong 2000 năm lịch sử phát triển của toán học.

Năm tiên đề cơ bản của hình học được ông phát biểu trong bộ Elements được phát biểu như sau:

1. Qua hai điểm bất kì luôn vẽ được một đường thẳng

2. Đường thẳng có thể kéo dài vô hạn về cả hai phía

3. Ta có thể xác định một đường tròn bằng tâm và bán kính của nó

4. Mọi góc vuông đều bằng nhau

5. Nếu một đường thẳng cắt hai đường thẳng khiến tổng hai góc trong cùng phía nhỏ hơn hai vuông thì
hai đường thẳng đó chắc chắn sẽ cắt nhau tại một điểm nào đó

Tiên đề số 5 là rắc rối và phức tạp nhất. Nó không thực sự tự nhiên và có nhiều sự vướng mắc. Đây chính
là tiên đề cho sự ra đời của hình học phi-Euclid hơn 1500 năm sau.

Bộ Elements của Euclid bao gồm 13 quyển. Trong đó đề cập tới rất nhiều vấn đề của hình học, từ những
phần tử đơn giản nhất cấu tạo nên hình học là điểm, đoạn thẳng, đường thẳng, tới những hình học lớn hơn
như hình chữ nhật, hình tròn, đa giác, mặt phẳng. Thậm chí ông cũng đã có những dấu chân ở hình học
không gian như hình chóp, hình cầu, hình nón ([2], [10]).

3 https://mathshistory.st-andrews.ac.uk/Biographies/Euclid/
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Phương pháp tọa độ trong mặt phẳng

Cuộc cách mạng trong hình học xảy ra khi nhà toán học lãng tử René Descartes phát minh ra hệ tọa độ
và từ đó mọi đối tượng hình học có thể được biểu diễn bởi các phương pháp đại số như phương trình, đẳng
thức.

Hình 2.29: René Descartes (1596-1650)

Danh mục thuật ngữ và kí hiệu

Đầu tiên chúng ta thống nhất các thuật ngữ cũng như kí hiệu được sử dụng kể từ đây.

Điểm là đơn vị cơ bản của hình học. Bất kì đối tượng hình học nào cũng là một tập hợp điểm. Điểm được
kí hiệu bởi chữ in hoa, ví dụ như 𝐴, 𝐵1, 𝐵2.

Đường thẳng đi qua hai điểm phân biệt cho trước. Đường thẳng có thể kéo dài vô hạn về hai phía. Đường
thẳng được kí hiệu bởi chữ in thường hoặc chữ Hy Lạp trong ngoặc đơn, ví dụ như (𝑑), (Δ).

Đoạn thẳng chỉ phần đường thẳng nằm giữa hai điểm và bản thân hai điểm đó.
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Nửa đường thẳng chỉ phần đường thẳng nằm một phía của một điểm trên đường thẳng và chỉ kéo dài vô
hạn về phía đó.

Vector là đoạn thẳng có hướng. Với điểm đầu là 𝐴 và điểm cuối là 𝐵 thì vector từ 𝐴 tới 𝐵 được kí hiệu là−−→
𝐴𝐵. Để chỉ một vector không cần biết điểm đầu và điểm cuối ta dùng chữ thường in đậm, ví dụ như 𝑎.

Góc giữa hai vector −→𝑂𝐴 và
−−→
𝑂𝐵 là góc ∠𝐴𝑂𝐵 và kí hiệu là (

−→
𝑂𝐴,
−−→
𝑂𝐵).

Tương tự đối với vector 𝑎 và 𝑏 thì góc giữa chúng kí hiệu là (𝑎, 𝑏).

Vector trong mặt phẳng

Trong hệ tọa độ 𝑂𝑥𝑦 với tâm 𝑂 và hai trục 𝑂𝑥 (trục hoành) và 𝑂𝑦 (trục tung) vuông góc nhau, đặt
𝑂 = (0, 0) là tọa độ của tâm 𝑂.

Tiếp theo, mọi điểm trong mặt phẳng Euclid đi liền với cặp số (𝑥, 𝑦) chỉ tọa độ của điểm đó. Ví dụ 𝐴 = (1, 3),
𝐵 = (4, 1).

x

y

1

3

4

1

3

-2

A

B
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O

Hình 2.30: Tọa độ của điểm trong mặt phẳng

Tọa độ của điểm cũng là tọa độ của vector từ 𝑂 tới điểm đó. Ở Hình 2.30 thì
−→
𝑂𝐴 = (1, 3) và

−−→
𝑂𝐵 = (4, 1).

Tọa độ của vector
−−→
𝐴𝐵 khi đó sẽ là

−−→
𝐴𝐵 =

−−→
𝑂𝐵 −

−→
𝑂𝐴 = (4, 1)− (1, 3) = (3,−2).

Cũng theo Hình 2.30 thì ta thấy
−−→
𝐴𝐵 =

−−→
𝑂𝐶 = (3,−2).

Như vậy, nếu ta có hai điểm 𝐴 = (𝑥𝐴, 𝑦𝐴) và 𝐵 = (𝑥𝐵 , 𝑦𝐵) thì tọa độ vector
−−→
𝐴𝐵 là

−−→
𝐴𝐵 = (𝑥𝐵 − 𝑥𝐴, 𝑦𝐵 − 𝑦𝐴).

Tích vô hướng của hai vector 𝑎 = (𝑥1, 𝑦1) và 𝑏 = (𝑥2, 𝑦2) được định nghĩa là

𝑎 · 𝑏 = 𝑥1𝑥2 + 𝑦1𝑦2.

Ta cũng có thể kí hiệu tích vô hướng là ⟨𝑎, 𝑏⟩ nhưng mình sẽ không dùng kí hiệu này.
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Ta kí hiệu ‖𝑎‖ là độ dài (chuẩn Euclid, Euclid norm) của vector 𝑎. Trong hệ tọa độ Descartes vuông góc,
theo định lý Pythagoras, độ dài của vector là độ dài cạnh huyền tam giác vuông (Hình 2.30). Như vậy, độ
dài đoạn thẳng 𝐴𝐵 với 𝐴 = (𝑥𝐴, 𝑦𝐴) và 𝐵 = (𝑥𝐵 , 𝑦𝐵) là

𝐴𝐵 =
⃦⃦⃦−−→
𝐴𝐵
⃦⃦⃦
=
√︀
(𝑥𝐵 − 𝑥𝐴)2 + (𝑦𝐵 − 𝑦𝐴)2.

Khi đó cosin góc giữa hai vector 𝑎 và 𝑏 là

cos(𝑎, 𝑏) = 𝑎 · 𝑏
‖𝑎‖ · ‖𝑏‖

=
𝑥1𝑥2 + 𝑦1𝑦2√︀

𝑥21 + 𝑦21 ·
√︀
𝑥22 + 𝑦22

.

Nếu góc giữa hai vector bằng 90 độ thì hai vector được gọi là vuông góc nhau. Khi đó tích vô hướng 𝑎 ·𝑏 = 0.

Phương trình đường thẳng trong mặt phẳng

Theo tiên đề Euclid, một đường thẳng được xác định khi biết hai điểm phân biệt thuộc đường thẳng đó.
Trong hệ tọa độ, chúng ta có hai cách tìm phương trình đường thẳng.

Sử dụng vector pháp tuyến. Vector pháp tuyến của đường thẳng là vector vuông góc với mọi vector có
phương là đường thẳng đó. Giả sử 𝑣 = (𝑎, 𝑏) là vector pháp tuyến của đường thẳng đi qua điểm𝑀0 = (𝑥0, 𝑦0).
Khi đó đường thẳng đi qua qua 𝑀0 nhận 𝑣 làm vector pháp tuyến là tập hợp điểm 𝑀 = (𝑥, 𝑦) trên mặt
phẳng sao cho 𝑣 ·

−−−→
𝑀0𝑀 = 0. Điều này tương đương với

𝑣 ·
−−−→
𝑀0𝑀 = 𝑎 · (𝑥− 𝑥0) + 𝑏 · (𝑦 − 𝑦0) = 0.

Sử dụng vector chỉ phương. Vector chỉ phương của đường thẳng là vector có phương song song với
đường thẳng đó. Giả sử 𝑣′ = (𝑎′, 𝑏′) là vector chỉ phương của đường thẳng đi qua điểm 𝑀0 = (𝑥0, 𝑦0). Khi
đó đường thẳng đi qua 𝑀0 nhận 𝑣′ làm vector chỉ phương là tập hợp điểm 𝑀 = (𝑥, 𝑦) trên mặt phẳng sao
cho 𝑣′ cùng phương với

−−−→
𝑀0𝑀 . Điều này tương đương với

𝑣′ ‖
−−−→
𝑀0𝑀 ⇔

𝑥− 𝑥0
𝑎′

=
𝑦 − 𝑦0
𝑏′

.

1. Cả hai cách biểu diễn khi khai triển ra đều có dạng 𝑎𝑥+ 𝑏𝑦 + 𝑐 = 0 với 𝑐 là hằng số. Đây được gọi là
dạng tổng quát của phương trình đường thẳng.

2. Cách viết 𝑥− 𝑥0
𝑎′

=
𝑦 − 𝑦0
𝑏′

được gọi là dạng chính tắc của phương trình đường thẳng.

3. Dạng chính tắc của phương trình đường thẳng còn có một tác dụng đặc biệt khác
𝑥− 𝑥0
𝑎′

=
𝑦 − 𝑦0
𝑏′

= 𝑡

với 𝑡 ∈ R. Khi đó tọa độ 𝑀 = (𝑥, 𝑦) có thể được biểu diễn dưới dạng{︃
𝑥 = 𝑥0 + 𝑎′𝑡

𝑦 = 𝑦0 + 𝑏′𝑡
, 𝑡 ∈ R.

Đây được gọi là phương trình dạng tham số.

Chúng ta chú ý rằng nếu đường thẳng song song với một trong hai trục tọa độ thì vector chỉ phương của nó
sẽ cùng phương với vector đơn vị (1, 0) hoặc (0, 1). Do đó không thể viết dưới dạng chính tắc được (không
thể chia cho 0) nhưng có thể viết dưới dạng tổng quát hoặc dạng tham số.
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Khoảng cách giữa điểm và đường thẳng

Nhắc lại một chút kiến thức cơ sở. Khoảng cách từ một điểm 𝐴 nằm ngoài đường thẳng (𝑑) là độ dài đoạn
thẳng 𝐴𝐻 với 𝐻 ∈ (𝑑) sao cho 𝐴𝐻 nhỏ nhất (Hình 2.31).

Khi đó 𝐻 được gọi là hình chiếu của 𝐴 lên đường thẳng (𝑑) và 𝐴𝐻 là khoảng cách từ 𝐴 tới (𝑑). Do 𝐴𝐻
là đoạn thẳng có độ dài ngắn nhất, điều này xảy ra khi 𝐴𝐻 ⊥ (𝑑).

A

H I

(d)

Hình 2.31: Hình chiếu và khoảng cách tới đường thẳng

Như vậy, để tìm hình chiếu của điểm 𝐴 lên đường thẳng (𝑑), ta dựng đường thẳng đi qua điểm 𝐴 và vuông
góc với (𝑑).

Giả sử phương trình đường thẳng (𝑑) với vector pháp tuyến 𝑣 = (𝑎, 𝑏) là (𝑑) : 𝑎𝑥+ 𝑏𝑦 + 𝑐 = 0.

Gọi (𝑑′) là đường thẳng đi qua 𝐴 = (𝑥0, 𝑦0) và vuông góc với 𝑑. Do 𝑣 là vector pháp tuyến của (𝑑) nên 𝑣
là vector chỉ phương của (𝑑′). Khi đó phương trình dạng tham số của (𝑑′) là{︃

𝑥 = 𝑥0 + 𝑎𝑡

𝑦 = 𝑦0 + 𝑏𝑡
, 𝑡 ∈ R.

Gọi 𝐻 là hình chiếu của 𝐴 lên (𝑑). Khi đó 𝐻 là giao điểm của (𝑑) và (𝑑′). Vì 𝐻 ∈ (𝑑′) nên tọa độ của 𝐻 có
dạng (𝑥0 + 𝑎𝑡, 𝑦0 + 𝑏𝑡) với 𝑡 nào đó thuộc R. Chúng ta sẽ đi tìm 𝑡 này.

Vì 𝐻 ∈ (𝑑) nên ta thay tọa độ của 𝐻 vừa tìm được vào phương trình của (𝑑) thu được

𝑎(𝑥0 + 𝑎𝑡) + 𝑏(𝑦0 + 𝑏𝑡) + 𝑐 = 0⇔ 𝑡 = −𝑎𝑥0 + 𝑏𝑦0 + 𝑐

𝑎2 + 𝑏2
.

Như vậy là ta đã tìm được 𝑡 từ đó xác định được tọa độ của 𝐻.

Từ đây ta tính được khoảng cách từ 𝐴 tới (𝑑), hay nói cách khác là độ dài đoạn thẳng 𝐴𝐻. Ta có 𝐴 = (𝑥0, 𝑦0)

và 𝐻 = (𝑥0 + 𝑎𝑡, 𝑦0 + 𝑏𝑡) nên
−−→
𝐴𝐻 = (𝑎𝑡, 𝑏𝑡), suy ra

𝐴𝐻 =
⃦⃦⃦−−→
𝐴𝐻

⃦⃦⃦
=
√︀
(𝑎𝑡)2 + (𝑏𝑡)2 = |𝑡|

√︀
𝑎2 + 𝑏2

=

⃒⃒⃒⃒
−𝑎𝑥0 + 𝑏𝑦0 + 𝑐

𝑎2 + 𝑏2

⃒⃒⃒⃒
·
√︀
𝑎2 + 𝑏2 =

|𝑎𝑥0 + 𝑏𝑦0 + 𝑐|√
𝑎2 + 𝑏2

.

Đạo hàm

Phép tính vi tích phân đã được con người nghiên cứu từ lâu. Câu chuyện về ai là người phát minh ra phép
tính vi tích phân: Newton hay Leibniz, được coi là một trong những vụ tranh cãi đáng xấu hổ nhất lịch sử
toán học. Nhưng họ cũng đã để lại một mảnh đất màu mỡ cho toán học về sau.
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Cơ học và sự ra đời của đạo hàm

Trường phái Newton sử dụng đạo hàm như công cụ khảo sát vận tốc từ quãng đường. Ở bậc trung học
chúng ta biết rằng vận tốc trung bình bằng quãng đường chia thời gian. Tuy nhiên điều đó chỉ đúng cho
chuyển động thẳng đều. Nếu quãng đường là một hàm số phụ thuộc thời gian (quãng đường là 𝑠(𝑡) với
𝑡 là thời gian) thì điều đó không đúng nữa.

Do quãng đường phụ thuộc thời gian nên có thể là vận tốc cũng phụ thuộc thời gian? Hợp lí đấy. Nhưng
với mỗi một giá trị thời gian 𝑡 cho ta một vị trí 𝑠(𝑡) trên trục số, còn vận tốc thì không thể phụ thuộc một
giá trị thời gian được. Rõ ràng vật phải di chuyển một quãng đường từ thời gian 𝑡0 tới 𝑡1 thì mới có vận
tốc trên quãng đường đó chứ?

Cách tiếp cận ở đây là, chúng ta cho sự thay đổi thời gian, tức hiệu Δ𝑡 = 𝑡1 − 𝑡0, rất nhỏ. Khi đó vật đi từ

𝑠(𝑡0) tới 𝑠(𝑡1), vậy là chúng ta có thể tính vận tốc với công thức 𝑣 =
𝑠(𝑡1)− 𝑠(𝑡0)
𝑡1 − 𝑡0

. Do Δ𝑡 rất nhỏ, hay tiến

về 0, thì vận tốc gần như xảy ra vào đúng một thời điểm. Do đó vận tốc lúc này được gọi là vận tốc tức
thời. Đó cũng chính là ý nghĩa cơ học và sự ra đời của đạo hàm theo trường phái Newton.

Ý nghĩa hình học của đạo hàm

Xét hàm số 𝑦 = 𝑓(𝑥) liên tục trên khoảng (𝑎, 𝑏) chứa điểm 𝑥0.

Gọi 𝑀 ′ = (𝑥, 𝑦) là một điểm thuộc hàm số 𝑦 = 𝑓(𝑥). Khi đó đạo hàm của 𝑓(𝑥) tại 𝑥0 là giới hạn

lim
𝑥→𝑥0

𝑓(𝑥)− 𝑓(𝑥0)
𝑥− 𝑥0

= lim
Δ𝑥→0

𝑓(𝑥0 +Δ𝑥)− 𝑓(𝑥0)
Δ𝑥

= lim
Δ𝑥→0

Δ𝑦

Δ𝑥
.

Xét Hình 2.32, tỉ số Δ𝑦/Δ𝑥 là tangent của góc hợp bởi trục hoành 𝑂𝑥 và đường thẳng 𝑀𝑀 ′.

x

y
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y0

x

y

M

M ′

∆x
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Hình 2.32: Hệ số góc (trường hợp 1)

Tiếp theo, xét Hình 2.33, ta thấy đường thẳng 𝑀𝑀 ′ ngày càng tiến sát lại với đường cong. Như vậy, khi
Δ𝑥 tiến tới 0 thì đường thẳng 𝑀𝑀 ′ cắt đường cong tại hai điểm càng sát nhau. Đến khi hai điểm đó trùng
nhau, đường thẳng 𝑀𝑀 ′ chỉ đi qua đúng một điểm thuộc đường cong và khi đó 𝑀𝑀 ′ trở thành tiếp tuyến
của đường cong tại điểm 𝑀 = (𝑥0, 𝑦0).
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Hình 2.33: Hệ số góc (trường hợp 2)

Khi đó 𝑓 ′(𝑥0) là tangent của góc hợp bởi 𝑀𝑀 ′ và trục hoành 𝑂𝑥, hay nói cách khác là hệ số góc (hay

угловой коэффициент) của đường tiếp tuyến. Thêm nữa 𝑓 ′(𝑥0) =
Δ𝑦

Δ𝑥
=

𝑦 − 𝑦0
𝑥− 𝑥0

nên phương trình

đường tiếp tuyến đi qua 𝑀 = (𝑥0, 𝑦0) là

𝑦 = 𝑓 ′(𝑥0)(𝑥− 𝑥0) + 𝑦0.

Tích phân

Tích phân là khái niệm quan trọng trong giải tích. Sau đây sẽ trình bày cách tính tích phân theo tổng
Riemann.

Tích phân và phân chia diện tích

Xét phương trình của một đường cong 𝑦 = 𝑓(𝑥) > 0 trên đoạn [𝑎; 𝑏].

Theo định nghĩa, tích phân từ 𝑎 tới 𝑏 là diện tích phần hình phẳng giới hạn bởi đường cong 𝑦 = 𝑓(𝑥), trục
hoành 𝑂𝑥 và hai trục đứng 𝑥 = 𝑎, 𝑥 = 𝑏.

Ờ Hình 2.34, diện tích phần tô màu xám là tích phân từ −2 tới 2 của hàm số 𝑓(𝑥) = −𝑥2 + 4.
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Hình 2.34: Tích phân từ −2 tới 2 của 𝑓(𝑥) = −𝑥2 + 4

Chúng ta có thể tính diện tích hình chữ nhật, hình thang, hình vuông. Vậy có cách nào để tính diện tích
một hình giới hạn bởi các đường cong bất kì không?

Có đấy! Chúng ta sẽ tính xấp xỉ bằng tổng diện tích các hình chữ nhật.

Ví dụ với hàm số 𝑓(𝑥) = −𝑥2 + 4 ở trên, ta chia đoạn [𝑎; 𝑏] thành 𝑛 phần bằng nhau

𝑎 = 𝑥0 < 𝑥1 < . . . < 𝑥𝑛−1 < 𝑥𝑛 = 𝑏.

Trong đó 𝑥𝑖+1 − 𝑥𝑖 cố định và bằng 𝑏− 𝑎
𝑛

.

Đối với Hình 2.35 ta xấp xỉ bằng 7 hình chữ nhật. Đối với Hình 2.36 ta xấp xỉ bằng 15 hình chữ nhật. Đối
với Hình 2.37 ta xấp xỉ bằng 31 hình chữ nhật.

x

y

Hình 2.35: Xấp xỉ diện tích bởi 7 hình chữ nhật
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y

Hình 2.36: Xấp xỉ diện tích bởi 15 hình chữ nhật

x

y

Hình 2.37: Xấp xỉ diện tích bởi 31 hình chữ nhật

Càng dùng nhiều hình chữ nhật, tổng diện tích của chúng càng gần với diện tích cần tìm, hay là tích phân
cần tìm.

Ở ba hình trên, mỗi hình chữ nhật trong đó có chiều rộng bằng nhau là 𝑏− 𝑎
𝑛

với 𝑛 là số đoạn. Chiều dài

là 𝑓(𝑥𝑖) với 𝑥𝑖 = 𝑎+
𝑏− 𝑎
𝑛

𝑖, 𝑖 = 1, 2, . . . , 𝑛 (biên sau).

Cụ thể hơn, hình chữ nhật từ 𝑥𝑖−1 tới 𝑥𝑖 sẽ có chiều dài là 𝑓(𝑥𝑖) và chiều rộng là 𝑏− 𝑎
𝑛

. Ở đây lưu ý rằng
việc chọn chiều dài không bắt buộc phải chọn biên sau. Chúng ta hoàn toàn có thể chọn chiều dài là 𝑓(𝑥𝑖−1),
hoặc max 𝑓(𝑥), min 𝑓(𝑥) trên đoạn [𝑥𝑖−1;𝑥𝑖].

Khi đó, tổng diện tích của các hình chữ nhật là
𝑛∑︁

𝑖=1

(𝑥𝑖 − 𝑥𝑖−1) · 𝑓(𝑥𝑖) =
𝑛∑︁

𝑖=1

𝑏− 𝑎
𝑛

𝑓(𝑥𝑖).

Khi số lượng hình chữ nhật tăng lên tới vô hạn thì tổng diện tích sẽ tiến tới diện tích chính xác của hình
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cần tìm, hay nói cách khác là tích phân. Do đó kết quả sẽ là

𝑏∫︁
𝑎

𝑓(𝑥) 𝑑𝑥 = lim
𝑛→∞

𝑛∑︁
𝑖=1

𝑏− 𝑎
𝑛

𝑓(𝑥𝑖), 𝑥𝑖 = 𝑎+
𝑏− 𝑎
𝑛

𝑖.

Ví dụ tính tích phân qua tổng Riemann

Ví dụ, tính tích phân từ −2 tới 2 của hàm số 𝑓(𝑥) = −𝑥2 + 4 ở trên.

Ta có 𝑏 = 2 và 𝑎 = −2 nên

𝑏− 𝑎
𝑛

𝑓(𝑥𝑖) =
4

𝑛

(︃
−
(︂
−2 + 4

𝑛
𝑖

)︂2

+ 4

)︃

=
4

𝑛

(︂
−4 + 16

𝑛
𝑖− 16

𝑛2
𝑖2 + 4

)︂
=
64

𝑛

(︂
𝑖

𝑛
− 𝑖2

𝑛2

)︂
.

Tính tổng 𝑖 từ 1 tới 𝑛 ta có
𝑛∑︁

𝑖=1

𝑖 =
𝑛(𝑛+ 1)

2
.

Tính tổng 𝑖2 từ 1 tới 𝑛 ta có
𝑛∑︁

𝑖=1

𝑖2 =
𝑛(𝑛+ 1)(2𝑛+ 1)

6
.

Từ đây ta suy ra
𝑛∑︁

𝑖=1

64

𝑛

(︂
𝑖

𝑛
− 𝑖2

𝑛2

)︂
=
64

𝑛2

𝑛∑︁
𝑖=1

𝑖− 64

𝑛3

𝑛∑︁
𝑖=1

𝑖2

= −64

𝑛2
· 𝑛(𝑛+ 1)

2
− 64

𝑛3
· 𝑛(𝑛+ 1)(2𝑛+ 1)

6
.

Khi 𝑛 tiến tới vô cực thì biểu thức trên tiến tới 64

2
− 64 · 2

6
=

32

3
. Đây chính là giá trị của tích phân

2∫︁
−2

(−𝑥2 + 4) 𝑑𝑥.

Ba đường Conic

Ba đường Conic bao gồm ellipse, hyperbol và parabol.

Ellipse

INFO-CIRCLE Definition 1.37 (Ellipse)

Đường ellipse là tập hợp các điểm sao cho tổng khoảng cách từ nó tới hai điểm cố định là hằng số.

Nói cách khác, với hai điểm cố định 𝐹1 và 𝐹2, tập hợp các điểm 𝑀 sao cho

𝑀𝐹1 +𝑀𝐹2 = 2𝑎,

với 𝑎 là hằng số tạo thành đường ellipse.

98 Chapter 2. Toán khó quá người ơi



Math Book

Ở trên hệ tọa độ, nếu ta chọn 𝐹1 và 𝐹2 nằm trên 𝑂𝑥 và đối xứng qua 𝑂𝑦, tức là 𝐹1 = (−𝑐, 0) và 𝐹2 = (𝑐, 0)
với 𝑐 > 0, thì các điểm 𝑀 = (𝑥, 𝑦) nằm trên ellipse thỏa

𝑀𝐹1 +𝑀𝐹2 =
√︀
(𝑥+ 𝑐)2 + 𝑦2 +

√︀
(𝑥− 𝑐)2 + 𝑦2 = 2𝑎,

tương ứng với biển đổi thành phương trình

𝑥2

𝑎2
+

𝑦2

𝑎2 − 𝑐2
= 1.

Đặt 𝑏2 = 𝑎2 − 𝑐2 thì phương trình của ellipse trở thành

𝑥2

𝑎2
+
𝑦2

𝑏2
= 1.

Phương trình này gọi là phương trình chính tắc.

−6 −5 −4 −3 −2 −1 1 2 3 4 5 6 7

−4

−3

−2

−1

1

2

3

4

M

F1 F2

Hình 2.38: Ellipse với phương trình 𝑥2

25
+
𝑦2

9
= 1

Trong phương trình

𝑥2

𝑎2
+
𝑦2

𝑏2
= 1

thì 𝑎 là khoảng cách từ tâm tới hai biên trái hoặc phải, nên 𝑎 là độ dài bán trục lớn.

Tương tự, 𝑏 là độ dài bán trục nhỏ (khoảng cách từ tâm tới hai biên trên dưới).

Từ cách đặt 𝑏2 = 𝑎2 − 𝑐2 tương đương với 𝑐2 = 𝑎2 − 𝑏2 thì 𝑐 gọi là tiêu cự của ellipse.

Các điểm 𝐹1 và 𝐹2 gọi là tiêu điểm của ellipse.

Với ví dụ trên 𝑥2

25
+
𝑦2

9
= 1 thì 𝑎 = 5, 𝑏 = 3. Ta suy ra 𝑐 = 4 (lưu ý là 𝑎, 𝑏 > 0 và 𝑐 > 0).
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Các đỉnh nằm ở các tọa độ (−𝑎, 0), (𝑎, 0), (0, 𝑏), (0,−𝑏).

Các tiêu điểm nằm ở (−𝑐, 0), (𝑐, 0).

INFO-CIRCLE Remark 1.10

Khi 𝑐 = 0, tức là hai tiêu điểm trùng nhau, ta có đường tròn.

Tâm sai của ellipse là 𝑒 = 𝑐

𝑎
< 1.

Hyperbol

INFO-CIRCLE Definition 1.38 (Hyperbol)

Đường hyperbol là tập hợp các điểm sao cho giá trị tuyết đối hiệu số khoảng cách từ nó tới hai điểm cố
định là hằng số.

Nói cách khác, với hai điểm cố định 𝐹1 và 𝐹2, tập hợp các điểm 𝑀 sao cho

|𝑀𝐹1 −𝑀𝐹2| = 2𝑎,

với 𝑎 là hằng số tạo thành đường hyperbol.

Ở trên hệ tọa độ, nếu ta chọn 𝐹1 và 𝐹2 nằm trên 𝑂𝑥 và đối xứng qua 𝑂𝑦, tức là 𝐹1 = (−𝑐, 0) và 𝐹2 = (𝑐, 0),
thì các điểm 𝑀 = (𝑥, 𝑦) nằm trên hyperbol thỏa

|𝑀𝐹1 −𝑀𝐹2| = |
√︀

(𝑥+ 𝑐)2 + 𝑦2 −
√︀
(𝑥− 𝑐)2 + 𝑦2| = 2𝑎,

tương ứng với biển đổi thành phương trình

𝑥2

𝑎2
− 𝑦2

𝑎2 − 𝑐2
= 1.

Đặt 𝑏2 = 𝑎2 − 𝑐2 thì phương trình của hyperbol trở thành

𝑥2

𝑎2
− 𝑦2

𝑏2
= 1.

Đường hyperbol cắt trục 𝑂𝑥 tại hai điểm 𝐴1 = (−𝑎, 0) và 𝐴2 = (𝑎, 0).

Tiêu điểm của hyperbol ở 𝐹1 = (−𝑐, 0) và 𝐹2 = (𝑐, 0).

Đường hyperbol có hai tiệm cận là đường thẳng 𝑦 =
𝑏

𝑎
𝑥 và 𝑦 = − 𝑏

𝑎
𝑥.

Tâm sai của hyperbol là 𝑒 = 𝑐

𝑎
> 1.

Parabol

INFO-CIRCLE Definition 1.39 (Parabol)

Đường parabol là tập hợp các điểm cách đều một điểm cố định và một đường thẳng cố định.
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Hình 2.39: Parabol với phương trình 𝑦 = −𝑥2 + 4

Nghĩa là, với điểm cố định 𝐹 và đường thẳng cố định (𝑑), parabol là tập hợp các điểm 𝑀 sao cho

𝑀𝐹 = 𝑑(𝑀, (𝑑))

với 𝑑(𝑀, (𝑑)) là khoảng cách từ 𝑀 tới đường thẳng (𝑑).

Phép dời tọa độ cho phép ta dời một hình parabol có đỉnh ở bất kì điểm nào về gốc tọa độ.

Tức là, không mất tính tổng quát, ta chỉ cần xét các parabol dạng 𝑦 = 𝑎𝑥2 là đủ.

Điểm cố định ở trên được gọi là tiêu điểm. Đường thẳng cố định ở trên gọi là đường chuẩn.

Parabol có tính đối xứng nên tiêu điểm nằm trên 𝑂𝑦. Đặt tọa độ của tiêu điểm là 𝐹 = (0, 𝑓).

Đường chuẩn nằm ngang nên ta có parabol là các điểm 𝑀 = (𝑥, 𝑦) sao cho

𝑀𝐹 =
√︀
𝑥2 + (𝑦 − 𝑓)2, 𝑑(𝑀, (𝑑)) = 𝑦 + 𝑓,

trường hợp 𝑀 trùng với đỉnh nên điều kiện của parabol xảy ra tương đương với 𝑀 cách đều tiêu điểm và
đường chuẩn, nghĩa là đường chuẩn có dạng 𝑦 = −𝑓 .

Do đó
√︀
𝑥2 + (𝑦 − 𝑓)2 = 𝑦 + 𝑓 . Bình phương và biến đổi ta thu gọn được 𝑓 =

1

4𝑎
.

Thường thì ta đặt 𝑝 = 𝑓 , khi đó phương trình parabol trở thành 𝑥2 = 4𝑝𝑦.

Đây là dạng chính tắc của parabol với trục đối xứng dọc.

Tâm sai của parabol là 𝑒 = 𝑐

𝑎
= 1.

Phép biến hình

Trong thực tế chúng ta hay gặp các vấn đề về việc di dời một hình nào đó sang một vị trí khác trong mặt
phẳng, không gian và phải đảm bảo giữ nguyên một số quan hệ nhất định. Trong đó cơ bản nhất và được
ứng dụng rộng rãi là phép dời hình và phép đồng dạng.

Phép dời hình
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INFO-CIRCLE Definition 1.40 (Phép dời hình)

Phép dời hình từ hình ℋ thành hình ℋ′ là một ánh xạ 𝑓 biến mỗi điểm thuộc hình ℋ thành điểm thuộc
hình ℋ′ sao cho khoảng cách giữa hai điểm bất kì trong ℋ bảo toàn khi qua ℋ′.

Nói cách khác, với mọi điểm 𝐴,𝐵 ∈ ℋ, ánh xạ 𝑓 biến 𝐴 thành 𝐴′ và 𝐵 thành 𝐵′, nghĩa là 𝐴′, 𝐵′ ∈ ℋ′, thì
𝐴′𝐵′ = 𝐴𝐵.

Một số phép dời hình cơ bản là dời hình theo vector (dời theo một hướng nhất định), đối xứng qua trục, đối
xứng qua tâm, quay quanh tâm hoặc quay quanh trục nào đó.

Phép dời hình theo vector

Phép dời hình theo vector 𝑣⃗ ̸= 0⃗ (phép tịnh tiến) biến điểm 𝐴 thành điểm 𝐴′ sao cho
−−→
𝐴𝐴′ = 𝑣⃗.

Dễ thấy đây là phép dời hình vì với mọi 𝐴, 𝐵 biến thành 𝐴′, 𝐵′ ta có
−−−→
𝐴′𝐵′ =

−−→
𝐴′𝐴+

−−→
𝐴𝐵 +

−−→
𝐵𝐵′,

mà ta có
−−→
𝐴′𝐴 = −𝑣⃗ = −

−−→
𝐵𝐵′

nên
−−−→
𝐴′𝐵′ =

−−→
𝐴𝐵.

Vector bằng nhau thì độ dài cũng bằng nhau. Ta có điều phải chứng minh.

a⃗

A

A′

B

B′

C

C ′

Hình 2.40: Tịnh tiến theo vector $vec{a}$

Phép đối xứng qua đường thẳng cố định

Cho đường thẳng cố đinh (𝑑).

Phép đối xứng qua đường thẳng (𝑑) biến điểm 𝐴 thành điểm 𝐴′ sao cho 𝐴𝐴′ cắt (𝑑) tại trung điểm 𝐴𝐴′ và
đường thẳng đi qua 𝐴𝐴′ vuông góc với (𝑑).
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(d)
A

A′

B

B′

C

C ′

Hình 2.41: Đối xứng qua đường thẳng (𝑑)

Phép đối xứng qua tâm cố định

Cho điểm cố định 𝑂.

Phép đối xứng tâm 𝑂 biến điểm 𝐴 thành điểm 𝐴′ sao cho
−→
𝑂𝐴 = −

−−→
𝑂𝐴′. Nói cách khác 𝑂 là trung điểm

đoạn thẳng 𝐴𝐴′.

Phép quay quanh tâm cố định

Cho điểm cố định 𝑂.

Phép quay (mặc định là ngược chiều đồng hồ) quanh tâm 𝑂 theo một góc cố định 𝜙 biến điểm 𝐴 thành
điểm 𝐴′ sao cho

̂
(
−→
𝑂𝐴,
−−→
𝑂𝐴′) = 𝜙.

Trên mặt phẳng chúng ta có thể biểu diễn phép quay dưới hệ tọa độ như sau.

Giả sử vector
−→
𝑂𝐴 có độ dài là 𝑟 và hợp với trục 𝑂𝑥 một góc 𝛼.

Khi đó, giả sử tọa độ của
−→
𝑂𝐴 = (𝑥, 𝑦) thì ta có

𝑥 = 𝑟 cos𝛼,
𝑦 = 𝑟 sin𝛼.

Nếu ta quay vector này quanh gốc tọa độ, ngược chiều kim đồng hồ một góc 𝜙 thì thực ra góc (mới) hợp
bởi vector

−−→
𝑂𝐴′ và trục 𝑂𝑥 là 𝛼+ 𝜙.

Do đó

𝑥′ = 𝑟 cos(𝛼+ 𝜙),

𝑦′ = 𝑟 sin(𝛼+ 𝜙).

Khi khai triển ra

𝑥′ = 𝑟 cos𝛼 cos𝜙− 𝑟 sin𝛼 sin𝜙 = 𝑥 cos𝜙− 𝑦 sin𝜙
𝑦′ = 𝑟 sin𝛼 cos𝜙+ 𝑟 cos𝛼 sin𝜙 = 𝑦 cos𝜙+ 𝑥 sin𝜙.
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Dễ thấy, phép quay bảo toàn khoảng cách từ tâm 𝑂 tới điểm đó. Nghĩa là 𝑂𝐴 = 𝑂𝐴′.

x

y

α

O

A

A1

B

B1

C

C1

Phép biến hình trên mặt phẳng tọa độ

Gọi 𝐴 = (𝑥, 𝑦) là tọa độ ban đầu của điểm và 𝐴′ = 𝑓(𝐴) = (𝑥′, 𝑦′) là tọa độ điểm 𝐴′, là kết quả của phép
biến hình 𝑓 lên điểm 𝐴.

Chúng ta lần lượt xét các phép biến hình đã liệt kê ở trên và chuyển về phép nhân ma trận.

Các phép nhân ma trận cho phép chúng ta hợp các phép biến đổi liên tiếp thành một biến đổi lớn.

Giả sử 𝐴𝑇 là ma trận ứng với phép tịnh tiến, 𝐴𝑅 là ma trận ứng với phép quay.

Khi đó với phép nhân ma trận, nếu ta muốn thực hiện liên tiếp phép tịnh tiến và phép quay thì ta có
𝐴𝑇 ·𝐴𝑅.

Hợp các phép dời hình không có tính giao hoán, cũng như phép nhân ma trận. Do đó thứ tự thực hiện phép
dời hình khác nhau thì thứ tự nhân ma trận cũng khác nhau.

Một yêu cầu về phép biến đổi tuyến tính là không có vector tự do, nghĩa là biến đổi có dạng(︂
𝑥′

𝑦′

)︂
= 𝐴 ·

(︂
𝑥
𝑦

)︂
,

với 𝐴 là ma trận 𝑛× 𝑛.

Phép dời hình theo vector

Đặt 𝑣⃗ = (𝑎, 𝑏) là vector tịnh tiến. Khi đó
−−→
𝐴𝐴′ = 𝑣⃗ sẽ tương đương với

𝑥′ − 𝑥 = 𝑎, 𝑦′ − 𝑦 = 𝑏,
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hay tương đương với 𝑥′ = 𝑥+ 𝑎 và 𝑦′ = 𝑦 + 𝑏.

Dễ thấy rằng kết quả có thể viết ở dạng:(︂
𝑥′

𝑦′

)︂
=

(︂
1 0
0 1

)︂
·
(︂
𝑥
𝑦

)︂
+

(︂
𝑎
𝑏

)︂
.

Tuy nhiên chúng ta cần một biến đổi tuyến tính không có vector
(︂
𝑎
𝑏

)︂
.

Lúc này, thay vì sử dụng ma trận 2× 2 thì ta chuyển thành 3× 3 và công thức trở thành:⎛⎝𝑥′𝑦′
1

⎞⎠ =

⎛⎝1 0 𝑎
0 1 𝑏
0 0 1

⎞⎠ ·
⎛⎝𝑥𝑦
1

⎞⎠ .

Ma trận

⎛⎝1 0 𝑎
0 1 𝑏
0 0 1

⎞⎠ là ma trận tịnh tiến (translation vector) tương ứng với phép tịnh tiến điểm 𝐴 = (𝑥, 𝑦)

theo vector 𝑣⃗ = (𝑎, 𝑏).

Phép đối xứng qua đường thẳng cố định

Tương tự việc tìm tọa độ hình chiếu của một điểm lên một đường thẳng cho trước, ở đây chúng ta tìm hình
chiếu rồi lấy đối xứng điểm ban đầu qua tâm là hình chiếu.

Gọi (𝑑) : 𝑎𝑥+𝑏𝑦+𝑐 = 0 là đường thẳng bất kì. Gọi𝑀 = (𝑥𝑀 , 𝑦𝑀 ) là điểm cần lấy đối xứng và 𝑁 = (𝑥𝑁 , 𝑦𝑁 )
là điểm đối xứng của 𝑀 qua đường thẳng (𝑑).

Gọi 𝐼 = (𝑥𝐼 , 𝑦𝐼) là hình chiếu của 𝑀 lên (𝑑). Khi đó 𝐼 là trung điểm của đoạn thẳng 𝑀𝑁 và 𝑀𝑁 ⊥ (𝑑).

Do đường thẳng𝑀𝑁 ⊥ (𝑑) và đường thẳng (𝑑) có vector pháp tuyến là 𝑣 = (𝑎, 𝑏) nên 𝑣 là vector chỉ phương
của đường thẳng 𝑀𝑁 .

Như vậy đường thẳng 𝑀𝑁 có phương trình tham số{︃
𝑥 = 𝑥𝑀 + 𝑎𝑡

𝑦 = 𝑦𝑀 + 𝑏𝑡
, 𝑡 ∈ R.

Do 𝐼 ∈ 𝑀𝑁 nên 𝑥𝐼 = 𝑥𝑀 + 𝑎𝑡0 và 𝑦𝐼 = 𝑦𝑀 + 𝑏𝑡0. Vì 𝐼 ∈ (𝑑) nên thay tọa độ điểm 𝐼 vào phương trình
đường thẳng (𝑑) ta có

𝑎(𝑥𝑀 + 𝑎𝑡0) + 𝑏(𝑦𝑀 + 𝑏𝑡0) + 𝑐 = 0⇐⇒ 𝑡0 = −𝑎𝑥𝑀 + 𝑏𝑦𝑀 + 𝑐

𝑎2 + 𝑏2
.

Như vậy tọa độ điểm 𝐼 là

𝑥𝐼 = 𝑥𝑀 + 𝑎𝑡0 = 𝑥𝑀 − 𝑎
𝑎𝑥𝑀 + 𝑏𝑦𝑀 + 𝑐

𝑎2 + 𝑏2
=
𝑏2𝑥𝑀 − 𝑎𝑏𝑦𝑀 − 𝑎𝑐

𝑎2 + 𝑏2
,

𝑦𝐼 = 𝑦𝑀 + 𝑏𝑡0 = 𝑦𝑀 − 𝑏
𝑎𝑥𝑀 + 𝑏𝑦𝑀 + 𝑐

𝑎2 + 𝑏2
=
−𝑎𝑏𝑥𝑀 + 𝑎2𝑦𝑀 − 𝑏𝑐

𝑎2 + 𝑏2
.

Vì 𝐼 là trung điểm 𝑀𝑁 nên

𝑥𝑁 = 2𝑥𝐼 − 𝑥𝑀 =
2(𝑏2𝑥𝑀 − 𝑎𝑏𝑦𝑀 − 𝑎𝑐)

𝑎2 + 𝑏2
− 𝑥𝑀 =

𝑏2 − 𝑎2

𝑎2 + 𝑏2
𝑥𝑀 −

2𝑎𝑏

𝑎2 + 𝑏2
𝑦𝑀 −

2𝑎𝑐

𝑎2 + 𝑏2
,

𝑦𝑁 = 2𝑦𝐼 − 𝑦𝑀 =
2(−𝑎𝑏𝑥𝑀 + 𝑎2𝑦𝑀 − 𝑏𝑐)

𝑎2 + 𝑏2
− 𝑦𝑀 = − 2𝑎𝑏

𝑎2 + 𝑏2
𝑥𝑀 +

𝑎2 − 𝑏2

𝑎2 + 𝑏2
𝑦𝑀 −

2𝑏𝑐

𝑎2 + 𝑏2
.
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Như vậy ta cũng có thể biểu diễn phép đối xứng trục bằng phép nhân ma trận

⎛⎝𝑥𝑁𝑦𝑁
1

⎞⎠ =

⎛⎜⎜⎜⎝
𝑏2 − 𝑎2

𝑎2 + 𝑏2
− 2𝑎𝑏

𝑎2 + 𝑏2
− 2𝑎𝑐

𝑎2 + 𝑏2

− 2𝑎𝑏

𝑎2 + 𝑏2
𝑎2 − 𝑏2

𝑎2 + 𝑏2
− 2𝑏𝑐

𝑎2 + 𝑏2
0 0 1

⎞⎟⎟⎟⎠ ·
⎛⎝𝑥𝑀𝑦𝑀

1

⎞⎠ .

Phép đối xứng qua tâm cố định

Theo định nghĩa ở trên, giả sử tâm 𝑂 có tọa độ (𝑎, 𝑏). Điều kiện
−→
𝑂𝐴 =

−−→
𝑂𝐴′ tương đương với:

𝑥− 𝑎 = −(𝑥′ − 𝑎), 𝑦 − 𝑎 = −(𝑦′ − 𝑏),

hay tương đương với

𝑥′ = −𝑥+ 2𝑎, 𝑦′ = −𝑦 + 2𝑏.

Tương tự bên trên, ta muốn một phép nhân ma trận mà không cộng thêm vector ngoài. Ta có phép nhân⎛⎝𝑥′𝑦′
1

⎞⎠ =

⎛⎝−1 0 2𝑎
0 −1 2𝑏
0 0 1

⎞⎠ ·
⎛⎝𝑥𝑦
1

⎞⎠
Như vậy, ma trận

⎛⎝−1 0 2𝑎
0 −1 2𝑏
0 0 1

⎞⎠ là ma trận đối xứng qua tâm 𝑂 = (𝑎, 𝑏).

Phép quay quanh tâm cố định

Từ công thức của phép quay quanh tâm là gốc tọa độ:(︂
𝑥′

𝑦′

)︂
=

(︂
cos𝜙 − sin𝜙
sin𝜙 cos𝜙

)︂(︂
𝑥
𝑦

)︂
,

ta thấy rằng trong các phép biến đổi trên ta cần ma trận 3 × 3 thay vì 2 × 2 nên phép quay cũng cần ma
trận 3× 3 để có thể hợp với các phép biến hình khác.⎛⎝𝑥′𝑦′

1

⎞⎠ =

⎛⎝cos𝜑 − sin𝜑 0
sin𝜑 cos𝜑 0
0 0 1

⎞⎠ ·
⎛⎝𝑥𝑦
1

⎞⎠ .

Như vậy ma trận

⎛⎝cos𝜑 − sin𝜑 0
sin𝜑 cos𝜑 0
0 0 1

⎞⎠ thể hiện phép quay quanh tâm 𝑂 là gốc tọa độ.

2.3.2 Đường đoản thời
Lời nói đầu

Động lực để tác giả viết bài này là sau khi đọc về sự ra đời phép tính vi tích phân cùng vụ tranh cãi đáng
xấu hổ trong lịch sử toán học giữa Newton và Leibniz, cùng với bài toán của Johann Bernoulli.

Bài viết này được tham khảo nhiều nguồn12. Đây là tài liệu học tập cá nhân. Tác giả hy vọng rằng bài viết
nhỏ này sẽ giúp ích được cho các bạn học sinh, sinh viên đam mê toán và vật lý (mặc dù tác giả không phải
dân lý hihi).

1 Miguel A. Lerma, A simple derivation of the equation for the brachistochrone curve, URL -https://sites.math.northwestern.edu/
~mlerma/papers-and-preprints/brachistochrone.pdf

2 Lê Quang Ánh, Gia đình Bernoulli: một dòng họ Toán học, trang 7, ULR - https://rosetta.vn/lequanganh/
gia-dinh-bernoulli-mot-dong-ho-toan-hoc/
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Bối cảnh lịch sử

Thế kỷ 17 đã chứng kiến một drama có thể gọi là đáng xấu hổ nhất lịch sử toán học. Hai nhà toán học có
ảnh hưởng rất lớn lại vướng vào một vụ kiện tụng và tranh cãi khó coi để xem ai là người phát minh ra phép
tính vi tích phân. Vâng, chúng ta đang nói đến Newton và Leibniz. Vào thời điểm đó có một nhà toán học
xuất sắc thuộc một dòng họ cũng gồm rất nhiều nhân vật xuất sắc đã đưa ra một bài toán đố cho các nhà
toán học trên thế giới. Bài toán đó đã chứng minh được ưu thế vượt trội trong phương pháp vi tích phân
của Leibniz.

Nhà toán học xuất sắc đó là Johann Bernoulli, thuộc dòng họ Bernoulli nổi tiếng. Bài toán đó được phát
biểu như sau:

Cho hai điểm 𝐴 và 𝐵 nằm trong mặt phẳng thẳng đứng 𝑃 (𝐴 cao hơn 𝐵). Hãy xác định đường
nối hai điểm 𝐴 và 𝐵 và nằm trong mặt phẳng 𝑃 sao cho một điểm chỉ chịu trọng lực chạy từ 𝐴
đến 𝐵 trong thời gian ngắn nhất.

Chúng ta đã biết rằng đường đi ngắn nhất giữa hai điểm là đoạn thẳng nối hai điểm đó. Tuy nhiên trong
bài toán của Johann Bernoulli thì đại lượng ngắn nhất cần tìm không phải khoảng cách giữa hai điểm mà
là thời gian di chuyển giữa hai điểm. Mục tiêu cần làm ở bài toán này là xác định đường đi (hay quỹ đạo)
thời gian ngắn nhất đó. Do đó bài toán này được gọi là bài toán đường đoản thời (hay brachistochrone
curve).

Để giải bài toán này chúng ta cần một định luật cũng về thời gian ngắn nhất. Đó là nguyên lý thời gian
ngắn nhất của Fermat và một hệ quả của nó là định luật Snell-Descartes.

Định luật Snell-Descartes

x

y

x1

y1

x2

y2

P

Q

R(x, 0)

P ′(0, y1)

Q′(0, y2)

α1

α2

v1

v2

Hình 2.42: Định luật Snell-Descartes

Nguyên lý thời gian ngắn nhất của Fermat phát biểu rằng

Khi ánh sáng truyền từ môi trường này sang môi trường khác thì nó luôn truyền đi theo đường
nhanh nhất.
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Hệ quả của nguyên lý của Fermat là định luật Snell-Descartes mà chúng ta thường thấy ở chương trình vật
lý ở phổ thông dưới dạng định luật khúc xạ ánh sáng

sin𝛼1

sin𝛼2
=
𝑣1
𝑣2
,

với 𝛼1 và 𝛼2 lần lượt là góc hợp bởi tia vào và tia ra với pháp tuyến tại điểm tới, 𝑣1 và 𝑣2 là vận tốc truyền
trong môi trường ở nửa trên và nửa dưới 𝑂𝑥 (Hình 2.42).

Để chứng minh định luật trên, ta thấy rằng 𝑣1 là vận tốc khi di chuyển từ điểm 𝑃 tới điểm 𝑅 nên thời gian
𝑡1 đi từ điểm 𝑃 tới 𝑅 là

𝑡1 =
‖
−→
𝑃𝑅‖
𝑣1

=

√︀
(𝑥− 𝑥1)2 + 𝑦21

𝑣1
.

Lưu ý rằng tia sáng không truyền tới gốc tọa độ 𝑂(0, 0) mà truyền tới một điểm 𝑅(𝑥, 0) là vì điểm bắt đầu
là 𝑃 (𝑥1, 𝑦1) và ánh sáng truyền đi theo đường nhanh nhất (theo nguyên lý Fermat) nên không có gì đảm
bảo rằng nó sẽ truyền tới 𝑂(0, 0).

Tương tự, thời gian 𝑡2 đi từ điểm 𝑅 tới 𝑄 là

𝑡2 =
‖
−−→
𝑅𝑄‖
𝑣2

=

√︀
(𝑥− 𝑥2)2 + 𝑦22

𝑣2
.

Kết hợp hai phương trình của 𝑡1 và 𝑡2 lại thì tổng thời gian di chuyển từ 𝑃 tới 𝑄 biểu diễn theo 𝑥 là

𝑇 (𝑥) = 𝑡1 + 𝑡2 =

√︀
(𝑥− 𝑥1)2 + 𝑦21

𝑣1
+

√︀
(𝑥− 𝑥2)2 + 𝑦22

𝑣2
.

Đạo hàm theo 𝑥 ta có

𝑇 ′(𝑥) =
𝑥− 𝑥1

𝑣1
√︀
(𝑥− 𝑥1)2 + 𝑦21

+
𝑥− 𝑥2

𝑣2
√︀
(𝑥− 𝑥2)2 + 𝑦22

.

Để ý rằng 𝑥 > 𝑥1 nên 𝑥 − 𝑥1 = ‖
−−→
𝑃𝑃 ′‖. Tương tự 𝑥2 − 𝑥 = ‖

−−→
𝑄𝑄′‖. Để tìm cực trị ta cho đạo hàm bằng 0

rồi tính đạo hàm cấp 2. Ta có

𝑇 ′(𝑥) = 0⇔ ‖
−−→
𝑃𝑃 ′‖

𝑣1‖
−→
𝑃𝑅‖

− ‖
−−→
𝑄𝑄′‖

𝑣2‖
−−→
𝑅𝑄‖

= 0⇔ sin𝛼1

𝑣1
− sin𝛼2

𝑣2
= 0.

Như vậy sin𝛼1

𝑣1
=

sin𝛼2

𝑣2
. Đạo hàm cấp 2 tương ứng là

𝑇 ′′(𝑥) =
𝑦21

𝑣1((𝑥− 𝑥1)2 + 𝑦21)
+

𝑦22
𝑣2((𝑥− 𝑥2)2 + 𝑦22)

> 0.

Do đó 𝑥 thỏa 𝑇 ′(𝑥) = 0 ở trên là cực tiểu và định luật Snell-Descartes được chứng minh.

Đường cong Cycloid

Đáp án cho bài toán mà Johann Bernoulli đặt ra là đường cong cycloid. Sau đây sẽ trình bày cách giải bài
toán mà Johann Bernoulli phát biểu.
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Hình 2.43: Đường cycloid

Phương của vận tốc tức thời tại một điểm khi một vật đi theo một quỹ đạo đường cong là tiếp tuyến với
đường cong tại điểm đó. Khi đó góc 𝛼 trong định luật Snell-Descartes sẽ có liên hệ với hệ số góc của tiếp
tuyến với đường cong. Nói rõ hơn, góc hợp bởi tiếp tuyến và trục 𝑂𝑥 là 𝛼+

𝜋

2
và hệ số góc của tiếp tuyến

là tan
(︁
𝛼+

𝜋

2

)︁
=
𝑑𝑦

𝑑𝑥
(Hình 2.43).

Ta có tan
(︁
𝛼+

𝜋

2

)︁
= − cot𝛼 và 1 + cot2 𝛼 =

1

sin2 𝛼
nên

1

sin2 𝛼
= 1 + cot2 𝛼 = 1 +

(︂
𝑑𝑦

𝑑𝑥

)︂2

.

Giả sử tọa độ của 𝐴 là (𝑥0, 𝑦0). Khi một điểm di chuyển từ 𝐴 tới 𝐵, gọi (𝑥, 𝑦) là tọa độ của điểm đó trên
đường cong. Theo định luật bảo toàn cơ năng thì

𝑚𝑔𝑦0 =
1

2
𝑚𝑣2 +𝑚𝑔𝑦,

với 𝑣 là vận tốc tức thời tại điểm (𝑥, 𝑦) và 𝑚𝑔𝑦 là thế năng tại điểm đó. Như vậy ta có

𝑣2 = 2𝑔(−𝑦 + 𝑦0).

Theo định luật Snell-Descartes thì 𝑣

sin𝛼
là một hằng số khi nằm trong cùng môi trường. Do đó tồn tại số 𝑟

cố định sao cho 𝑣2

sin2 𝛼
= 4𝑔𝑟. Từ hai biểu thức của 𝑣2 và 1

sin2 𝛼
ở trên ta có

𝑣2

sin2 𝛼
= 2𝑔(−𝑦 + 𝑦0)

(︃
1 +

(︂
𝑑𝑦

𝑑𝑥

)︂2
)︃

= 4𝑔𝑟.
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Suy ra (︂
𝑑𝑦

𝑑𝑥

)︂2

=
2𝑟

𝑦0 − 𝑦
− 1. (2.2)

Tới đây ta thấy rằng bậc của 𝑑𝑦 và 𝑑𝑥 ở vế trái là giống nhau, trong khi vế phải chỉ có 𝑦 mà không có 𝑥.
Do đó "bắt chước" cách đổi biến của đường tròn, đặt{︃

𝑥 = 𝑎𝜃 + 𝑏 cos 𝜃
𝑦 = 𝑐+ 𝑑 sin 𝜃

với 𝑎, 𝑏, 𝑐, 𝑑 là các số thực cần tìm, 𝜃 là góc hợp bởi 𝑂𝑦 và đoạn thẳng nối tâm 𝑂 và điểm trên đường cong
(theo góc 𝛼). Lưu ý rằng khi thay 𝜃 = 0 và 𝜃 = 𝜋/2 vào hai phương trình trên ta phải thu được hai điểm
trên hai trục tọa độ.

Lấy vi phân hai phương trình trên ta có {︃
𝑑𝑥 = 𝑎− 𝑏 sin 𝜃 𝑑𝜃,
𝑑𝑦 = 𝑑 cos 𝜃 𝑑𝜃.

Thay vào phương trình (2.2) ta được

𝑑2 cos2 𝜃
(𝑎− 𝑏 sin 𝜃)2

=
2𝑟

𝑦0 − 𝑐− 𝑑 sin 𝜃
− 1 =

2𝑟 − 𝑦0 + 𝑐+ 𝑑 sin 𝜃
𝑦0 − 𝑐− 𝑑 sin 𝜃

.

Do cos2 𝜃 = 1− sin2 𝜃 = (1− sin 𝜃)(1 + sin 𝜃) nên ta muốn chọn 𝑎 và 𝑏 có thể rút gọn được cho tử số.

Trường hợp 1. 𝑎 = 𝑏, ta thu được

𝑑2(1 + sin 𝜃)
𝑎2(1− sin 𝜃)

=
(2𝑟 − 𝑦0 + 𝑐) + 𝑑 sin 𝜃

(𝑦0 − 𝑐)− 𝑑 sin 𝜃
.

Ta sẽ muốn đồng nhất hệ số tự do và hệ số trước sin 𝜃 để dễ tính toán sau này. Do đó một cách chọn đơn
giản là 2𝑟 − 𝑦0 + 𝑐 = 𝑑 và 𝑦0 − 𝑐 = 𝑑. Suy ra 𝑟 = 𝑑. Thu gọn phương trình ta được

𝑑2(1 + sin 𝜃)
𝑎2(1− sin 𝜃)

=
1 + sin 𝜃
1− sin 𝜃

.

Như vậy 𝑎2 = 𝑑2 nên 𝑎 = 𝑑 hoặc 𝑎 = −𝑑. Ta xét trường hợp 𝑎 = 𝑑, trường hợp 𝑎 = −𝑑 cũng cho kết quả
tương tự (không thỏa mãn).

Ta có 𝑎 = 𝑏 = 𝑑 = 𝑟 và 𝑐 = 𝑦0 − 𝑑 = 𝑦0 − 𝑟. Phương trình đường cong trong tọa độ cực sẽ là{︃
𝑥 = 𝑟(𝜃 + cos 𝜃),
𝑦 = (𝑦0 − 𝑟) + 𝑟 sin 𝜃.

Với 𝜃 = 0 thì (𝑥, 𝑦) = (𝑟, 𝑦0 − 𝑟). Với 𝜃 = 𝜋/2 thì (𝑥, 𝑦) = (𝜋𝑟/2, 𝑦0).

Tới đây chúng ta có thể thêm bớt một hằng số để "kéo" các tọa độ về trục.

Ta đưa tọa độ khi 𝜃 = 0 về 𝑂𝑦 thì 𝑥′ = 𝑥− 𝑟. Tương tự tọa độ khi 𝜃 = 𝜋/2 sẽ về 𝑂𝑥 nên 𝑦′ = 𝑦 − 𝑦0. Như
vậy tọa độ (mới) cho hai trường hợp 𝜃 là (0,−𝑟) và (𝜋𝑟/2 − 1, 0) nhưng vì 𝑟 là số dương (bán kính) nên
(0,−𝑟) nằm dưới trục 𝑂𝑥, không phù hợp với hình vẽ.

Trường hợp 2. 𝑎 = −𝑏, ta thu được

𝑑2(1− sin 𝜃)
𝑎2(1 + sin 𝜃)

=
(2𝑟 − 𝑦0 + 𝑐) + 𝑑 sin 𝜃

(𝑦0 − 𝑐)− 𝑑 sin 𝜃
.
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Tương tự, để đồng nhất và rút gọn hệ số cho hợp với bên vế trái ta chọn 2𝑟 − 𝑦0 + 𝑐 = −𝑑 và 𝑦0 − 𝑐 = −𝑑.
Suy ra 𝑑 = −𝑟. Thu gọn phương trình ta được

𝑑2(1− sin 𝜃)
𝑎2(1 + sin 𝜃)

=
1− sin 𝜃
1 + sin 𝜃

.

Như vậy 𝑎2 = 𝑑2 nên 𝑎 = 𝑑 hoặc 𝑎 = −𝑑. Ta xét trường hợp 𝑎 = −𝑑.

Khi đó 𝑎 = −𝑏 = −𝑑 = 𝑟 và 𝑐 = 𝑦0 + 𝑑 = 𝑦0 − 𝑟. Phương trình đường cong trong tọa độ cực sẽ là{︃
𝑥 = 𝑟(𝜃 − cos 𝜃),
𝑦 = (𝑦0 − 𝑟)− 𝑟 sin 𝜃.

Với 𝜃 = 0 thì (𝑥, 𝑦) = (−𝑟, 𝑦0). Với 𝜃 = 𝜋/2 thì (𝑥, 𝑦) = (𝑟(𝜋/2− 1), 𝑦0 − 2𝑟).

Tới đây ta cũng thêm bớt một hằng số vào hoành độ và tung độ để "kéo" các tọa độ về trục.

Ta đưa tọa độ khi 𝜃 = 0 về 𝑂𝑦 thì 𝑥′ = 𝑥+𝑟. Tương tự ta đưa tọa độ khi 𝜃 = 𝜋/2 về 𝑂𝑥 thì 𝑦′ = 𝑦−𝑦0+2𝑟.
Khi đó tọa độ (mới) là (0, 2𝑟) và (𝜋𝑟/2, 0). Điều này phù hợp với yêu cầu bài toán và tương đương với
phương trình trong tọa độ cực{︃

𝑥 = 𝑟(𝜃 − cos 𝜃) + 𝑟 = 𝑟(1 + 𝜃 − cos 𝜃)
𝑦 = (𝑦0 − 𝑟)− 𝑟 sin 𝜃 − (𝑦0 − 2𝑟) = 𝑟(1− sin 𝜃)

với 0 6 𝜃 6 𝜋

2
.

Đây chính là kết quả cần tìm. Thêm nữa vị trí ban đầu của vật là (0, 𝑦0) và tọa độ theo phương trình là
(0, 2𝑟) nên suy ra 𝑦0 = 2𝑟.

Phương trình phụ thuộc thời gian

Trong phương trình đường cong có sự tham gia của bán kính 𝑟 cố định và góc quét 𝜃. Chúng ta cần mối
liên hệ giữa các phương trình theo thời gian.

Nhắc lại, vận tốc tức thời tại một điểm có phương trùng với tiếp tuyến với đường cong tại điểm đó. Do

đó 𝑣 =

√︀
(𝑑𝑦)2 + (𝑑𝑥)2

𝑑𝑡
xác định vận tốc tức thời với quãng đường là (𝑑𝑦)2 + (𝑑𝑥)2 là bình phương khoảng

cách trong mặt phẳng. Từ đây suy ra

𝑣2 =

(︂
𝑑𝑦

𝑑𝑡

)︂2

+

(︂
𝑑𝑥

𝑑𝑡

)︂2

= 𝑟2 cos2 𝜃
(︂
𝑑𝜃

𝑑𝑡

)︂2

+ 𝑟2(1 + sin 𝜃)2
(︂
𝑑𝜃

𝑑𝑡

)︂2

= 2𝑟2(1 + sin 𝜃)
(︂
𝑑𝜃

𝑑𝑡

)︂2

.

Từ bên trên và 𝑦0 = 2𝑟 ta có

𝑣2 = 2𝑔(𝑦0 − 𝑦) = 2𝑔(𝑦0 − 𝑟 + 𝑟 sin 𝜃) = 2𝑔𝑟(1 + sin 𝜃).

Suy ra

2𝑟2(1 + sin 𝜃)
(︂
𝑑𝜃

𝑑𝑡

)︂2

= 2𝑔𝑟(1 + sin 𝜃),

hay (︂
𝑑𝜃

𝑑𝑡

)︂2

=
𝑔

𝑟
⇒ 𝑑𝜃

𝑑𝑡
=

√︂
𝑔

𝑟
= const.
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Như vậy 𝜃 =

√︂
𝑔

𝑟
𝑡 = 𝜔𝑡. Ở đây 𝑡 là thời gian tính từ lúc bắt đầu thả vật từ điểm 𝐴. Cuối cùng phương

trình phụ thuộc thời gian của đường cong cycloid là{︃
𝑥 = 𝑟(1 + 𝜔𝑡− cos𝜔𝑡),
𝑦 = 𝑟(1− sin𝜔𝑡).

Trong đó, 𝑟 là bán kính cố định (bằng nửa độ cao ban đầu 𝑦0 của vật), 𝜔 =
𝑔

𝑟
là tần số góc, 𝑦0 là độ cao

ban đầu của vật (tung độ điểm 𝐴).

2.3.3 Hình học affine
Không gian affine

Cho 𝒱 là một không gian vector trên trường F và 𝒜 là một tập khác rỗng mà các phần tử của nó gọi là
điểm.

Giả sử ta có ánh xạ 𝜙 sao cho:

𝜙 : 𝒜×𝒜 → 𝒱, (𝑀,𝑁) ↦→ 𝜙(𝑀,𝑁)

thỏa hai điều kiện sau:

1. Với mọi điểm 𝑀 ∈ 𝒜 và vector 𝑣⃗ ∈ 𝒱, có duy nhất một điểm 𝑁 ∈ 𝒜 sao cho 𝜙(𝑀,𝑁) = 𝑣⃗.

2. Với ba điểm 𝑀 , 𝑁 , 𝑃 bất kì ta có

𝜙(𝑀,𝑁) + 𝜙(𝑁,𝑃 ) = 𝜙(𝑀,𝑃 ).

Khi đó, ta nói 𝒜 là một không gian affine. Nếu ta nói đầy đủ thì 𝒜 là không gian affine trên trường F
liên kết với không gian vector 𝒱 bởi ánh xạ liên kết 𝜙.

Khi đó, 𝒱 được gọi là không gian vector liên kết với 𝒜 (hay không gian nền của 𝒜) và kí hiệu là 𝒜⃗.

Ánh xạ 𝜙 được gọi là ánh xạ liên kết. Ta kí hiệu 𝜙(𝑀,𝑁) =
−−→
𝑀𝑁 . Khi đó hai điều kiện trên được viết lại

thành:

1. Với mọi điểm 𝑀 ∈ 𝒜 và vector 𝑣⃗ ∈ 𝒜⃗ thì tồn tại duy nhất một điểm 𝑁 ∈ 𝒜 sao cho
−−→
𝑀𝑁 = 𝑣⃗.

2. Với ba điểm 𝑀 , 𝑁 , 𝑃 bất kì ta có
−−→
𝑀𝑁 +

−−→
𝑁𝑃 =

−−→
𝑀𝑃.

Biểu thức ở điều kiện 2 được gọi là hệ thức Chales. Hệ thức này đóng vai trò quan trọng trong các đại
lượng có hướng (vector, góc định hướng, ...).

Nếu F = R thì ta gọi là không gian affine thực.

Nếu F = C thì ta gọi là không gian affine phức.

Nếu cần nhấn mạnh trường F thì ta gọi là F-không gian affine.

Kí hiệu một không gian affine là (𝒜, 𝒜⃗, 𝜙).

Ta có thể ghi tắt là 𝒜(F) hoặc 𝒜.

Nếu 𝒜⃗ là không gian vector 𝑛 chiều thì ta nói 𝐴 là không gian affine 𝑛 chiều và kí hiệu là 𝒜𝑛. Khi đó

dim𝒜 = dim 𝒜⃗.
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INFO-CIRCLE Example 3.8

Hệ tọa độ trong không gian R3 mà chúng ta học ở phổ thông. Khi đó:

1. 𝒜 = R3 là tập hợp tất cả điểm trong không gian.

2. 𝒜⃗ là tập các vector trong R3. Về mặt hình học thì vector từ điểm 𝐴 tới điểm 𝐵 là mũi tên có
hướng từ 𝐴 tới 𝐵.

INFO-CIRCLE Example 3.9

Gọi 𝒱 là không gian vector trên trường F. Ánh xạ

𝜙 : 𝒱 × 𝒱 → 𝒱, (𝑢⃗, 𝑣⃗) ↦→ 𝜙(𝑢⃗, 𝑣⃗) = 𝑣⃗ − 𝑢⃗

thỏa mãn định nghĩa vì:

1. Với mọi vector 𝑢⃗ ∈ 𝒱 và 𝑤⃗ ∈ 𝒱, tồn tại duy nhất vector 𝑣⃗ sao cho 𝜙(𝑢⃗, 𝑣⃗) = 𝑤⃗, tương đương với
𝑣⃗ − 𝑢⃗ = 𝑤⃗, hay 𝑣⃗ = 𝑢⃗+ 𝑤⃗.

2. Với ba vector 𝑢⃗, 𝑣⃗, 𝑤⃗ bất kì thuộc 𝒱 ta có

𝜙(𝑢⃗, 𝑣⃗) + 𝜙(𝑣⃗, 𝑤⃗) = 𝑣⃗ − 𝑢⃗+ 𝑤⃗ − 𝑣⃗ = 𝑤⃗ − 𝑣⃗ = 𝜙(𝑣⃗, 𝑤⃗).

Ở Ví dụ 3.9, 𝒱 là không gian vector liên kết với chính nó nên ta nói 𝜙 xác định một cấu trúc affine chính
tắc trên không gian vector 𝒱, hay 𝒱 là không gian affine với cấu trúc affine chính tắc.

Tính chất của không gian affine. Với mọi điểm 𝑀 , 𝑁 , 𝑃 , 𝑄 bất kì thuộc 𝒜 ta có:

1.
−−→
𝑀𝑁 = 0⃗ khi và chỉ khi 𝑀 ≡ 𝑁 .

2.
−−→
𝑀𝑁 = −

−−→
𝑁𝑀 .

3.
−−→
𝑀𝑁 =

−−→
𝑃𝑄 khi và chỉ khi

−−→
𝑀𝑃 =

−−→
𝑁𝑄.

4.
−−→
𝑀𝑁 =

−−→
𝑃𝑁 −

−−→
𝑃𝑀 .

Đây là các công thức cơ bản được học ở phổ thông và ở đây cũng áp dụng.

Phẳng

Một số khái niệm ở phổ thông dưới dạng phẳng:

1. Điểm là 0-phẳng.

2. Đường thẳng là 1-phẳng.

3. Mặt phẳng là 2-phẳng.

4. Không gian ba chiều là 3-phẳng.

Chúng ta sẽ định nghĩa phẳng là mở rộng cho các khái niệm trên.

Đầu tiên chúng ta cần một vài nhận xét từ hình học phổ thông.

Trong mặt phẳng R2, mỗi đường thẳng được xác định khi biết một điểm thuộc nó và một vector chỉ phương
𝑣⃗. Khi đó đường thẳng đi qua điểm 𝑀0 và nhận 𝑣⃗ làm vector chỉ phương là tập các điểm 𝑀 ∈ R2 sao cho−−−→
𝑀𝑀0 = 𝛼𝑣⃗ với 𝛼 ∈ R. Nói cách khác là vector

−−−→
𝑀𝑀0 cùng phương với vector 𝑣⃗.
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INFO-CIRCLE Remark

Trên mặt phẳng, đường thẳng đi qua điểm 𝑀0 và nhận 𝑣⃗ làm vector chỉ phương là tập hợp

𝑑 = {𝑀 ∈ R2 :
−−−→
𝑀𝑀0 = 𝛼 · 𝑣⃗ với 𝛼 ∈ R}.

Trong không gian R3, tương tự, một đường thẳng xác định khi biết một điểm thuộc nó và một vector chỉ
phương của nó.

INFO-CIRCLE Remark

Trong không gian R3, đường thẳng đi qua điểm 𝑀0 và nhận 𝑣⃗ làm vector chỉ phương là tập hợp

𝑑 = {𝑀 ∈ R2 :
−−−→
𝑀𝑀0 = 𝛼 · 𝑣⃗ với 𝛼 ∈ R}.

Chúng ta đã biết ở phổ thông rằng, qua ba điểm không thẳng hàng có duy nhất một mặt phẳng đi qua. Ba
điểm không thẳng hàng thì tạo thành tam giác, giả sử là 𝑀 , 𝑁 và 𝑃 . Ta lấy hai cạnh làm hai đường thẳng
cho mặt phẳng. Khi đó mặt phẳng trong không gian được xác định bởi điểm 𝑀 và hai vector

−−→
𝑀𝑁 và

−−→
𝑀𝑃 .

INFO-CIRCLE Remark

Một mặt phẳng trong R3 xác định khi biết một điểm 𝑀0 thuộc nó và một cặp vector 𝑢⃗, 𝑣⃗ của nó. Khi
đó mặt phẳng là tập hợp

𝑝 = {𝑀 ∈ R3 :
−−−→
𝑀𝑀0 = 𝛼 · 𝑢⃗+ 𝛽 · 𝑣⃗ với 𝛼, 𝛽 ∈ R}.

Ta định nghĩa tổng quát cho phẳng

INFO-CIRCLE Definition (Phẳng)

Cho (𝒜, 𝒜⃗, 𝜙) là một không gian affine, 𝑀0 là một điểm thuộc 𝒜 và 𝛼⃗ là một không gian vector con của
𝒜⃗. Tập hợp

𝛼 = {𝑀 ∈ 𝒜 :
−−−→
𝑀𝑀0 ∈ 𝛼⃗}

được gọi phẳng (hay plane) đi qua 𝑀0 với không gian chỉ phương 𝛼⃗, hoặc phương 𝛼⃗.

Nếu dim 𝛼⃗ = 𝑚 thì ta nói 𝛼 là phẳng 𝑚 chiều hay 𝑚-phẳng và viết dim𝛼 = 𝑚. Như vậy dim𝛼 = dim 𝛼⃗.

Trước đây chúng ta gọi điểm, đường, mặt phẳng, nhưng khi số chiều cao hơn thì chúng ta không thể "chế" từ
vựng mãi được. Khi đó chúng ta quy về khái niệm phẳng, 1-phẳng là đường thẳng, 2-phẳng là mặt phẳng.

Siêu phẳng (hay hyperplane) là tên gọi của phẳng có đối chiều là 1, tức là nếu số chiều của không gian
là 𝑛 thì số chiều của siêu phẳng là 𝑛− 1.

INFO-CIRCLE Remark

1. Nếu 𝛼 là phẳng đi qua điểm 𝑀 thì 𝑀 ∈ 𝛼 và với mọi 𝑃 , 𝑄 thuộc 𝛼 ta có
−−→
𝑃𝑄 =

−−→
𝑀𝑄−

−−→
𝑀𝑃 thuộc
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𝛼.

2. 0-phẳng là tập chỉ gồm một điểm. Do đó ta có thể xem một điểm là một 0-phẳng.

3. Điểm 𝑀0 trong định nghĩa phẳng có vai trò tổng quát, nghĩa là mọi điểm 𝑀0 trong 𝛼 có ý nghĩa
như nhau trong định nghĩa phẳng.

4. Giả sử 𝛼 là phẳng đi qua 𝑀 với phương 𝛼⃗, 𝛽 là phẳng đi qua 𝑁 với phương 𝛽. Khi đó 𝛼 ⊂ 𝛽 khi
và chỉ khi 𝑀 ∈ 𝛽 và 𝛼⃗ ⊂ 𝛽. Suy ra 𝛼 ≡ 𝛽 khi và chỉ khi 𝑃 ∈ 𝛽 (hoặc 𝑄 ∈ 𝛼) và 𝛼⃗ ≡ 𝛽.

5. Nếu 𝛼 là phẳng với phương 𝛼⃗ thì 𝛼 là không gian affine liên kết với 𝛼⃗ bởi ánh xạ liên kết

𝜙𝛼×𝛼 : 𝛼× 𝛼→ 𝛼⃗.

Vì vậy ta có thể xem phẳng là không gian affine con.

Để xác định một không gian vector thì ta chỉ cần một cơ sở của nó. Do đó để xác định phương 𝛼⃗ của
𝑚-phẳng 𝛼 thì ta cũng chỉ cần biết một cơ sở là đủ.

Do một không gian vector có thể có nhiều cơ sở khác nhau, một 𝑚-phẳng chỉ có một không gian chỉ phương
duy nhất nhưng có thể có nhiều cơ sở khác nhau.

Độc lập affine và phụ thuộc affine

INFO-CIRCLE Definition (Độc lập và phụ thuộc affine)

Hệ 𝑚+ 1 điểm

{𝐴0, 𝐴1, . . . , 𝐴𝑚}

với 𝑚 > 1 của không gian affine 𝒜 được gọi là độc lập affine nếu hệ 𝑚 vector

{
−−−→
𝐴0𝐴1,

−−−→
𝐴0𝐴2, . . . ,

−−−−→
𝐴0𝐴𝑚}

của 𝒜⃗ là một hệ vector độc lập tuyến tính.

Ngược lại, hệ điểm không độc lập affine được gọi là phụ thuộc affine.

1. Tập chỉ gồm một điểm 𝐴0 được quy ước là luôn độc lập affine.

2. Trong định nghĩa điểm 𝐴0 bình đẳng như các điểm khác vì hệ vector

{
−−−→
𝐴0𝐴1,

−−−−→
𝐴0, 𝐴1, . . . ,

−−−−→
𝐴0𝐴𝑚}

độc lập affine thì hệ vector

{
−−−→
𝐴𝑖𝐴0,

−−−−→
𝐴𝑖𝐴𝑖−1,

−−−−→
𝐴𝑖𝐴𝑖+1, . . . ,

−−−→
𝐴𝑖𝐴𝑚}

cũng độc lập affine.

INFO-CIRCLE Chứng minh

Xét tổ hợp tuyến tính

𝐼 = 𝜆1
−−−→
𝐴0𝐴1 + 𝜆2

−−−→
𝐴0𝐴2 + · · ·+ 𝜆𝑚

−−−−→
𝐴0𝐴𝑚 = 0⃗.
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Do hệ vector độc lập tuyến tính nên 𝜆1 = 𝜆2 = · · · = 𝜆𝑚 = 0. Khi đó, biến đổi 𝐼 ta có

𝐼 = 𝜆1(
−−−→
𝐴𝑖𝐴1 −

−−−→
𝐴𝑖𝐴0) + 𝜆2(

−−−→
𝐴𝑖𝐴2 −

−−−→
𝐴𝑖𝐴0) + · · ·+ 𝜆𝑖−1(

−−−−→
𝐴𝑖𝐴𝑖−1 −

−−−→
𝐴𝑖𝐴0)

+ 𝜆𝑖
−−−→
𝐴0𝐴𝑖 + 𝜆𝑖+1(

−−−−→
𝐴𝑖𝐴𝑖+1 −

−−−→
𝐴𝑖𝐴0) + · · ·+ 𝜆𝑚(

−−−→
𝐴𝑖𝐴𝑚 −

−−−→
𝐴𝑖𝐴0)

= 𝜆1
−−−→
𝐴𝑖𝐴1 + 𝜆2

−−−→
𝐴𝑖𝐴2 + · · ·+ 𝜆𝑚

−−−→
𝐴𝑖𝐴𝑚

− (𝜆1 + · · ·+ 𝜆𝑚)
−−−→
𝐴𝑖𝐴0⏟  ⏞  

0⃗

= 𝜆1
−−−→
𝐴𝑖𝐴1 + 𝜆2

−−−→
𝐴𝑖𝐴2 + · · ·+ 𝜆𝑚

−−−→
𝐴𝑖𝐴𝑚 = 0⃗

với 𝜆1 = · · · = 𝜆𝑚 = 0. Như vậy hệ vector mới cũng độc lập tuyến tính.

3. Hệ điểm {𝐴0, . . . , 𝐴𝑚} phụ thuộc affine khi và chỉ khi hệ vector

{
−−−→
𝐴0𝐴1, · · · ,

−−−−→
𝐴0𝐴𝑚}

phụ thuộc tuyến tính.

4. Hệ con của một hệ độc lập thì độc lập, nhưng hệ con của một hệ phụ thuộc chưa chắc phụ thuộc.

INFO-CIRCLE Theorem

Trong không gian affine 𝑛 chiều 𝒜𝑛, với 0 < 𝑚 6 𝑛+ 1 thì luôn tồn tại các hệ 𝑚 điểm độc lập. Mọi hệ
gồm hơn 𝑛+ 1 điểm đều phụ thuộc.

Giao của các phẳng. Bao affine

Cho {𝛼𝑖 : 𝑖 ∈ 𝐼} là một họ không rỗng các phẳng trong không gian affine 𝒜.

INFO-CIRCLE Theorem

Nếu
⋂︀
𝑖∈𝐼

𝛼𝑖 ̸= ∅ thì
⋂︀
𝑖∈𝐼

𝛼𝑖 là một phẳng có phương là
⋂︀
𝑖∈𝐼

𝛼⃗𝑖.

INFO-CIRCLE Chứng minh

Vì
⋂︀
𝑖∈𝐼

𝛼𝑖 ̸= ∅ nên tồn tại điểm 𝑀 thuộc
⋂︀
𝑖∈𝐼

𝛼𝑖, như vậy 𝑀 ∈ 𝛼𝑖 với mọi 𝑖 ∈ 𝐼.

Nếu ta có điểm 𝑁 ∈
⋂︀
𝑖∈𝐼

𝛼𝑖 thì 𝑁 ∈ 𝛼𝑖 với mọi 𝑖 ∈ 𝐼. Suy ra
−−→
𝑀𝑁 ∈ 𝛼⃗𝑖 với mọi 𝑖 ∈ 𝐼. Từ đó

−−→
𝑀𝑁 ∈

⋂︁
𝑖∈𝐼

𝛼⃗𝑖 ⇐⇒
⋂︁
𝑖∈𝐼

𝛼𝑖 = {𝑁 ∈ 𝒜 :
−−→
𝑀𝑁 ∈

⋂︁
𝑖∈𝐼

𝛼⃗𝑖},

nghĩa là
⋂︀
𝑖∈𝐼

𝛼𝑖 là phẳng đi qua 𝑀 với không gian chỉ phương là
⋂︀
𝑖∈𝐼

𝛼⃗𝑖.

INFO-CIRCLE Definition (Phẳng giao)
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Phẳng
⋂︀
𝑖∈𝐼

𝛼𝑖 trong định lí trên được gọi là phẳng giao của các phẳng 𝛼𝑖.

Từ định nghĩa ta thấy rằng
⋂︀
𝑖∈𝐼

𝛼𝑖 là phẳng lớn nhất (theo nghĩa quan hệ bao hàm) chứa trong tất cả các

phẳng 𝛼𝑖 với 𝑖 ∈ 𝐼.

INFO-CIRCLE Definition

Cho 𝑋 là một tập con khác rỗng của không gian affine 𝒜. Khi đó giao của mọi phẳng chứa 𝑋 trong 𝒜
sẽ là một phẳng, gọi là bao affine của 𝑋. Kí hiệu là ⟨𝑋⟩.

Bao affine ⟨𝑋⟩, theo quan hệ bao hàm, của tập 𝑋 là phẳng bé nhất chứa 𝑋.

INFO-CIRCLE Definition (Phẳng tổng)

Cho {𝛼𝑖 : 𝑖 ∈ 𝐼} là một họ không rỗng các phẳng. Bao affine của tập hợp
⋃︀
𝑖∈𝐼

𝛼𝑖 được gọi là phẳng tổng

(hay tổng) của các phẳng 𝛼𝑖. Kí hiệu là
∑︀
𝑖∈𝐼

𝛼𝑖.

Phẳng tổng là phẳng bé nhất (có số chiều nhỏ nhất) chứa tất cả 𝛼𝑖 với 𝑖 ∈ 𝐼. Khi 𝐼 là tập hữu hạn, giả sử
𝐼 = {1, 2, . . . , 𝑛} thì ta viết

𝛼1 + 𝛼2 + · · ·+ 𝛼𝑛 hay
𝑛∑︁

𝑖=1

𝛼𝑖

để biểu diễn tổng của các phẳng 𝛼𝑖.

INFO-CIRCLE Remark

Nếu 𝑋 là một hệ hữu hạn điểm

𝑋 = {𝑀0,𝑀1, . . . ,𝑀𝑛}

thì tổng 𝑀0 + · · ·+𝑀𝑛 là phẳng có số chiều nhỏ nhất đi qua các điểm này. Ở đây ta xem mỗi điểm 𝑀𝑖

là 0-phẳng. Hơn nữa

dim(𝑀0 +𝑀1 + · · ·+𝑀𝑛) = rank(
−−−−→
𝑀0𝑀1, . . . ,

−−−−→
𝑀0𝑀𝑛).

Do đó nếu hệ điểm {𝑀0, . . . ,𝑀𝑛} độc lập thì

dim(𝑀0 +𝑀1 + · · ·+𝑀𝑛) = 𝑛.

INFO-CIRCLE Theorem

Cho 𝛼 và 𝛽 là hai phẳng. Nếu 𝛼 ∩ 𝛽 ̸= ∅ thì với mọi điểm 𝑀 thuộc 𝛼 và với mọi điểm 𝑁 thuộc 𝛽 ta có−−→
𝑀𝑁 = 𝛼⃗+ 𝛽.
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Ngược lại, nếu ta có điểm 𝑀 ∈ 𝛼 và điểm 𝑁 ∈ 𝛽 sao cho
−−→
𝑀𝑁 = 𝛼⃗+ 𝛽 thì 𝛼 ∩ 𝛽 ̸= ∅.

INFO-CIRCLE Chứng minh

Giả sử 𝛼∩ 𝛽 ̸= ∅. Khi đó tồn tại điểm 𝑃 ∈ 𝛼∩ 𝛽. Với mọi điểm 𝑀 ∈ 𝛼 ta có
−−→
𝑀𝑃 ∈ 𝛼⃗, tương tự với mọi

điểm 𝑁 ∈ 𝛽 ta có
−−→
𝑃𝑁 ∈ 𝛽. Suy ra

−−→
𝑀𝑃 +

−−→
𝑃𝑁 =

−−→
𝑀𝑁 = 𝛼⃗+ 𝛽.

Ngược lại, giả sử có điểm 𝑀 ∈ 𝛼 và điểm 𝑁 ∈ 𝛽 sao cho
−−→
𝑀𝑁 = 𝛼⃗ + 𝛽. Khi đó

−−→
𝑀𝑁 = 𝑢⃗+ 𝑣⃗ với 𝑢⃗ ∈ 𝛼⃗

và 𝑣⃗ ∈ 𝛽. Điều này xảy ra nếu tồn tại duy nhất điểm 𝑃 ∈ 𝛼 sao cho
−−→
𝑀𝑃 = 𝑢⃗, tương tự tồn tại duy nhất

điểm 𝑄 ∈ 𝛽 sao cho
−−→
𝑄𝑁 = 𝑣⃗.

Khi đó, vì

−−→
𝑀𝑁 = 𝑢⃗+ 𝑣⃗ =

−−→
𝑀𝑃 +

−−→
𝑄𝑁 =

−−→
𝑀𝑃 −

−−→
𝑁𝑄.

Chuyển vế và đổi dấu ta có

−−→
𝑀𝑃 =

−−→
𝑀𝑁 +

−−→
𝑁𝑄 =

−−→
𝑀𝑄

nên 𝑃 ≡ 𝑄. Như vậy 𝛼 ∩ 𝛽 ̸= ∅ vì có ít nhất một điểm 𝑃 ≡ 𝑄 thuộc giao của hai phẳng.

INFO-CIRCLE Theorem

Giả sử 𝛼 và 𝛽 là hai phẳng với phương lần lượt là 𝛼⃗ và 𝛽⃗. Khi đó:

1. Nếu 𝛼 ∩ 𝛽 ̸= ∅ thì

dim(𝛼+ 𝛽) = dim𝛼+ dim𝛽 = dim(𝛼 ∩ 𝛽).

2. Nếu 𝛼 ∩ 𝛽 = ∅ thì

dim(𝛼+ 𝛽) = dim𝛼+ dim𝛽 = dim(𝛼⃗+ 𝛽) + 1.

INFO-CIRCLE Chứng minh công thức 1

Nếu 𝛼 ∩ 𝛽 ̸= ∅ thì theo Định lý 3.2 ta có 𝛼 ∩ 𝛽 là một phẳng có phương 𝛼⃗ ∩ 𝛽.

Lấy điểm 𝑀 ∈ 𝛼 ∩ 𝛽 và gọi 𝛾 là phẳng đi qua 𝑀 với phương 𝛾⃗ = 𝛼⃗+ 𝛽. Ta có 𝛼 ⊂ 𝛾 và 𝛽 ⊂ 𝛾.

Ngoài ra nếu có phẳng 𝛾′ chứa 𝛼 và 𝛽 thì 𝑀 ∈ 𝛾′ và phương của 𝛾′ phải chứa 𝛼⃗ và 𝛽. Nói cách khác ta
có 𝛾 ⊂ 𝛾′.

Như vậy 𝛾 là phẳng nhỏ nhất chứa 𝛼 và 𝛽, tức là 𝛾 = 𝛼+ 𝛽. Do đó

dim(𝛼+ 𝛽) = dim 𝛾 = dim 𝛾⃗

= dim(𝛼⃗+ 𝛽⃗) = dim 𝛼⃗+ dim𝛽

= dim𝛼+ dim𝛽
?
= dim(𝛼 ∩ 𝛽).
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INFO-CIRCLE [TODO] Chứng minh công thức 2

[TODO]

Vị trí tương đối

INFO-CIRCLE Definition (Vị trí tương đối giữa hai phẳng)

Hai phẳng 𝛼 và 𝛽 được gọi là cắt nhau cấp 𝑟 nếu 𝛼 ∩ 𝛽 là một 𝑟-phẳng.

Hai phẳng 𝛼 và 𝛽 được gọi là chéo nhau cấp 𝑟 nếu 𝛼 ∩ 𝛽 = ∅ và dim(𝛼⃗ ∩ 𝛽) = 𝑟.

Hai phẳng 𝛼 và 𝛽 được gọi là song song (với nhau) nếu 𝛼⃗ ⊂ 𝛽 hoặc 𝛽⃗ ⊂ 𝛼⃗.

INFO-CIRCLE Example

Xét không gian ba chiều R3.

1. Hai đường thẳng "cắt nhau" là hai 1-phẳng cắt nhau cấp 0 (tại một điểm). Tổng của chúng là mặt
phẳng duy nhất xác định bởi hai đường thẳng đó.

2. Hai mặt phẳng "cắt nhau" là hai 2-phẳng cắt nhau cấp 1 (đường thẳng chung). Tổng của chúng
là toàn bộ R3.

Theo Định lý 3.4, trong R3 không tồn tại hai mặt phẳng chéo nhau cấp 0 hoặc 1.

INFO-CIRCLE Theorem

Cho hai phẳng song song 𝛼 và 𝛽. Nếu 𝛼 ∩ 𝛽 ̸= ∅ thì 𝛼 ⊂ 𝛽 hoặc 𝛽 ⊂ 𝛼.

INFO-CIRCLE Chứng minh

Do 𝛼 và 𝛽 có điểm chung nên theo Định lý 3.2 𝛼 ∩ 𝛽 là một phẳng có phương 𝛼⃗ ∩ 𝛽.

Do 𝛼 song song 𝛽 nên 𝛼⃗ ⊂ 𝛽 hoặc 𝛽 ⊂ 𝛼⃗.

Nếu 𝛼⃗ ⊂ 𝛽⃗ thì 𝛼⃗ ∩ 𝛽⃗ = 𝛼⃗, suy ra 𝛼 ∩ 𝛽 = 𝛼, hay 𝛼 ⊂ 𝛽.

Tương tự, nếu 𝛽 ⊂ 𝛼⃗ thì 𝛽 ⊂ 𝛼.

INFO-CIRCLE Theorem

Qua một điểm 𝑀 có một và chỉ một 𝑚-phẳng song song với 𝑚-phẳng 𝛼 đã cho.

INFO-CIRCLE Chứng minh

Gọi 𝛽 là 𝑚-phẳng đi qua điểm 𝑀 với phương 𝛼⃗.
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Khi đó 𝛽 là phẳng 𝑚 chiều song song với 𝛼. Nếu 𝛽′ cũng là 𝑚-phẳng đi qua 𝐴 và song song với 𝛼 thì
suy ra 𝛽 = 𝛽′ (và cũng bằng 𝛼⃗).

Do 𝛽 và 𝛽′ có điểm chung nên theo Định lý 3.5 ta có 𝛽 ≡ 𝛽′.

INFO-CIRCLE Theorem

Trong không gian affine 𝑛 chiều 𝒜𝑛 cho một siêu phẳng 𝛼 và một 𝑚-phẳng 𝛽 với 1 6 𝑚 6 𝑛− 1. Khi đó
𝛼 và 𝛽 hoặc song song, hoặc cắt nhau theo một (𝑚− 1)-phẳng.

Mục tiêu và tọa độ affine

INFO-CIRCLE Definition (Mục tiêu affine)

Cho 𝒜𝑛 là một không gian affine 𝑛 chiều. Hệ

{𝑂, 𝑒⃗1, 𝑒⃗2, . . . , 𝑒⃗𝑛}

gồm một điểm 𝑂 ∈ 𝒜𝑛 và một cơ sở {𝑒⃗1, . . . , 𝑒⃗𝑛} của 𝒜⃗𝑛 được gọi là mục tiêu affine (hay mục tiêu)
của 𝒜𝑛.

Điểm 𝑂 được gọi là gốc, các vector 𝑒⃗𝑖 được gọi là vector cơ sở thứ 𝑖 với 𝑖 = 1, 2, . . . , 𝑛.

Giả sử {𝑂, 𝑒⃗𝑖} là một mục tiêu của không gian affine 𝒜𝑛.

Khi đó với mọi điểm 𝑀 ∈ 𝒜𝑛, vector
−−→
𝑂𝑀 ∈ 𝒜𝑛 nên ta có biểu diễn tuyến tính của

−−→
𝑂𝑀 qua cơ sở {𝑒⃗𝑖}:

−−→
𝑂𝑀 =

𝑛∑︁
𝑖=1

𝑥𝑖𝑒⃗𝑖.

Khi đó, nhắc lại kiến thức đại số tuyến tính, vector
−−→
𝑂𝑀 có tọa độ (𝑥1, . . . , 𝑥𝑛) đối với cơ sở {𝑒⃗𝑖}, 𝑥𝑖 là các

phần tử thuộc F với 𝑖 = 1, . . . , 𝑛.

Bộ (𝑥1, . . . , 𝑥𝑛) được gọi là tọa độ của 𝑀 trong mục tiêu {𝑂, 𝑒⃗𝑖}, và 𝑥𝑖 được gọi là tọa độ thứ 𝑖. Kí hiệu
là 𝑀(𝑥𝑖).

Giả sử 𝑀 có tọa độ (𝑥𝑖) và 𝑁 có tọa độ (𝑦𝑖) thì đối với mục tiêu {𝑂, 𝑒⃗𝑖} ta có
−−→
𝑀𝑁 =

−−→
𝑂𝑁 −

−−→
𝑂𝑀 = (𝑦𝑖 − 𝑥𝑖).

Đây là tọa độ của
−−→
𝑀𝑁 trong mục tiêu {𝑂, 𝑒⃗𝑖}.

INFO-CIRCLE Remark

Giả sử trên 𝒜𝑛 đã chọn được mục tiêu cố định {𝑂, 𝑒⃗𝑖}. Xét ánh xạ

𝜙 : 𝐴→ F𝑛, 𝑀 → (𝑥𝑖)

với (𝑥𝑖) là tọa độ của 𝑀 trong mục tiêu. Khi đó 𝜙 là song ánh và mỗi điểm được đồng nhất với một
phần tử của F𝑛. Lúc này chúng ta đã đại số hóa hình học.
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INFO-CIRCLE Remark

Xét mục tiêu affine {𝑂, 𝑒⃗𝑖} của 𝒜𝑛 và gọi 𝐸𝑖 ∈ 𝒜 là các điểm sao cho
−−→
𝑂𝐸𝑖 = 𝑒⃗𝑖.

Khi đó hệ điểm {𝑂,𝐸1, . . . , 𝐸𝑛} độc lập affine. Ngược lại, một hệ điểm gồm 𝑛+1 độc lập {𝑂,𝐸1, . . . , 𝐸𝑛}
độc lập affine xác định một mục tiêu affine {𝑂, 𝑒⃗𝑖} với 𝑒⃗𝑖 =

−−→
𝑂𝐸𝑖.

Theo định nghĩa ta có 𝑂 = (0, . . . , 0) và 𝐸𝑖 = (0, . . . , 0, 1, 0, . . . , 0) với số 1 ở vị trí 𝑖.

INFO-CIRCLE Remark

Siêu phẳng đi qua 𝑛 điểm độc lập 𝑂, 𝐸1, ..., 𝐸𝑖−1, 𝐸𝑖+1, ..., 𝐸𝑛 được gọi là siêu phẳng tọa độ thứ 𝑖.
Dễ thấy 𝑀 thuộc siêu phẳng tọa độ thứ 𝑖 khi và chỉ khi 𝑥𝑖 = 0 với 𝑥𝑖 là tọa độ thứ 𝑖 của 𝑀 .

Công thức đổi mục tiêu

Giả sử trong không gian affine 𝒜𝑛 có hai mục tiêu {𝑂, 𝑒⃗𝑖} và {𝑂′, 𝑒⃗′𝑖}.

Mỗi điểm 𝑀 sẽ có tọa độ khác nhau ứng với mỗi mục tiêu (𝑥𝑖) và (𝑥′𝑖). Ta cần tìm mối liên hệ giữa chúng.

Do 𝑒⃗𝑖 là cơ sở của không gian vector nên mọi vector trong không gian vector có thể biểu diễn dưới dạng tổ
hợp tuyến tính của các vector trong cơ sở, như vậy

−−→
𝑂𝑂′ =

𝑛∑︁
𝑖=1

𝑏𝑖𝑒⃗𝑖

với 𝑏𝑖 ∈ F.

Biểu diễn các vector trong cơ sở 𝑒⃗′𝑖 bởi tổ hợp tuyến tính các vector trong cơ sở 𝑒⃗𝑖:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑒⃗′1 = 𝑐11𝑒⃗1 + 𝑐12𝑒⃗2 + · · ·+ 𝑐1𝑛𝑒⃗𝑛

𝑒⃗′2 = 𝑐21𝑒⃗1 + 𝑐22𝑒⃗2 + · · ·+ 𝑐2𝑛𝑒⃗𝑛
...
𝑒⃗′𝑛 = 𝑐𝑛1𝑒⃗1 + 𝑐𝑛2𝑒⃗2 + · · ·+ 𝑐𝑛𝑛𝑒⃗𝑛

hay viết ngắn gọn là

𝑒⃗′𝑖 =

𝑛∑︁
𝑗=1

𝑐𝑖𝑗 𝑒⃗𝑗

với 𝑖 = 1, 2, . . . , 𝑛.

Điểm 𝑀 có tọa độ trong hai mục tiêu trên lần lượt là (𝑥𝑖) và (𝑥′𝑖), nghĩa là

−−→
𝑂𝑀 =

𝑛∑︁
𝑖=1

𝑥𝑖𝑒⃗𝑖,
−−−→
𝑂′𝑀 =

𝑛∑︁
𝑖=1

𝑥′𝑖𝑒⃗
′
𝑖.
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Ta có
𝑛∑︁

𝑖=1

𝑥𝑖𝑒⃗𝑖 =
−−→
𝑂𝑀 =

−−→
𝑂𝑂′ +

−−−→
𝑂′𝑀

=

𝑛∑︁
𝑖=1

𝑏𝑖𝑒⃗𝑖 +

𝑛∑︁
𝑖=1

𝑥′𝑖𝑒⃗
′
𝑖

=

𝑛∑︁
𝑖=1

𝑏𝑖𝑒⃗𝑖 +

𝑛∑︁
𝑖=1

𝑥′𝑖

𝑛∑︁
𝑗=1

𝑐𝑖𝑗 𝑒⃗𝑗

=

𝑛∑︁
𝑖=1

𝑏𝑖𝑒⃗𝑖 +

𝑛∑︁
𝑖=1

𝑥′𝑖

𝑛∑︁
𝑗=1

𝑐𝑗𝑖𝑥
′
𝑗

=

𝑛∑︁
𝑖=1

⎛⎝ 𝑛∑︁
𝑗=1

𝑐𝑗𝑖𝑥
′
𝑗 + 𝑏𝑖

⎞⎠ 𝑒⃗𝑖.

Ở đây mình biến đổi
𝑛∑︁

𝑖=1

𝑥′𝑖

𝑛∑︁
𝑗=1

𝑐𝑖𝑗 𝑒⃗𝑗 =

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝑥′𝑖𝑐𝑖𝑗 𝑒⃗𝑗 =

𝑛∑︁
𝑗=1

𝑒⃗𝑗

𝑛∑︁
𝑖=1

𝑐𝑖𝑗𝑥
′
𝑖,

và để đồng bộ với tổng phía trước là
𝑛∑︀

𝑖=1

𝑏𝑖𝑒⃗𝑖 thì mình đổi 𝑗 thành 𝑖 và 𝑗 thành 𝑖 nên sẽ có

𝑛∑︁
𝑖=1

𝑥′𝑖

𝑛∑︁
𝑗=1

𝑐𝑖𝑗 𝑒⃗𝑗 =

𝑛∑︁
𝑖=1

𝑒⃗𝑖

𝑛∑︁
𝑗=1

𝑐𝑗𝑖𝑥
′
𝑗 .

Khi đó

𝑥𝑖 =
𝑛∑︁

𝑗=1

𝑐𝑗𝑖𝑥
′
𝑗 + 𝑏𝑖

với 𝑖 = 1, 2, . . . , 𝑛. Điều này tương đương với

𝑥1 = 𝑐11𝑥
′
1 + 𝑐21𝑥

′
2 + · · ·+ 𝑐𝑛1𝑥

′
𝑛 + 𝑏1

𝑥2 = 𝑐12𝑥
′
1 + 𝑐22𝑥

′
2 + · · ·+ 𝑐𝑛2𝑥

′
𝑛 + 𝑏2

· · ·
𝑥𝑛 = 𝑐1𝑛𝑥

′
1 + 𝑐2𝑛𝑥

′
2 + · · ·+ 𝑐𝑛𝑛𝑥

′
𝑛 + 𝑏𝑛

Chúng ta có thể viết dưới dạng ma trận là

(𝑥1, . . . , 𝑥𝑛) = (𝑥′1, . . . , 𝑥
′
𝑛) · 𝐶 + (𝑏1, . . . , 𝑏𝑛)

với 𝐶 là ma trận

𝐶 =

⎛⎜⎜⎜⎝
𝑐11 𝑐12 · · · 𝑐1𝑛
𝑐21 𝑐22 · · · 𝑐2𝑛
. . . . . . . . . . . .
𝑐𝑛1 𝑐𝑛2 · · · 𝑐𝑛𝑛

⎞⎟⎟⎟⎠ .

Hệ phương trình tuyến tính có nghiệm khi det𝐶 ̸= 0.

Các công thức trên được gọi là công thức đổi tọa độ (hay công thức đổi mục tiêu) và ma trận đổi tọa độ 𝐶
từ mục tiêu {𝑂, 𝑒⃗𝑖} sang {𝑂′, 𝑒⃗′𝑖}.
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Phương trình của 𝑚-phẳng

Phương trình tham số

Cho 𝒜𝑛 là một không gian affine 𝑛 chiều với mục tiêu {𝑂, 𝑒⃗𝑖} cho trước, và 𝛼 là một 𝑚-phẳng đi qua điểm
𝑀 với phương 𝛼⃗ sao cho 0 < 𝑚 < 𝑛.

Giả sử

−−→
𝑂𝑃 =

𝑛∑︁
𝑖=1

𝑏𝑖𝑒⃗𝑖

và {𝛼⃗1, . . . , 𝛼⃗𝑚} là một cơ sở của 𝛼⃗ với

𝛼⃗𝑗 =

𝑛∑︁
𝑖=1

𝑎𝑖𝑗 𝑒⃗𝑖, 𝑗 = 1, . . . ,𝑚.

Điểm 𝑃 có tọa độ (𝑥𝑖) đối với mục tiêu {𝑂, 𝑒⃗𝑖} thuộc 𝛼 khi và chỉ khi
−−→
𝑀𝑃 ∈ 𝛼⃗, tức là có các số 𝑡𝑗 ∈ F sao

cho

−−→
𝑀𝑃 =

𝑚∑︁
𝑗=1

𝑡𝑗𝛼⃗𝑗 .

Ta có

−−→
𝑀𝑃 =

−−→
𝑂𝑃 −

−−→
𝑂𝑀 =

𝑛∑︁
𝑖=1

𝑥𝑖𝑒⃗𝑖 −
𝑛∑︁

𝑖=1

𝑏𝑖𝑒⃗𝑖 =

𝑛∑︁
𝑖=1

(𝑥𝑖 − 𝑏𝑖)𝑒⃗𝑖.

Ta cũng có

−−→
𝑀𝑃 =

𝑚∑︁
𝑗=1

𝑡𝑗𝛼⃗𝑗 =

𝑚∑︁
𝑗=1

𝑡𝑗

𝑛∑︁
𝑖=1

𝑎𝑖𝑗 𝑒⃗𝑖

=
𝑛∑︁

𝑖=1

⎛⎝ 𝑚∑︁
𝑗=1

𝑡𝑗𝑎𝑖𝑗

⎞⎠ 𝑒⃗𝑖

⇒ 𝑥𝑖 =
𝑚∑︁
𝑗=1

𝑡𝑗𝑎𝑖𝑗 + 𝑏𝑖.

Hệ phương trình trở thành ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑥1 = 𝑎11𝑡1 + 𝑎12𝑡2 + · · ·+ 𝑎1𝑚𝑡𝑚 + 𝑏1

𝑥2 = 𝑎21𝑡1 + 𝑎22𝑡2 + · · ·+ 𝑎2𝑚𝑡𝑚 + 𝑏2
...
𝑥𝑛 = 𝑎𝑛1𝑡1 + 𝑎𝑛2𝑡2 + · · ·+ 𝑎𝑛𝑚𝑡𝑚 + 𝑏𝑛

hay dưới dạng ma trận là

(𝑥1, . . . , 𝑥𝑛) = 𝐴 · (𝑡1, . . . , 𝑡𝑚) + (𝑏1, . . . , 𝑏𝑛).

Khi đó ta có thể viết phương trình tham số dưới dạng vector

𝑥⃗ = 𝑡1𝑎⃗1 + 𝑡2𝑎⃗2 + · · ·+ 𝑡𝑚𝑎⃗𝑚 + 𝑏⃗.

Các công thức trên tương đương nhau và được gọi là phương trình tham số của 𝑚-phẳng 𝛼, còn các phần
tử 𝑡𝑗 với 𝑗 = 1, . . . ,𝑚 được gọi là các tham số.
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[TODO] Phương trình tổng quát

Tâm tỉ cự và tỉ số đơn

Cho họ điểm

{𝑀1,𝑀2, . . . ,𝑀𝑛} ⊂ 𝒜𝑛

và họ hệ số {𝜆1, 𝜆2, . . . , 𝜆𝑛} với 𝜆 ∈ F thỏa điều kiện

𝜆 = 𝜆1 + 𝜆2 + · · ·+ 𝜆𝑛 ̸= 0.

Khi đó với điểm 𝑂 tùy ý của 𝒜𝑛 ta có

1

𝜆

(︁
𝜆1
−−−→
𝑂𝑀1 + 𝜆2

−−−→
𝑂𝑀2 + · · ·+ 𝜆𝑛

−−−→
𝑂𝑀𝑛

)︁
là một vector xác định của 𝒜𝑛. Do đó tồn tại duy nhất một điểm 𝐺 ∈ 𝒜𝑛 sao cho

−−→
𝑂𝐺 =

1

𝜆

(︁
𝜆1
−−−→
𝑂𝑀1 + 𝜆2

−−−→
𝑂𝑀2 + · · ·+ 𝜆𝑛

−−−→
𝑂𝑀𝑛

)︁
.

Khi đó điểm 𝐺 được gọi tâm tỉ cự của họ điểm {𝑀1,𝑀2, . . . ,𝑀𝑛} gắn với hệ số {𝜆1, 𝜆2, . . . , 𝜆𝑛}.

INFO-CIRCLE Theorem

Điểm 𝐺 là tâm tỉ cự của họ điểm {𝑀1,𝑀2, . . . ,𝑀𝑛} gắn với hệ số {𝜆1, 𝜆2, . . . , 𝜆𝑛} khi và chỉ khi 𝐺 thỏa
mãn hệ thức

𝜆1
−−−→
𝐺𝑀1 + 𝜆2

−−−→
𝐺𝑀2 + · · ·+ 𝜆𝑛

−−−→
𝐺𝑀𝑛 = 0⃗.

INFO-CIRCLE Chứng minh

Từ định nghĩa tâm tỉ cự ta có

−−→
𝑂𝐺 =

1

𝜆

(︁
𝜆1
−−−→
𝑂𝑀1 + 𝜆2

−−−→
𝑂𝑀2 + · · ·+ 𝜆𝑛

−−−→
𝑂𝑀𝑛

)︁
=

1

𝜆

[︁
𝜆1

(︁−−→
𝑂𝐺+

−−−→
𝐺𝑀1

)︁
+ 𝜆2

(︁−−→
𝑂𝐺+

−−−→
𝐺𝑀2

)︁
+ · · ·+ 𝜆𝑛

(︁−−→
𝑂𝐺+

−−−→
𝐺𝑀𝑛

)︁]︁
=
𝜆1 + 𝜆2 + · · ·+ 𝜆𝑛

𝜆

−−→
𝑂𝐺+

1

𝜆

(︁
𝜆1
−−−→
𝐺𝑀1 +

−−−→
𝐺𝑀2 + · · ·+

−−−→
𝐺𝑀𝑛

)︁
,

mà 𝜆1 + 𝜆2 + · · ·+ 𝜆𝑛 = 𝜆 nên tối giản
−−→
𝑂𝐺 hai vế ta có điều phải chứng minh.

INFO-CIRCLE Remark

Từ định lí trên ta cũng chứng minh được hai hệ quả sau:

1. Tâm tỉ cự không phụ thuộc điểm 𝑂 được chọn mà phụ thuộc họ điểm {𝑀1,𝑀2, . . . ,𝑀𝑛} và họ hệ
số {𝜆1, 𝜆2, . . . , 𝜆𝑛}.

2. Khi thay họ hệ số {𝜆1, 𝜆2, . . . , 𝜆𝑛} bởi {𝑘𝜆1, 𝑘𝜆2, . . . , 𝑘𝜆𝑛} với 𝑘 ̸= 0 thì tâm tỉ cự không thay đổi.
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INFO-CIRCLE Definition

Tâm tỉ cự 𝐺 của hệ điểm {𝑀1,𝑀2, . . . ,𝑀𝑛} gắn với họ hệ số {𝜆1, 𝜆2, . . . , 𝜆𝑛} mà

𝜆1 = 𝜆2 = · · · = 𝜆𝑛 = 1

thì 𝐺 được gọi là trọng tâm của hệ điểm.

Khi đó, với mọi điểm 𝑂 ∈ 𝒜𝑛 ta có

−−→
𝑂𝐺 =

1

𝑛

𝑛∑︁
𝑖=1

−−→
𝑂𝑀𝑖,

hay
𝑛∑︁

𝑖=1

−−→
𝐺𝑀𝑖 = 0⃗.

INFO-CIRCLE Remark

Mọi hệ 𝑚 điểm có trọng tâm khi và chỉ khi đặc số (characteristic) của trường F phải khác 𝑚.

Khi F = R hoặc C thì mọi hệ hữu hạn điểm đều có trọng tâm.

INFO-CIRCLE Theorem

Tập hợp tất cả các tâm tỉ cự với họ các hệ số khác nhau của hệ điểm {𝑀1, . . . ,𝑀𝑛} trong không gian
affine 𝒜𝑛 chính là phẳng

𝛼 =𝑀1 +𝑀2 + · · ·+𝑀𝑛.

Ánh xạ affine

INFO-CIRCLE Definition

Cho hai không gian affine 𝒜 và 𝒜′ trên cùng trường F và ánh xạ 𝜙 : 𝒜⃗ → 𝒜⃗′ sao cho với mọi 𝑀,𝑁 ∈ 𝒜
ta có

−−−−−−−→
𝑓(𝑀)𝑓(𝑁) = 𝜙(

−−→
𝑀𝑁)

thì 𝑓 được gọi là ánh xạ affine liên kết với 𝜙.

Ánh xạ 𝜙 được gọi là ánh xạ tuyến tính liên kết hay ánh xạ nền của ánh xạ affine 𝑓 .

Theo định nghĩa, mỗi ánh xạ affine chỉ có một ánh xạ tuyến tính liên kết. Tuy nhiên một ánh xạ tuyến tính
có thể liên kết với nhiều ánh xạ affine.
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INFO-CIRCLE Example

Ánh xạ đồng nhất Id𝒜 : 𝒜 → 𝒜, 𝑓(𝑀) =𝑀 với mọi 𝑀 ∈ 𝒜 của không gian affine là một ánh xạ affine.
Ánh xạ tuyến tính liên kết với Id𝒜 chính là ánh xạ đồng nhất Id𝒜⃗ của 𝒜⃗.

INFO-CIRCLE Example

Ánh xạ hằng 𝑓 : 𝒜 → 𝒜′ biến mọi điểm của 𝒜 thành một điểm cố định nào đó của 𝒜′ là một ánh xạ
affine. Ánh xạ tuyến tính liên kết 𝑓 của 𝑓 là ánh xạ không 𝒪, biến mọi vector thành vector 0⃗.

INFO-CIRCLE Example

Phép chiếu song song: trong không gian affine 𝑛 chiều 𝒜𝑛 cho 𝑚-phẳng 𝛼 và (𝑛 −𝑚)-phẳng 𝛽 sao cho
𝛼⃗ ∩ 𝛽 = {⃗0}.

Dựa vào định lí về số chiều của phẳng tổng ta chứng minh được rằng 𝛼 ∩ 𝛽 ̸= ∅. Do 𝛼⃗ ∩ 𝛽⃗ = {⃗0} ta suy
ra 𝛼 ∩ 𝛽 là 0-phẳng, tức là giao của 𝛼 và 𝛽 là tập chỉ có một điểm.

Giả sử𝑀 là một điểm bất kì của 𝒜𝑛. Gọi 𝛼′ là𝑚-phẳng đi qua𝑀 và song song 𝛼, gọi 𝛽′ là (𝑛−𝑚)-phẳng
đi qua 𝑀 và song song với 𝛽. Theo lập luận trên, 𝛼′ và 𝛽 giao nhau tại một điểm duy nhất là 𝑀𝛽 , tương
tự 𝛽′ cắt 𝛼 tại một điểm duy nhất là 𝑀𝛼. Các ánh xạ

𝜌𝛼 : 𝒜𝑛 → 𝛼, 𝑀 →𝑀𝛼

và

𝜌𝛽 : 𝒜𝑛 → 𝛽, 𝑀 →𝑀𝛽

lần lượt được gọi là phép chiếu song song lên phẳng 𝛼 theo phương 𝛽 và phép chiếu song song lên
phẳng 𝛽 theo phương 𝛼.

Ta gọi 𝛼 là cơ sở và 𝛽 là phương chiếu của phép chiếu 𝜌𝛼.

Ta gọi 𝛽 là cơ sở và 𝛼 là phương chiếu của phép chiếu 𝜌𝛽 .

Ta sẽ chứng minh 𝜌𝛼 là ánh xạ affine.

INFO-CIRCLE Chứng minh

Từ giả thiết 𝛼⃗ ∪ 𝛽 = 𝒜⃗, gọi 𝜌𝛼⃗ là phép chiếu lên thành phần thứ nhất

𝜌𝛼⃗ : 𝒜⃗ → 𝛼⃗.

Với mọi 𝑀,𝑁 ∈ 𝒜 ta có

−−−−−−−−−→
𝜌𝛼(𝑀)𝜌𝛼(𝑁) =

−−−−→
𝑀𝛼𝑁𝛼.

Hơn nữa

𝜌𝛼⃗(
−−→
𝑀𝑁) = 𝜌𝛼⃗(

−−−→
𝑀𝑀𝛼) + 𝜌𝛼⃗(

−−−−→
𝑀𝛼𝑁𝛼) + 𝜌𝛼⃗(

−−−→
𝑁𝛼𝑁) =

−−−−→
𝑀𝛼𝑁𝛼.
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Từ đây suy ra 𝜌𝛼 là ánh xạ liên kết với 𝜌𝛼⃗. Dễ thấy (?) 𝜌𝛼 và 𝜌𝛽 có tính chất

𝜌2𝛼 = 𝜌𝛼, 𝜌
2
𝛽 = 𝜌𝛽 , 𝜌𝛼𝜌𝛽 = 𝜌𝛽𝜌𝛼 = ℎ

với ℎ là ánh xạ hẳng, biến mọi điểm thành giao điểm của 𝛼 và 𝛽.

INFO-CIRCLE Definition

Nếu ánh xạ affine 𝑓 là một đơn ánh thì ta nói 𝑓 là đơn cấu affine. Tương tự cho toàn cấu affine và
đẳng cấu affine.

Khi 𝒜 = 𝒜′, tức là 𝑓 : 𝒜 → 𝒜 thì ta nói 𝑓 là một tự đồng cấu affine (hay automorphism) của 𝒜.

Nếu có một đẳng cấu affine từ 𝒜 vào 𝒜′ thì ta nói 𝒜 và 𝒜′ đẳng cấu affine với nhau và kí hiệu là 𝒜 ∼= 𝒜′.

Quan hệ đẳng cấu giữa các không gian affine là quan hệ tương đương và hai không gian affine đẳng cấu khi
và chỉ khi chúng có cùng số chiều.

INFO-CIRCLE Theorem

Cho 𝑓 : 𝒜 → 𝒜′ là ánh xạ affine. Khi đó

1. Nếu 𝑓 là đơn cấu, toàn cấu hoặc đẳng cấu affine thì ánh xạ liên kết:math:vec{f} theo thứ tự là đơn
cấu, toàn cấu và dẳng cấu tuyến tính.

2. Nếu 𝑓 là đẳng cấu affine thì ánh xạ ngược 𝑓−1 : 𝒜′ → 𝒜 cũng là đẳng cấu affine và
−−→
𝑓−1 = (𝑓)−1.

INFO-CIRCLE Theorem

Nếu 𝑓 : 𝒜 → 𝒜′ và 𝑔 : 𝒜′ → 𝒜′′ là các ánh xạ affine lần lượt liên kết với các ánh xạ tuyến tính 𝑓 và 𝑔⃗
thì 𝑔 ∘ 𝑓 là ánh xạ affine liên kết với 𝑔⃗ ∘ 𝑓 , tức là

−−→
𝑔 ∘ 𝑓 = 𝑔⃗ ∘ 𝑓.

INFO-CIRCLE Theorem

Cho 𝑓 : 𝒜 → 𝒜′ là ánh xạ affine liên kết với ánh xạ tuyến tính 𝑓 . Khi đó

1. Nếu 𝛼 là một phẳng trong 𝒜 với phương 𝛼⃗ thì 𝑓(𝛼) là một phẳng trong 𝒜′ với phương 𝑓(𝛼⃗) và
dim 𝑓(𝛼) > dim𝛼. Trong trường hợp 𝑓 là đơn cấu thì dim 𝑓(𝛼) = dim𝛼.

2. Giả sử 𝛼′ là một phẳng trong 𝒜′ với phương 𝛼⃗′. Nếu 𝑓−1(𝛼′) khác rỗng thì 𝑓−1(𝛼′) là một phương
trong 𝒜 với phương

−−→
𝑓−1(𝛼⃗′).
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Sự xác định ánh xạ affine

Ánh xạ tuyến tính hoàn toàn xác định nếu biết được ảnh của một cơ sở. Ánh xạ affine cũng vậy, nó hoàn
toàn xác định nếu biết được ảnh của một mục tiêu.

INFO-CIRCLE Theorem

Cho 𝒜 và 𝒜′ là các F-không gian affine, 𝜙 : 𝒜⃗ → 𝒜⃗′ là ánh xạ tuyến tính, 𝑀 ∈ 𝒜 và 𝑀 ′ ∈ 𝒜′. Khi đó
tồn tại duy nhất một ánh xạ affine 𝑓 : 𝒜 → 𝒜′ sao cho 𝑓(𝑀) =𝑀 ′ và 𝑓 = 𝜙.

Nói cách khác, ánh xạ affine hoàn toàn xác định khi biết ánh xạ tuyến tính liên kết và một cặp điểm tương
ứng.

INFO-CIRCLE Remark

Nếu dim𝒜 = dim𝒜′ và 𝜙 là đẳng cấu tuyến tính thì 𝑓 là một đẳng cấu affine.

INFO-CIRCLE Corollary

Cho 𝒜 và 𝒜′ là hai F-không gian affine, {𝑂, 𝑒⃗1, . . . , 𝑒⃗𝑛} là mục tiêu của 𝒜, 𝑂′ ∈ 𝒜′ và {𝑒⃗′1, . . . , 𝑒⃗′𝑛} là
một hệ vector trong 𝒜⃗′. Khi đó tồn tại duy nhất một ánh xạ affine 𝑓 : 𝒜 → 𝒜′ sao cho

𝑓(𝑂) = 𝑂′, và 𝑓(𝑒⃗𝑖) = 𝑒⃗′𝑖

với mọi 𝑖 = 1, . . . , 𝑛.

Nói cách khác, ánh xạ affine hoàn toàn được xác định bởi ảnh của một mục tiêu.

Hơn nữa, nếu dim𝒜 = dim𝒜′ và {𝑒⃗′1, . . . , 𝑒⃗′𝑛} là một cơ sở của 𝒜′ thì 𝑓 là một đẳng cấu affine.

2.3.4 Hình học phi Euclid
Giới thiệu

Euclid là một trong những nhà toán học vĩ đại nhất lịch sử loài người, người đã viết quyển Elements, trình
bày các mệnh đề làm cơ sở cho hình học, gọi là các tiên đề.

Chúng ta luôn cần một chứng minh để khẳng định hoặc bác bỏ bất kì mệnh đề toán học nào. Thông thường,
việc chứng minh mệnh đề sẽ dựa trên các mệnh đề đã đúng trước đó. Tuy nhiên dễ thấy rằng việc truy
ngược như vậy không thể thực hiện vô hạn mà phải tới một "điểm neo" nào đó, nghĩa là các mệnh đề đúng
không cần chứng minh. Các mệnh đề đó chính là các tiên đề. Tuy nhiên các tiên đề phải đúng, ít nhất là
được kiểm nghiệm trên thực tiễn.

Các tiên đề Euclid có năm tiên đề chính. Trong số đó có tiên đề thứ 5, viết số La Mã thành tiên đề V, là
rắc rối và thiếu tụ nhiên nhất:

Nếu hai đường thẳng tạo ra với một đường thẳng thứ ba cắt chúng hai góc trong cùng phía có
tổng nhỏ hơn hai góc vuông thì khi kéo dài hai đường thẳng đó về phía ấy đến một lúc nào đó
chúng sẽ phải cắt nhau.

Tiên đề này có hai điểm kì quái.

Đầu tiên là nó khá dài dòng. Các tiên đề thường là những điều hiển nhiên mà ta thấy được và là cơ sở cho
hình học. Do đó tiên đề thường ngắn gọn, chỉ rõ một hiện tượng.
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Ví dụ:

• qua hai điểm phân biệt trên mặt phẳng chỉ vẽ được một đường thẳng;

• đường thẳng kéo dài vô hạn về hai phía;

• mọi góc vuông đều bằng nhau.

Điểm kì quái thứ hai là tiên đề này khá rối rắm và chúng ta cần cẩn thận suy xét ý nghĩa của nó. Trong
khi đó, như đã nói ở trên, tiên đề chỉ ra những quan sát thực tiễn và là cơ sỏ cho hình học (hoặc bất kì lĩnh
vực toán học khác). Do đó tiên đề cần đơn giản, dễ nắm bắt.

Điều thú vị là hệ thống tiên đề của Euclid đã đứng vững 2000 năm mà không có vấn đề gì. Các nhà toán
học thời đó, mỗi lần gặp các vấn đề về hình học, sẽ tham khảo các tài liệu do Euclid để lại. Còn có thông tin
rằng những nghiên cứu dám nghi ngờ hoặc phản đối hệ tiên đề Euclid sẽ bị các nhà khoa học xung quanh
bác bỏ, khá giống với tòa án dị giáo thời Trung Cổ.

Tuy nhiên, ba nhà toán học kiệt xuất đã xây dựng nên hình học phi Euclid độc lập nhau. Hình học phi
Euclid không bác bỏ hình học Euclid, mà chúng bổ trợ cho nhau, làm đầy đủ các khía cạnh hình học.

Phần này mình tham khảo từ series Путь к геометрии Лобачевского. Trong tiếng Việt tên series nghĩa là
"Đường tới hình học Lobachevsky". Series gồm 6 phần nhưng mình chỉ tham khảo 5 phần đầu. Phần cuối
là [TODO] sau này nghiên cứu thêm.

Sự ra đời hình học phi Euclid

Tiên đề V có vẻ rối rắm và dài dòng. Do đó nhiều nhà toán học cũng nghĩ rằng, có khi nào đây là một định
lý chứ không phải tiên đề không? Như vậy họ đã cố gắng chứng minh tiên đề V bằng các tiên đề còn lại.
Kết quả là họ ... thất bại.

Nhà toán học người Nga Lobachevsky có một cách tiếp cận khác. Ông này kiểu: "Hmm, giả sử mình thay
tiên đề này bởi phủ định của nó rồi đi chứng minh các định lý hình học thì có khi nào phát sinh mâu thuẫn
không nhỉ?". Nghĩa là ông ấy giữ nguyên tất cả tiên đề Euclid trừ tiên đề V, và thay tiên đề V thành phủ
định của nó, rồi đi chứng minh các định lý hình học và hy vọng tìm ra mâu thuẫn toán học nào đó.

Kết quả là Lobachevsky đã thất bại (trong việc tìm ra mâu thuẫn).

Ông đã chứng minh hàng chục định lý mà không phát hiện điều gì bất thường.

Nếu vậy, phải chăng hình học phi Euclid khi thay tiên đề V bởi phủ định của nó, cũng chặt chẽ như hìnhh
học Euclid?

Phần sau mình sẽ đề cập tới hình học phi Euclid trong hệ tọa độ, cụ thể là các mặt cong trên nền tảng hình
học Lobachevsky.

Tích vô hướng trong không gian Euclide

Với hai vector 𝑥 = (𝑥1, 𝑥2, 𝑥3) và 𝑦 = (𝑦1, 𝑦2, 𝑦3), tích vô hướng của hai vector được định nghĩa là

⟨𝑥,𝑦⟩ = 𝑥1𝑦1 + 𝑥2𝑦2 + 𝑥3𝑦3.

Độ dài của vector 𝑥, kí hiệu là ‖𝑥‖ và được tính bởi công thức

‖𝑥‖ =
√︀
⟨𝑥,𝑥⟩.

Khoảng cách giữa hai điểm 𝐴 = 𝑥 = (𝑥1, 𝑥2, 𝑥3) và 𝐵 = 𝑦 = (𝑦1, 𝑦2, 𝑦3) là

𝐴𝐵 = 𝑑(𝑥,𝑦) = ‖𝑥− 𝑦‖.
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Độ dài đường cong trong không gian Euclide

Trong bài viết về tích phân đường mình đã tìm công thức tính độ dài đường trên mặt phẳng Euclide. Khi
đó, nếu đường cong 𝛾 xác định các tọa độ bởi tham số 𝑡, nghĩa là

𝛾(𝑡) =

{︃
𝑥 = 𝑥(𝑡)

𝑦 = 𝑦(𝑡)

thì độ dài đường cong từ 𝑡0 tới 𝑡1 (tức là 𝑡0 6 𝑡 6 𝑡1) là tích phân

𝑙(𝛾) =

∫︁
𝛾

𝑑𝑙 =

∫︁ 𝑡1

𝑡0

√︀
𝑑𝑥2 + 𝑑𝑦2 =

∫︁ 𝑡1

𝑡0

√︀
(𝑥′(𝑡))2 + (𝑦′(𝑡))2 𝑑𝑡.

Tương tự, đối với đường cong trong không gian Euclide 𝑂𝑥𝑦𝑧 có tọa độ là hàm số theo tham số 𝑡, nghĩa là

𝛾(𝑡) =

⎧⎪⎨⎪⎩
𝑥 = 𝑥(𝑡)

𝑦 = 𝑦(𝑡)

𝑧 = 𝑧(𝑡)

thì độ dài đường cong từ 𝑡0 tới 𝑡1 là tích phân

𝑙(𝛾) =

∫︁
𝛾

𝑑𝑙 =

∫︁ 𝑡1

𝑡0

√︀
𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2.

Ở đây một biểu thức quan trọng sẽ được sử dụng xuyên suốt về sau là

𝑑𝑙 =
√︀
𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2,

nhưng chúng ta sẽ bình phương để dễ tính toán

𝑑𝑙2 = 𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2.

Nếu chúng ta có nhiều tham số thì sử dụng công thức đạo hàm riêng. Giả sử 𝑥 = 𝑥(𝑢, 𝑣) và 𝑦 = 𝑦(𝑢, 𝑣) thì

𝑑𝑥 =
𝜕𝑥

𝜕𝑢
𝑑𝑢+

𝜕𝑥

𝜕𝑣
𝑑𝑣 = . . .

𝑑𝑦 =
𝜕𝑦

𝜕𝑢
𝑑𝑢+

𝜕𝑦

𝜕𝑣
𝑑𝑣 = . . .

𝑑𝑧 =
𝜕𝑧

𝜕𝑢
𝑑𝑢+

𝜕𝑧

𝜕𝑣
𝑑𝑣 = . . .

Khi đó

𝑑𝑙2 = (𝑎(𝑢, 𝑣)𝑑𝑢+ 𝑏(𝑢, 𝑣)𝑑𝑣)
2
.

Mặt cầu

Mặt cầu là tập hợp các điểm cách một điểm cố định một khoảng không đổi trong không gian.

Mặt cầu tâm 𝑂(𝑥0, 𝑦0, 𝑧0) với bán kính 𝑟 là tập hợp các điểm 𝑀(𝑥, 𝑦, 𝑧) thỏa phương trình

(𝑥− 𝑥0)2 + (𝑦 − 𝑦0)2 + (𝑧 − 𝑧0)2 = 𝑟2.

Chúng ta sẽ đưa tâm mặt cầu về gốc tọa độ 𝑂(0, 0, 0) để thuận tiện tính toán về sau. Phương trình sẽ trở
thành

𝑥2 + 𝑦2 + 𝑧2 = 𝑟2.
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Một cách khác để biểu diễn các điểm của mặt cầu là sử dụng tọa độ cầu, nghĩa là biểu diễn tọa độ (𝑥, 𝑦, 𝑧)
thông qua hai tham số (𝜃, 𝜑) (ở đây không có 𝑟 vì bán kính đã cố định rồi). Khi đó, tọa độ sẽ có dạng⎧⎪⎨⎪⎩

𝑥 = 𝑟 sin 𝜃 cos𝜑
𝑦 = 𝑟 sin 𝜃 sin𝜑
𝑧 = 𝑟 cos 𝜃,

,

trong đó 0 6 𝜃, 𝜑 6 2𝜋.

Khoảng cách giữa hai điểm trên mặt cầu

Trên mặt phẳng, khoảng cách giữa hai điểm là độ dài phần đường thẳng nằm giữa hai điểm đó. Tuy nhiên,
trên mặt cầu thì không phải là đường thẳng mà chúng ta thường biết nữa.

Sử dụng công thức về độ dài đường cong bên trên có thể xác định được khoảng cách giữa hai điểm trên mặt
cầu (trong tọa độ cực) là

𝑑𝑥 = 𝑟 cos 𝜃 cos𝜑 𝑑𝜃 − 𝑟 sin 𝜃 sin𝜑 𝑑𝜑
𝑑𝑦 = 𝑟 cos 𝜃 sin𝜑 𝑑𝜃 + 𝑟 sin 𝜃 cos𝜑 𝑑𝜑
𝑑𝑧 = −𝑟 sin 𝜃 𝑑𝜃

Từ đây ta suy ra

𝑑𝑙2 = 𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2 = 𝑟2(𝑑𝜃2 + sin2 𝜃 𝑑𝜑2).

Ví dụ, mình muốn tính độ dài đường xích đạo, là vòng có độ dài lớn nhất trên mặt cầu, ứng với 𝜃 = 𝜋/2 và
0 6 𝜑 6 2𝜋, theo công thức trên

sin 𝜋
2
= 1, 𝑑𝜃 = 0,

nên

𝑙(𝛾) =

∫︁
𝑑𝑙 =

∫︁
𝑟

√︁
02 + sin2(𝜋/2) 𝑑𝜑2 =

∫︁ 2𝜋

0

𝑟𝑑𝜑 = 2𝜋𝑟.

Đường thẳng trên mặt cầu

Mỗi mặt phẳng nếu cắt mặt cầu sẽ được một "đường". Đường đó là tập hợp các điểm thỏa mãn hệ phương
trình {︃

𝑥2 + 𝑦2 + 𝑧2 = 1

𝑎𝑥+ 𝑏𝑦 + 𝑐𝑧 = 0.

Ở đây lấy đường tròn đơn vị và mặt phẳng đi qua gốc tọa độ cho đơn giản, (𝑎, 𝑏, 𝑐) là các số cố định.

Khi đó hệ tọa độ cầu sẽ là

𝑥 = cos𝜑 cos 𝑡− sin𝜑 sin 𝑡 cos 𝑡
𝑦 = sin𝜑 sin 𝑡 cos 𝜃
𝑧 = sin 𝑡 sin 𝜃.

Trong đó 𝜃 và 𝜑 cố định, còn 𝑡 thay đổi từ 0 tới 2𝜋 trên vòng tròn cắt.

Trên mặt cầu không tồn tại hai đường song song.
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Phép chiếu lập thể

Phép chiếu lập thể (Stereographic projection, Стереографическая проекция) là phép chiếu mặt
cầu lên mặt phẳng.

P

P ′
x y

z

Ở hình trên, xét mặt cầu

𝑥2 + 𝑦2 + (𝑧 − 1)2 = 1

và mặt phẳng 𝑧 = 0.

Chọn điểm cực bắc 𝐼(0, 0, 2) làm tâm phép chiếu. Khi đó, phép chiếu lập thể biến mỗi điểm 𝑃 thuộc mặt
cầu thành điểm 𝑃 ′ thuộc mặt phẳng chiếu sao cho 𝐼, 𝑃 và 𝑃 ′ thẳng hàng. Nói cách khác, 𝑃 ′ là giao điểm
của đường thẳng 𝐼𝑃 và mặt phẳng chiếu.

A
I

O B

1

Trong trường hợp này, khi chiếu một vòng tròn song song mặt phẳng lên mặt phẳng ta được hình tròn. Lúc
này, góc 𝜑 sẽ không thay đổi khi chiếu lên mặt phẳng, nhưng bán kính sẽ thay đổi, không phải là bán kính
mặt cầu ban đầu.

Để tìm bán kính hình tròn ở mặt phẳng chiếu, trong tam giác vuông 𝐼𝑂𝐵 ta có

𝑂𝐵 = 𝐼𝑂 · cot∠𝐼𝐵𝑂 = 𝐼𝑂 · cot∠𝐼𝑂𝐴 = 𝐼𝑂 · cot
(︂
∠𝐼𝐶𝐴

2

)︂
= 𝐼𝑂 · cot 𝜃

2
.

Một công thức lượng giác quen thuộc

cos2 𝛼 =
1 + cos 2𝛼

2
, sin2 𝛼 =

1− cos 2𝛼
2

,

suy ra

cot2 𝛼 =
cos2 𝛼
sin2 𝛼

=
(1 + cos 2𝛼)/2
(1− sin 2𝛼)/2

=
1 + cos 2𝛼
1− cos 2𝛼

.

Như vậy

cot 𝜃
2
=

√︂
1 + cos 𝜃
1− cos 𝜃
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và thay 𝐼𝑂 = 2 vào ta có ⎧⎨⎩𝑟 = 2

√︂
1 + cos 𝜃
1− cos 𝜃

= 𝑂𝐵

𝜑′ = 𝜑

là các tham số của ảnh trên mặt phẳng qua phép chiếu lập thể. Tọa độ của điểm trên mặt phẳng chiếu là{︃
𝑢 = 𝑟 cos𝜑′ = 𝑟(𝜃) cos𝜑
𝑣 = 𝑟 sin𝜑′ = 𝑟(𝜃) sin𝜑.

Ở trên, bình phương độ dài đường cong trên mặt cầu được tính theo vi phân

𝑑𝑙2 = 𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2

và ở tọa độ cầu là

𝑑𝑙2 = 𝑑𝜃2 + sin2 𝜑𝑑𝜑2

với 𝑟 = 1.

Bây giờ chúng ta tìm cách thay 𝑑𝜃 và 𝑑𝜑 từ kết quả phép chiếu lập thể vào bình phương vi phân đường
cong. Để làm điều đó thì cần biểu diễn ngược lại 𝜃 theo 𝑟, còn 𝜑′ = 𝜑 nên không cần xét tới.

Ta có

𝑟 = 2

√︂
1 + cos 𝜃
1− cos 𝜃

=⇒ cos 𝜃 = 𝑟2 − 4

𝑟2 + 4
⇐⇒ 𝜃 = arccos

(︂
𝑟2 − 4

𝑟2 + 4

)︂
.

Lúc này, đạo hàm của arccos(𝑥) = − 1√
1− 𝑥2

nên mình suy ra

𝑑𝜃 = − 1√︃
1−

(︂
𝑟2 − 4

𝑟2 + 4

)︂2
·
(︂
𝑟2 − 4

𝑟2 + 4

)︂′

𝑑𝑟

= − 1
1

𝑟2 + 4
·
√︀
(𝑟2 + 4)2 − (𝑟2 − 4)2

· 2𝑟(𝑟
2 + 4)− 2𝑟(𝑟2 − 4)

(𝑟2 + 4)2
𝑑𝑟

= − 16𝑟

(𝑟2 + 4) ·
√
16𝑟2

𝑑𝑟.

Bình phương hai vế suy ra

𝑑𝜃2 =
16

(𝑟2 + 4)2
𝑑𝑟2.

Tương tự, với sin2 𝜃 𝑑𝜑2 thì ta thay biểu diễn cos 𝜃 theo 𝑟 bên trên vào

sin2 𝜃 = 1− cos2 𝜃 = 1−
(︂
𝑟2 − 4

𝑟2 + 4

)︂2

=
16𝑟2

(𝑟2 + 4)2
.

Như vậy ta có

𝑑𝑙2 =
16

(𝑟2 + 4)2
(𝑑𝑟2 + 𝑟2 𝑑𝜑2).
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Ở trên chúng ta muốn dời tọa độ (𝑟, 𝜑) sang tọa độ (𝑢, 𝑣) với{︃
𝑢 = 𝑟 cos𝜑
𝑣 = 𝑟 sin𝜑

⇐⇒

{︃
𝑟2 = 𝑢2 + 𝑣2

𝜑 = arctan 𝑢
𝑣

và

𝑑𝑙2 =
16

(𝑢2 + 𝑣2 + 4)2
(𝑑𝑢2 + 𝑑𝑣2).

Câu hỏi. Ảnh của các đường thẳng trên mặt cầu (các vòng tròn lớn) lên mặt phẳng là gì?

Trả lời. Đối với các đường không đi qua cực bắc (điểm 𝐼) thì ảnh là hình tròn, còn các đường đi qua cực
bắc thì ảnh là đường thẳng đi qua gốc tọa độ.

[TODO] Tìm phương trình của hình chiếu.

Không gian giả Euclid

Trong không gian Euclid, tích vô hướng của hai vector 𝑥 = (𝑥1, 𝑥2, 𝑥3) và 𝑦 = (𝑦1, 𝑦2, 𝑦3) là

R3 : ⟨𝑥,𝑦⟩ = 𝑥1𝑦1 + 𝑥2𝑦2 + 𝑥3𝑦3.

Trong không gian giả Euclid, tích vô hướng sẽ là

R3
1 : ⟨𝑥,𝑦⟩ = −𝑥1𝑦1 + 𝑥2𝑦2 + 𝑥3𝑦3.

Như vậy, độ dài vector ‖𝑥‖2 = ⟨𝑥,𝑥⟩ trong không gian giả Euclid có thể là số âm.

Giả cầu (Pseudosphere)

Dễ thấy rằng do mặt cầu là tập hợp các điểm cách điểm cố định một đoạn không đổi 𝑟 nên cũng tương
đương với mặt cầu là tập các vector có độ dài bằng 𝑟, nghĩa là

𝑆2 = {𝑥 : ⟨𝑥,𝑥⟩ = 𝑟2} ⊂ R3.

Bây giờ ta định nghĩa giả cầu là tập các điểm thỏa phương trình

−𝑥2 + 𝑦2 + 𝑧2 = −𝑟2,

hay tương đương là

𝐿2 = {𝑥 : ⟨𝑥,𝑥⟩ = −𝑟2} ⊂ R3
1.

Để tham số hóa giả cầu chúng ta cần thống nhất hệ thống tọa độ trong không gian giả Euclid R3
1:

1. Tích vô hướng trong R3
1 là

⟨𝑥,𝑦⟩ = −𝑥1𝑦1 + 𝑥2𝑦2 + 𝑥3𝑦3.

2. Độ dài vector (chuẩn Euclid) vẫn là tích vô hướng của chính nó

‖𝑥‖ = ⟨𝑥,𝑥⟩.

3. Vi phân độ dài đường cong
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𝑑𝑙2 = ‖(𝑑𝑥, 𝑑𝑦, 𝑑𝑧)‖ = −𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2.

Tiếp theo chúng ta sẽ biểu diễn giả cầu trong tọa độ cực

𝐿2 =

⎧⎪⎨⎪⎩
𝑥 = cosh𝑢
𝑦 = sinh𝑢 cos 𝜃
𝑧 = sinh𝑢 sin 𝜃

Ở đây các công thức có vẻ hơi lạ vì không phải các hàm lượng giác (trigonometric functions) như chúng ta
hay gặp, mà là các hàm hyperbol (hyperbolic function) được định nghĩa như sau:

sinh𝑥 =
𝑒𝑥 − 𝑒−𝑥

2
, cosh𝑥 =

𝑒𝑥 + 𝑒−𝑥

2
.

Như vậy ta có thể tìm được các vi phân

𝑑𝑥 =
𝜕𝑥

𝜕𝑢
𝑑𝑢+

𝜕𝑥

𝜕𝜃
𝑑𝜃 = sinh𝑢 𝑑𝑢

𝑑𝑦 =
𝜕𝑦

𝜕𝑢
𝑑𝑢+

𝜕𝑦

𝜕𝜃
𝑑𝜃 = cosh𝑢 cos 𝜃 𝑑𝑢− sinh𝑢 sin 𝜃 𝑑𝜃

𝑑𝑧 =
𝜕𝑧

𝜕𝑢
𝑑𝑢+

𝜕𝑧

𝜕𝜃
𝑑𝜃 = cosh𝑢 sin 𝜃 𝑑𝑢+ sinh𝑢 cos 𝜃 𝑑𝜃

Như vậy ta có

𝑑𝑙2 = −𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2 = 𝑑𝑢2 + sinh2 𝑢 𝑑𝜃,

ở đây lưu ý là

cosh2 𝑢− sinh2 𝑢 =
(𝑒𝑢 + 𝑒−𝑢)2 − (𝑒𝑢 − 𝑒−𝑢)2

4
=

4𝑒𝑢𝑒−𝑢

4
= 1.

Tương tự, bây giờ, vòng tròn lớn trong không gian giả Euclid là giao giữa mặt phẳng và giả cầu, tức là

{−𝑥2 + 𝑦2 + 𝑧2 = −1, 𝑎𝑥+ 𝑏𝑦 + 𝑐𝑧 = 0}

với 𝑎, 𝑏, 𝑐 cố định.

Phép chiếu lập thể trên giả cầu

Khi chúng ta cắt giả cầu với một mặt phẳng (lát cắt), ví dụ 𝑧 = 0, chúng ta sẽ thấy một đường hyperbol.

S

P

O O′

σ(P )
x

y
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Hình trên là phép chiếu lên mặt phẳng 𝑥 = 0 và chúng ta đang nhìn từ trên xuống (theo hướng 𝑧 = 0).

Kí hiệu phép chiếu lập thể tâm 𝑆 biến điểm 𝑃 trên giả cầu thành điểm 𝜎(𝑃 ). Lúc này chúng ta sẽ thiết lập
ánh xạ 𝜎 : (𝑥, 𝑦, 𝑧)→ (𝑢, 𝑣) với (𝑥, 𝑦, 𝑧) ∈ 𝐿2 là điểm thuộc giả cầu.

Trong trường hợp này các thông số ban đầu là

𝑆 = (−1, 0, 0),
𝑃 = (𝑥, 𝑦, 𝑧),

− 𝑥2 + 𝑦2 + 𝑧2 = −1,
𝜎(𝑃 ) = (𝑢, 𝑣).

Đầu tiên phương trình tham số của đường thẳng 𝑆𝑃 là⎧⎪⎨⎪⎩
𝑥 = 𝑥(𝑡) = −1 + (𝑥+ 1)𝑡

𝑦 = 𝑦(𝑡) = 𝑦𝑡

𝑧 = 𝑧(𝑡) = 𝑧𝑡

Đường thẳng 𝑆𝑃 cắt mặt phẳng 𝑥 = 0 tại 𝑥(𝑡0) = 0, như vậy

−1 + (𝑥+ 1)𝑡0 = 0⇐⇒ 𝑡0 =
1

𝑥+ 1
=⇒ (𝑦, 𝑧)(𝑡0) =

(︂
𝑦

𝑥+ 1
,

𝑧

𝑥+ 1

)︂
.

Lúc này tọa độ (𝑢, 𝑣) chính là (𝑦, 𝑧)(𝑡0), nói cách khác

(𝑦, 𝑧)(𝑡0) = (𝑢, 𝑣) =⇒

{︃
𝑦 = (𝑥+ 1)𝑢

𝑧 = (𝑥+ 1)𝑣

Bây giờ thay ngược 𝑦 và 𝑧 vào biểu thức giả cầu (hyperbolic) ta được

− 𝑥2 + 𝑦2 + 𝑧2 = −1
− 𝑥2 + (𝑥+ 1)2𝑢2 + (𝑥+ 1)2𝑣2 = −1
− 𝑥2 + (𝑥+ 1)2(𝑢2 + 𝑣2) + 1 = 0

− 𝑥2 + (𝑥2 + 2𝑥+ 1)(𝑢2 + 𝑣2) + 1 = 0

(𝑢2 + 𝑣2 − 1)𝑥2 + 2(𝑢2 + 𝑣2)𝑥+ (𝑢2 + 𝑣2 + 1) = 0

Xem đây là phương trình bậc hai theo 𝑥, tính delta ta có

Δ′ = (𝑢2 + 𝑣2)2 − (𝑢2 + 𝑣2 − 1)(𝑢2 + 𝑣2 + 1) = (𝑢2 + 𝑣2)2 − ((𝑢2 + 𝑣2)2 − 1) = 1.

Nghiệm của phương trình bậc hai khi đó là

𝑥1,2 =
−(𝑢2 + 𝑣2)± 1

𝑢2 + 𝑣2 − 1
.

Như vậy

𝑥1 = −1, 𝑥2 =
1 + 𝑢2 + 𝑣2

1− 𝑢2 − 𝑣2
.

Nghiệm thứ hai cho phép biểu diễn 𝑦 và 𝑧 theo 𝑢 và 𝑣:

𝑥+ 1 =
1 + 𝑢2 + 𝑣2

1− 𝑢2 − 𝑣2
+ 1 =

2

1− 𝑢2 − 𝑣2

=⇒

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑥 =

1 + 𝑢2 + 𝑣2

1− 𝑢2 − 𝑣2
𝑦 = (𝑥+ 1)𝑢 =

2𝑢

1− 𝑢2 − 𝑣2
𝑧 = (𝑥+ 1)𝑣 =

2𝑣

1− 𝑢2 − 𝑣2
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Bây giờ chúng ta đã có thể tính được độ dài hình chiếu. Đầu tiên ta vi phân các biến 𝑥, 𝑦 và 𝑧 theo 𝑢 và 𝑣:

𝑑𝑥 =
𝜕𝑥

𝜕𝑢
𝑑𝑢+

𝜕𝑥

𝜕𝑣
𝑑𝑣 =

4𝑢 𝑑𝑢+ 4𝑣 𝑑𝑣

(1− 𝑢2 − 𝑣2)2

𝑑𝑦 =
𝜕𝑦

𝜕𝑢
𝑑𝑢+

𝜕𝑦

𝜕𝑣
𝑑𝑣 =

2(1 + 𝑢2 − 𝑣2)
(1− 𝑢2 − 𝑣2)2

𝑑𝑢+
4𝑢𝑣

(1− 𝑢2 − 𝑣2)2
𝑑𝑣

𝑑𝑧 =
𝜕𝑧

𝜕𝑢
𝑑𝑢+

𝜕𝑧

𝜕𝑣
𝑑𝑣 =

4𝑢𝑣

(1− 𝑢2 − 𝑣2)2
𝑑𝑢+

2(1− 𝑢2 + 𝑣2)

(1− 𝑢2 − 𝑣2)2
𝑑𝑣

Khi đó bình phương vi phân đường cong 𝑑𝑙2 là

(1− 𝑢2 − 𝑣2)4 𝑑𝑙2 = (1− 𝑢2 − 𝑣2)4 · (−𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2)

= −(4𝑢 𝑑𝑢+ 4𝑣 𝑑𝑣)2 +
(︀
2(1 + 𝑢2 − 𝑣2) 𝑑𝑢+ 4𝑢𝑣 𝑑𝑣

)︀2
+
(︀
4𝑢𝑣 𝑑𝑢+ 2(1 + 𝑣2 − 𝑢2) 𝑑𝑣

)︀2
= (−16𝑢2 + 4(1 + 𝑢2 − 𝑣2)2 + 16𝑢2𝑣2) 𝑑𝑢2

+ (−32𝑢𝑣 + 16𝑢𝑣(1 + 𝑢2 − 𝑣2) + 16𝑢𝑣(1− 𝑢2 + 𝑣2)) 𝑑𝑢𝑑𝑣

+ (−16𝑣2 + 16𝑢2𝑣2 + 4(1− 𝑢2 + 𝑣2)2) 𝑑𝑣2

= 4(1− 𝑢2 − 𝑣2)2 𝑑𝑢2 + 0 𝑑𝑢𝑑𝑣 + 4(1− 𝑢2 − 𝑣2)2 𝑑𝑣2

Như vậy thu được

𝑑𝑙2 =
4

(1− 𝑢2 − 𝑣2)2
(𝑑𝑢2 + 𝑑𝑣2).

Cách xây dựng của Poincare

Xét đường thẳng 𝑥𝑥′. Đường thẳng 𝑥𝑥′ chia mặt phẳng làm hai phần, ta gọi là nửa trên và nửa dưới.

Bây giờ ta xây dựng các đối tượng phi Euclid sau:

1) Điểm phi Euclid là tất cả điểm ở nửa mặt phẳng trên chia bởi 𝑥𝑥′ nhưng không tính các điểm trên
𝑥𝑥′

2) Đường thẳng phi Euclid là mọi nửa đường thẳng vuông góc với 𝑥𝑥′ và nửa đường tròn tâm nằm trên
𝑥𝑥′ không tính các điểm nằm trên 𝑥𝑥′.

3) Nửa mặt phẳng trên chia bởi đường thẳng 𝑥𝑥′ được gọi là mặt phẳng phi Euclid.

x x′A1 A2 A3

M

N

C

(d1) (d2)

Cách xây dựng này thỏa mãn các tiên đề Euclid (trừ tiên đề V):

• qua hai điểm phân biệt chỉ vẽ được một đường thẳng: với hai điểm 𝐴 và 𝐵 bất kì thuộc mặt phẳng phi
Eulicd, nếu $AB perp xx'$ thì ta vẽ đường thẳng $AB$, ngược lại ta vẽ đường trung trực của $AB$
cắt 𝑥𝑥′ tại 𝐼 và vẽ đường tròn tâm 𝐼, bán kính $IA$. Như vậy các đường thẳng được xác định duy
nhất

• đường thẳng kéo dài vô hạn về hai phía: trong hai trường hợp, đường thẳng tiệm cận 𝑥𝑥′ nhưng không
chạm vào 𝑥𝑥′. Do đó đường thẳng kéo dài vô hạn về 𝑥𝑥′ (tương tự việc chứng minh đoạn (0; 1) có
điểm bằng với R của Cantor).
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Từ hình vẽ trên có thể thấy có nhiều hơn một đường thẳng song với $(d_2)$ mà đi qua điểm 𝐶 là đường
tròn màu cam và đường tròn màu xanh nước suối.

Trong trường hợp này, tổng ba góc của tam giác có thể có số đo tùy ý, thậm chí bằng 0. Trên hình vẽ, tam
giác tạo bởi 𝐴1, 𝐴2 và 𝐴3, giới hạn bởi các đường tròn màu hường, màu xanh lá cỏ và màu xanh nước suối,
tạo thành tam giác có tổng ba góc bằng 0.

2.4 Giải tích

2.4.1 Giải tích

Hình 2.44: Karl Theodor Wilhelm Weierstrass (1815-1897)

Phần này mình lấy từ các sách giáo khoa toán của bậc THPT thời mình còn đi học (trước 2018), chủ yếu
là cuốn [1].

Giới hạn

Giới hạn của dãy số

INFO-CIRCLE Definition 1.41 (Giới hạn hữu hạn của dãy số)
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Cho dãy số {𝑎𝑛}. Ta nói dãy {𝑎𝑛} có giới hạn hữu hạn 𝐿 nếu với mọi 𝜀 > 0, tồn tại 𝑛0 ∈ N sao cho với
mọi 𝑛 > 𝑛0 thì

|𝑎𝑛 − 𝐿| < 𝜀.

Kí hiệu: lim
𝑛→∞

𝑎𝑛 = 𝐿.

INFO-CIRCLE Example 1.22

Xét dãy số cho bởi công thức 𝑎𝑛 =
1

𝑛
. Ta chứng minh dãy số có giới hạn hữu hạn là 0.

Với mọi 𝜀 > 0 tùy ý, ta cần chứng minh tồn tại số 𝑛0 > 1 sao cho với mọi 𝑛 > 𝑛0 thì |𝑎𝑛 − 0| < 𝜀.

Nói cách khác 𝑎𝑛0
< 𝜀, hay tương đương với

1

𝑛0
< 𝜀⇔ 𝑛0 >

1

𝜀
.

Vậy ta chỉ cần chọn 𝑛0 thỏa bất đẳng thức trên (luôn tìm được).

Kết luận: lim
𝑛→∞

𝑎𝑛 = 0.

INFO-CIRCLE Definition 1.42 (Dãy số có giới hạn vô cực)

Cho dãy số {𝑎𝑛}. Ta nói dãy số có giới hạn ở dương vô cực nếu với mọi 𝑀 > 0, tồn tại 𝑛0 ∈ N sao cho
với mọi 𝑛 > 𝑛0 thì 𝑎𝑛 > 𝑀 .

Nói cách khác, nếu ta chọn một số 𝑀 rất lớn bất kì, thì mọi số hạng của dãy số kể từ một số hạng nào đó
trở đi luôn lớn hơn 𝑀 . Định nghĩa về dãy số có giới hạn ở âm vô cực cũng tương tự.

Giới hạn của hàm số

Để định nghĩa giới hạn của hàm số 𝑦 = 𝑓(𝑥) khi 𝑥 tiến tới 𝑥0 ta có hai loại định nghĩa.

INFO-CIRCLE Definition 1.43 (Giới hạn hàm số qua giới hạn dãy số)

Xét hàm số 𝑓(𝑥). Ta nói hàm số có giới hạn hữu hạn 𝐿 khi 𝑥 tiến tới 𝑥0, nếu với mọi dãy số {𝑥𝑛} mà
lim

𝑛→∞
𝑥𝑛 = 𝑥0, thì lim

𝑛→∞
𝑓(𝑥𝑛) = 𝐿.

Định nghĩa này tuân theo giới hạn của dãy số. Khi đó mọi phần tử của dãy số từ một số hạng nào đó trở
đi cho giá trị 𝑓(𝑥𝑛) tiến về 𝐿.

Định nghĩa của hàm số theo kiểu Cauchy (hay còn được gọi là ngôn ngữ 𝛿 − 𝜀) là kiểu định nghĩa phổ biến
được giảng dạy trong nhà trường.

INFO-CIRCLE Definition 1.44 (Giới hạn hàm số kiểu Cauchy)
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Xét hàm số 𝑓(𝑥). Ta nói hàm số có giới hạn hữu hạn 𝐿 khi 𝑥 tiến tới 𝑥0, nếu với mọi 𝜀 > 0, tồn tại 𝛿 > 0
sao cho với mọi 𝑥 mà |𝑥− 𝑥0| < 𝛿 thì |𝑓(𝑥)− 𝐿| < 𝜀.

Kí hiệu: lim
𝑥→𝑥0

𝑓(𝑥) = 𝐿.

Ta có thể thấy ở đây 𝑥 tiến về 𝑥0 (khá giống định nghĩa giới hạn hàm số) và 𝑓(𝑥) tương ứng tiến về 𝐿.

Tương tự ta cũng có giới hạn hàm số ở vô cực.

INFO-CIRCLE Definition 1.45 (Giới hạn hàm số ở vô cực)

Với hàm số 𝑓(𝑥), ta nói hàm số có giới hạn tại dương vô cực khi 𝑥 tiến về 𝑥0 nếu với mọi 𝑀 > 0, tồn tại
𝛿 > 0 sao cho với mọi 𝑥 mà |𝑥− 𝑥0| < 𝛿 thì 𝑓(𝑥) > 𝑀 .

Kí hiệu: lim
𝑥→𝑥0

𝑓(𝑥) = +∞.

INFO-CIRCLE Definition 1.46 (Giới hạn một bên)

Ta nói hàm số 𝑓(𝑥) có giới hạn phải 𝐿 tại 𝑥0 khi 𝑥 tiến về bên phải 𝑥0 nếu với mọi 𝜀 > 0, tồn tại 𝛿 > 0
sao cho với mọi 0 < 𝑥− 𝑥0 < 𝛿 thì |𝑓(𝑥)− 𝐿| < 𝜀.

Kí hiệu: lim
𝑥→𝑥+

0

𝑓(𝑥) = 𝐿.

Nghĩa là chúng ta chỉ xét giới hạn khi 𝑥 tiến tới 𝑥0 từ bên phải 𝑥 > 𝑥0. Tương tự cho giới hạn trái.

Lưu ý rằng trong nhiều trường hợp, mặc dù cùng tiến tới 𝑥0 nhưng giới hạn trái và giới hạn phải có thể
không bằng nhau.

INFO-CIRCLE Example 1.23

Xét hàm số 𝑦 =
1

𝑥
. Ta thấy hàm số không xác định tại 𝑥 = 0, và giới hạn trái và phải khác nhau do

lim
𝑥→0+

= +∞, lim
𝑥→0−

= −∞.

Tính liên tục của hàm số

Cho hàm số 𝑓(𝑥) xác định trên miền 𝐷 và 𝑥0 là một điểm thuộc 𝐷.

INFO-CIRCLE Definition 1.47 (Hàm số liên tục tại một điểm)

Ta nói hàm số 𝑓(𝑥) liên tục tại 𝑥0 nếu

lim
𝑥→𝑥0

𝑓(𝑥) = 𝑓(𝑥0).

Định nghĩa tương tự cho liên tục trái và liên tục phải (ta lấy giới hạn một bên).

Như vậy, có ba khả năng hàm số không liên tục tại một điểm.
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1. Hàm số không xác định tại 𝑥0.

2. Hàm số xác định tại 𝑥0 nhưng giới hạn tại đó không bằng 𝑓(𝑥0).

3. Giới hạn trái và giới hạn phải không bằng nhau.

Nếu hàm số không liên tục tại 𝑥0, ta gọi hàm số bị gián đoạn tại 𝑥0.

Nếu hàm số liên tục tại mọi điểm trên khoảng (𝑎; 𝑏) thì ta nói hàm số liên tục trên khoảng đó.

Tính đơn điệu và cực trị

Đầu tiên chúng ta cần một định lý về tính đơn điệu của hàm số khả vi.

INFO-CIRCLE Theorem 1.6

Xét hàm số 𝑓(𝑥) khả vi trên khoảng (𝑎; 𝑏). Nếu 𝑓 ′(𝑥) > 0 với mọi 𝑥 ∈ (𝑎; 𝑏) thì 𝑓(𝑥) đồng biến trên
(𝑎; 𝑏).

INFO-CIRCLE Chứng minh

Theo định nghĩa đạo hàm thì

𝑓 ′(𝑥) = lim
Δ𝑥→0

𝑓(𝑥+Δ𝑥)− 𝑓(𝑥)
Δ𝑥

> 0.

Như vậy, nếu Δ𝑥 > 0 thì 𝑓(𝑥 +Δ𝑥) − 𝑓(𝑥) > 0. Ta cũng có 𝑥 +Δ𝑥 > 𝑥 nên từ đây suy ra 𝑓(𝑥) đồng
biến trên (𝑎; 𝑏).

Tương tự:

1. Nếu 𝑓 ′(𝑥) < 0 với mọi 𝑥 ∈ (𝑎; 𝑏) thì 𝑓(𝑥) nghịch biến trên (𝑎; 𝑏).

2. Nếu 𝑓 ′(𝑥) = 0 với mọi 𝑥 ∈ (𝑎; 𝑏) thì 𝑓(𝑥) có giá trị không đổi trên (𝑎; 𝑏).

INFO-CIRCLE Definition 1.48 (Cực tiểu của hàm số)

Xét hàm số 𝑓(𝑥) liên tục trên khoảng (𝑎; 𝑏). Điểm (𝑥0, 𝑓(𝑥0)) được gọi là cực tiểu của hàm số 𝑓(𝑥) nếu
tồn tại một lân cận 𝑈 chứa 𝑥0 nằm trong khoảng (𝑎; 𝑏) sao cho với mọi 𝑥 ∈ 𝑈 thì 𝑓(𝑥) > 𝑓(𝑥0).

INFO-CIRCLE Definition 1.49 (Cực đại của hàm số)

Xét hàm số 𝑓(𝑥) liên tục trên khoảng (𝑎; 𝑏). Điểm (𝑥0, 𝑓(𝑥0)) được gọi là cực đại của hàm số 𝑓(𝑥) nếu
tồn tại một lân cận 𝑈 chứa 𝑥0 nằm trong khoảng (𝑎; 𝑏) sao cho với mọi 𝑥 ∈ 𝑈 thì 𝑓(𝑥) 6 𝑓(𝑥0).

Theo định nghĩa cực tiểu thì chỉ cần tồn tại lân cận chứa 𝑥0 mà 𝑓(𝑥) > 𝑓(𝑥0) thì điểm đó là cực tiểu. Như
vậy một hàm số có thể có nhiều cực tiểu, tương tự cũng có thể có nhiều cực đại.

Lưu ý rằng cực đại và cực tiểu không phải điểm chỉ giá trị lớn nhất hay giá trị nhỏ nhất của hàm số. Nó chỉ
lớn nhất hoặc nhỏ nhất trong vùng lân cận đó theo định nghĩa, nên người ta còn gọi là cực trị địa phương.

Từ đó chúng ta có tính chất của cực trị.
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INFO-CIRCLE Remark 1.11

Xét hàm số 𝑓(𝑥) khả vi trên khoảng (𝑎; 𝑏) và một điểm 𝑥0 ∈ (𝑎; 𝑏). Gọi 𝑓 ′(𝑥) là đạo hàm của 𝑓(𝑥) trên
(𝑎; 𝑏). Khi đó điểm 𝑥0 ∈ (𝑎; 𝑏) được gọi là

1. Nếu 𝑓 ′(𝑥) đổi chiều từ âm sang dương khi đi qua 𝑥0 thì (𝑥0, 𝑓(𝑥0)) là điểm cực tiểu.

2. Nếu 𝑓 ′(𝑥) đổi chiều từ dương sang âm khi đi qua 𝑥0 thì (𝑥0, 𝑓(𝑥0)) là điểm cực đại.

INFO-CIRCLE Definition 1.50 (Dãy Cauchy)

Dãy {𝑥𝑛} được gọi là dãy Cauchy nếu với mọi 𝜀 > 0, tồn tại 𝑁0 ∈ N sao cho, với mọi 𝑚,𝑛 > 𝑁0 thì
|𝑥𝑚 − 𝑥𝑛| < 𝜀.

INFO-CIRCLE Theorem 1.7 (Tiêu chuẩn Cauchy)

Dãy số {𝑥𝑛} có giới hạn hữu hạn khi và chỉ khi nó là dãy Cauchy.

Đạo hàm

Đạo hàm

INFO-CIRCLE Definition (Đạo hàm)

Cho hàm số 𝑓(𝑥) xác định trên miền 𝐷 và 𝑥0 là điểm thuộc 𝐷. Ta nói hàm số 𝑓(𝑥) có đạo hàm tại 𝑥0
(hoặc khả vi tại 𝑥0) nếu tồn tại giới hạn hữu hạn

lim
𝑥→𝑥0

𝑓(𝑥)− 𝑓(𝑥0)
𝑥− 𝑥0

. (2.3)

Kí hiệu đạo hàm của 𝑓 tại 𝑥0 là 𝑓 ′(𝑥0).

Lưu ý rằng nếu giới hạn trên không phải là giới hạn hữu hạn (không tồn tại hoặc tiến tới vô cực) thì hàm
số không có đạo hàm tại điểm 𝑥0.

INFO-CIRCLE Example

Tính đạo hàm của hàm số 𝑓(𝑥) = 𝑥3 + 2𝑥2 − 4 tại 𝑥0 = 4.

Ta khai triển
𝑓(𝑥)− 𝑓(𝑥0)

𝑥− 𝑥0
=
𝑓(𝑥)− 𝑓(4)

𝑥− 4

=
𝑥3 + 2𝑥2 − 4− (43 + 2 · 42 − 4)

𝑥− 4

=
(𝑥3 − 43) + 2(𝑥2 − 42)

𝑥− 4

=
(𝑥− 4)(𝑥2 + 4𝑥+ 16) + 2(𝑥− 4)(𝑥+ 4)

𝑥− 4

=𝑥2 + 4𝑥+ 16 + 2(𝑥+ 4).
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Cho 𝑥 tiến tới 4 thì ta có đạo hàm tại 𝑥 = 4 là

𝑓 ′(4) = lim
𝑥→4

𝑓(𝑥)− 𝑓(4)
𝑥− 4

= lim
𝑥→4

(𝑥2 + 4𝑥+ 16 + 2(𝑥+ 4))

=42 + 4 · 4 + 16 + 2 · (4 + 4) = 64.

INFO-CIRCLE Example

Xét hàm số 𝑓(𝑥) = 𝑥2 + 1 trên R. Tìm đạo hàm tại 𝑥0 ∈ R.

Ta có

𝑓(𝑥)− 𝑓(𝑥0) = 𝑥2 + 1− (𝑥20 + 1) = (𝑥− 𝑥0)(𝑥+ 𝑥0).

Khi đó 𝑓(𝑥)− 𝑓(𝑥0)
𝑥− 𝑥0

= 𝑥+ 𝑥0 nên ta có lim
𝑥→𝑥0

(𝑥+ 𝑥0) = 2𝑥0.

Trong định nghĩa ở (2.3), nếu ta đặt

Δ𝑥 = 𝑥− 𝑥0, Δ𝑦 = 𝑦 − 𝑦0 = 𝑓(𝑥)− 𝑓(𝑥0),

ta gọi Δ𝑥 là số gia của biến 𝑥, tương tự Δ𝑦 là số gia của biến 𝑦.

Trong định nghĩa, 𝑥 tiến tới 𝑥0 tương đương với Δ𝑥 tiến tới 0. Chuyển vế 𝑥0 ta có 𝑥 = 𝑥0 +Δ𝑥 và từ đó
𝑓(𝑥) = 𝑓(𝑥0 +Δ𝑥). Định nghĩa đạo hàm ở trên có thể được viết lại

𝑓 ′(𝑥0) = lim
Δ𝑥→0

𝑓(𝑥0 +Δ𝑥)− 𝑓(𝑥0)
Δ𝑥

= lim
Δ𝑥→0

Δ𝑦

Δ𝑥
.

Nếu hàm số có đạo hàm tại mọi điểm trên khoảng (𝑎, 𝑏) thì ta nói hàm số khả vi trên khoảng đó.

Ví dụ đối với hàm số 𝑓(𝑥) = 𝑥3 + 2𝑥2 − 4 như trên. Với mọi 𝑥0 ∈ R ta có

𝑓 ′(𝑥0) = lim
𝑥→𝑥0

𝑓(𝑥)− 𝑓(𝑥0)
𝑥− 𝑥0

= lim
𝑥→𝑥0

𝑥3 + 2𝑥2 − 4− (𝑥30 + 2𝑥20 − 4)

𝑥− 𝑥0

= lim
𝑥→𝑥0

(𝑥3 − 𝑥30) + 2(𝑥2 − 𝑥20)
𝑥− 𝑥0

= lim
𝑥→𝑥0

(𝑥2 + 𝑥𝑥0 + 𝑥20) + 2(𝑥+ 𝑥0)

=𝑥20 + 𝑥0 · 𝑥0 + 𝑥20 + 2(𝑥0 + 𝑥0) = 3𝑥20 + 4𝑥0.

Ta thấy rằng giới hạn trên luôn tồn tại với mọi 𝑥0 ∈ R nên thay 𝑥0 thành 𝑥 ta có đạo hàm 𝑓 ′(𝑥) = 3𝑥2 +4𝑥
của 𝑓(𝑥) trên R.

INFO-CIRCLE Remark

Từ định nghĩa ta thấy rằng nếu 𝑓(𝑥) khả vi tại 𝑥0 thì nó cũng liên tục tại 𝑥0. Tuy nhiên chiều ngược
lại không đúng. Ví dụ với hàm số 𝑦 = |𝑥|, hàm số liên tục tại 𝑥 = 0 nhưng giới hạn (đạo hàm) phải là
1, còn giới hạn (đạo hàm) trái là −1.
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Về mặt hình ảnh, khi hàm số khả vi tại một điểm thì đồ thị sẽ "trơn", không gấp khúc tại điểm đó.

INFO-CIRCLE Definition (Đạo hàm của hàm số trên một nửa khoảng hay một đoạn)

Cho hàm số 𝑓(𝑥) xác định trên tập 𝐾, trong đó 𝐾 là một nửa khoảng hay một đoạn.

Hàm số 𝑓(𝑥) được gọi là có đạo hàm trên nửa khoảng 𝐾 = [𝑎; 𝑏) nếu nó có đạo hàm tại mọi điểm thuộc
(𝑎; 𝑏) và có đạo hàm phải tại 𝑥 = 𝑎. Định nghĩa tương tự với 𝐾 = [𝑎; +∞).

Hàm số 𝑓(𝑥) được gọi là có đạo hàm trên nửa khoảng 𝐾 = (𝑎; 𝑏] nếu nó có đạo hàm tại mọi điểm thuộc
(𝑎; 𝑏) và có đạo hàm trái tại 𝑥 = 𝑏. Định nghĩa tương tự với 𝐾 = (−∞; 𝑏].

Hàm số 𝑓(𝑥) được gọi là có đạo hàm trên đoạn [𝑎; 𝑏] nếu nó có đạo hàm tại mọi điểm thuộc khoảng (𝑎; 𝑏),
có đạo hàm phải tại 𝑥 = 𝑎 và có đạo hàm trái tại 𝑥 = 𝑏.

Đạo hàm của hàm số hợp

INFO-CIRCLE Theorem

Nếu hàm số ℎ = ℎ(𝑥) có đạo hàm tại điểm 𝑥0 và hàm số 𝑦 = 𝑔(ℎ) có đạo hàm tại điểm ℎ0 = ℎ(𝑥0) thì
hàm số hợp 𝑓(𝑥) = 𝑔(ℎ(𝑥)) có đạo hàm tại điểm 𝑥0 và

𝑓 ′(𝑥) = 𝑔′(ℎ0) · ℎ′(𝑥0).

Nếu giả thiết trên đúng với mọi điểm 𝑥 thuộc tập xác định 𝐽 thì hàm số hợp 𝑦 = 𝑓(𝑥) có đạo hàm trên 𝐽 và

𝑓 ′(𝑥) = 𝑔′(ℎ(𝑥)) · ℎ′(𝑥).

Công thức trên còn được viết gọn là

𝑓 ′𝑥 = 𝑔′ℎ · ℎ′𝑥.

INFO-CIRCLE Chứng minh

Theo định nghĩa đạo hàm thì

ℎ(𝑥0 + 𝑎)− ℎ(𝑥0) = ℎ′(𝑥0) · 𝑎+ 𝜀(𝑎) · 𝑎,

với 𝜀(𝑎)→ 0 khi 𝑎→ 0. Ở đây 𝑎 đóng vai trò như Δ𝑥 trong định nghĩa.

Tương tự cho hàm 𝑔 ta có

𝑔(ℎ(𝑥0) + 𝑏)− 𝑔(ℎ(𝑥0)) = 𝑔′(ℎ(𝑥0)) · 𝑏+ 𝜂(𝑏) · 𝑏,

với 𝜂(𝑏)→ 0 khi 𝑏→ 0.

Bây giờ xét

𝑔(ℎ(𝑥0 + 𝑎))− 𝑔(ℎ(𝑥0)) = 𝑔(ℎ(𝑥0) + ℎ′(𝑥0) · 𝑎+ 𝜀(𝑎) · 𝑎)− 𝑔(ℎ(𝑥0))
= 𝑔(ℎ(𝑥0) + 𝑐)− 𝑔(ℎ(𝑥0)) = 𝑔′(ℎ(𝑥0)) · 𝑐+ 𝜂(𝑐) · 𝑐

với ℎ′(𝑥0) · 𝑎+ 𝜀(𝑎) · 𝑎 = 𝑐.

144 Chapter 2. Toán khó quá người ơi



Math Book

Ta thấy rằng khi 𝑎→ 0 thì 𝑐
𝑎
→ ℎ′(𝑥0) và 𝑐→ 0, như vậy 𝜂(𝑛)→ 0.

Từ đây suy ra

𝑔(ℎ(𝑥0 + 𝑎))− 𝑔(ℎ(𝑥0))
𝑎

→ 𝑔′(ℎ(𝑥0)) ·
𝑐

𝑎
+ 0→ 𝑔′(ℎ(𝑥0)) · ℎ′(𝑥0)

khi 𝑎→ 0.

Đạo hàm của hàm số ngược

Giả sử hàm số 𝑓 : 𝐼 → 𝐽 là một hàm khả nghịch, nghĩa là có hàm ngược. Khi đó nếu 𝑓 có đạo hàm khác 0
tại điểm 𝑓−1(𝑥0) thì 𝑓−1 cũng có đạo hàm tại điểm 𝑥0 theo đẳng thức

(𝑓−1)′(𝑥0) =
1

𝑓 ′(𝑓−1(𝑥0))
.

Chúng ta sẽ không chứng minh ở đây vì chứng minh khá phức tạp.

Về mặt hình học, vì đồ thị của hàm số 𝑦 = 𝑓(𝑥) và 𝑦 = 𝑓−1(𝑥) đối xứng với nhau qua đường thẳng 𝑦 = 𝑥
nên theo công thức trên, nếu hệ số góc của tiếp tuyến đồ thị hàm số 𝑦 = 𝑓(𝑥) tại điểm (𝑥0, 𝑦0) là 𝑘 thì hệ
số góc của tiếp tuyến đồ thị hàm số 𝑦 = 𝑓−1(𝑥) tại điểm (𝑦0, 𝑥0) là 1

𝑘
.

Vi phân

Trong cách kí hiệu

𝑓 ′(𝑥) = lim
Δ𝑥→0

Δ𝑦

Δ𝑥
,

ta thay Δ𝑦 thành 𝑑𝑦 và Δ𝑥 thành 𝑑𝑥 thì vi phân được định nghĩa là

𝑓 ′(𝑥) =
𝑑𝑦

𝑑𝑥
⇔ 𝑑𝑦 = 𝑓 ′(𝑥) 𝑑𝑥.

Cách kí hiệu vi phân có ý nghĩa là vế trái là vi phân theo biến 𝑦 và vế phải là vi phân theo biến 𝑥. Do
𝑦 = 𝑓(𝑥) nên khi vi phân hai vế sẽ cho ra 𝑑𝑦 = 𝑓 ′(𝑥) 𝑑𝑥 (vế trái là đa thức bậc 1 theo biến 𝑦).

Ví dụ phương trình 𝑦2 = 𝑥3 + 4𝑥− 7 thì khi vi phân hai vế ta có

(𝑦2)′ 𝑑𝑦 = (𝑥3 + 4𝑥− 7) 𝑑𝑥⇐⇒ 2𝑦 𝑑𝑦 = (3𝑥2 + 4) 𝑑𝑥.

Đạo hàm một số hàm nhiều biến

Hàm số cho giá trị là số vô hướng

Giả sử ta có vector hàng 𝑥 = (𝑥1, . . . , 𝑥𝑛) và hàm số 𝑓 có biến là vector 𝑥. Nói cách khác là 𝑓 : R𝑛 → R,
𝑓(𝑥) = 𝑓(𝑥1, . . . , 𝑥𝑛).

Khi đó đạo hàm riêng của hàm 𝑓 theo vector 𝑥 cũng là một vector (nếu 𝑥 là vector hàng thì đạo hàm riêng
cũng là vector hàng và ngược lại) và được kí hiệu

∇𝑓(𝑥) =
(︂
𝜕𝑓

𝜕𝑥1
· · · 𝜕𝑓

𝜕𝑥𝑛

)︂
Ví dụ, đối với hàm tuyến tính

𝑓(𝑥) = 𝑎1𝑥1 + . . .+ 𝑎𝑛𝑥𝑛 = 𝑎 · 𝑥⊤
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thì ta thấy rằng 𝜕𝑓

𝜕𝑥𝑖
= 𝑎𝑖. Khi đó

∇𝑓(𝑥) =
(︂
𝜕𝑓

𝜕𝑥1
· · · 𝜕𝑓

𝜕𝑥𝑛

)︂
= (𝑎1, . . . , 𝑎𝑛) = 𝑎.

Ta thấy rằng 𝑓(𝑥) = 𝑎 · 𝑥⊤ = 𝑥 · 𝑎⊤. Do đó

∇(𝑎 · 𝑥⊤) = ∇(𝑥 · 𝑎⊤) = 𝑎.

Đạo hàm riêng cấp hai được cho bởi ma trận được gọi là ma trận Hessian.

∇2𝑓(𝑥) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜕2𝑓

𝜕𝑥21

𝜕2𝑓

𝜕𝑥1𝑥2
· · · 𝜕2𝑓

𝜕𝑥1𝑥𝑛
𝜕2𝑓

𝜕𝑥2𝑥1

𝜕2𝑓

𝜕𝑥22
· · · 𝜕2𝑓

𝜕𝑥2𝑥𝑛

· · · · · ·
. . . · · ·

𝜕2𝑓

𝜕𝑥𝑛𝑥1

𝜕2𝑓

𝜕𝑥𝑛𝑥2
· · · 𝜕2𝑓

𝜕𝑥2𝑛

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Theo tính chất của đạo hàm riêng cấp hai có thể thấy ma trận trên là ma trận đối xứng.

Nếu đầu vào là một ma trận, hay 𝑓 : R𝑛×𝑚 → R, 𝑓(𝑋) thì ta làm tương tự

Giả sử

𝑋 =

⎛⎜⎜⎜⎝
𝑥11 𝑥12 · · · 𝑥1𝑚
𝑥21 𝑥22 · · · 𝑥2𝑚

· · · · · ·
. . . · · ·

𝑥𝑛1 𝑥𝑛2 · · · 𝑥𝑛𝑚

⎞⎟⎟⎟⎠ .

Khi đó đạo hàm của hàm 𝑓 theo ma trận 𝑋 là

∇𝑓(𝑋) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜕𝑓

𝜕𝑥11

𝜕𝑓

𝜕𝑥12
· · · 𝜕𝑓

𝜕𝑥1𝑚
𝜕𝑓

𝜕𝑥21

𝜕𝑓

𝜕𝑥22
· · · 𝜕𝑓

𝜕𝑥2𝑚

· · · · · ·
. . . · · ·

𝜕𝑓

𝜕𝑥𝑛1

𝜕𝑓

𝜕𝑥𝑛2
· · · 𝜕𝑓

𝜕𝑥𝑛𝑚

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Như vậy đạo hàm theo ma trận cũng là ma trận cùng cỡ với ma trận đầu vào.

Hàm số cho giá trị là vector

Xét hàm vector

𝐹 (𝑥) = (𝑓1(𝑥), 𝑓2(𝑥), . . . , 𝑓𝑚(𝑥))

với 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) ∈ R𝑛 và các hàm 𝑓𝑖(𝑥) là hàm từ R𝑛 tới R. Khi đó hàm vector 𝐹 là hàm từ R𝑛 tới
R𝑚.

Nếu 𝑓𝑖 là các hàm tuyến tính như trên thì hàm 𝐹 là một ánh xạ tuyến tính, hay tương đương với phép nhân
ma trận 𝐹 (𝑥) = 𝑥 ·𝐴. Ở đây 𝑥 là vector hàng, còn 𝐴 là ma trận 𝑛×𝑚.

𝐴 =

⎛⎜⎜⎜⎝
𝑎11 𝑎21 · · · 𝑎𝑚1

𝑎12 𝑎22 · · · 𝑎𝑚2

· · · · · ·
. . . · · ·

𝑎1𝑛 𝑎2𝑛 · · · 𝑎𝑚𝑛

⎞⎟⎟⎟⎠ .
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Ở đây,

𝑓(𝑥) = 𝑓𝑖(𝑥1, 𝑥2, . . . , 𝑥𝑛) = 𝑎𝑖1𝑥1 + 𝑎𝑖2𝑥2 + . . .+ 𝑎𝑖𝑛𝑥𝑛.

Nếu đặt 𝑎𝑖 = (𝑎𝑖1, 𝑎𝑖2, . . . , 𝑎𝑖𝑛) thì ma trận 𝐴 có các cột là 𝑎⊤
𝑖 . Nói cách khác

𝐴 =
(︀
𝑎⊤
1 𝑎⊤

2 · · · 𝑎⊤
𝑚

)︀
.

Nếu ta xét từng cột của ma trận 𝐴 thì hoàn toàn giống trường hợp trên. Giả sử với cột đầu tiên (ứng với
𝑓1) ta có

𝑓1(𝑥) =
(︀
𝑥1 𝑥2 · · · 𝑥𝑛

)︀
·

⎛⎜⎜⎜⎝
𝑎11
𝑎12
...
𝑎1𝑛

⎞⎟⎟⎟⎠ = 𝑥 · 𝑎⊤
1 .

Đạo hàm của 𝑓1 theo vector 𝑥 là

∇𝑓1(𝑥) =
(︀
𝑎11 𝑎12 · · · 𝑎1𝑛

)︀
= 𝑎1.

Xếp các hàm 𝑓𝑖 từ trên xuống dưới, ta có được đạo hàm của hàm 𝐹 theo vector 𝑥 là

∇𝐹 (𝑥) =

⎛⎜⎜⎜⎝
∇𝑓1(𝑥)
∇𝑓2(𝑥)

...
∇𝑓𝑚(𝑥)

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
𝑎1

𝑎2

...
𝑎𝑚

⎞⎟⎟⎟⎠ = 𝐴⊤

Một số định lí về giá trị trung bình

INFO-CIRCLE Theorem 1.9 (Bổ đề Fermat)

Cho 𝑓 là một hàm số có đạo hàm trên (𝑎; 𝑏). Nếu 𝑥0 ∈ (𝑎; 𝑏) là một điểm cực trị của 𝑓 thì ta có 𝑓 ′(𝑥0) = 0.

INFO-CIRCLE Chứng minh

Ta chứng minh trong trường hợp 𝑥0 là điểm cực tiểu. Trường hợp điểm cực đại tương tự.

Hàm 𝑓 có đạo hàm trên (𝑎; 𝑏) nên tại điểm 𝑥0 nó có đạo hàm bên trái và đạo hàm bên phải, và hai đạo
hàm này bằng nhau.

Ta có 𝑓 ′(𝑥+0 ) = lim
𝑥→𝑥+

0

𝑓(𝑥)− 𝑓(𝑥0)
𝑥− 𝑥0

. Vì 𝑥→ 𝑥+0 nghĩa là 𝑥 > 𝑥0 (𝑥 tiến tới 𝑥0 từ bên phải), và do 𝑥0 là

cực tiểu 𝑓(𝑥)− 𝑓(𝑥0) > 0 nên phân số dưới dấu giới hạn lớn hơn 0. Suy ra 𝑓 ′(𝑥+0 ) > 0.

Hoàn toàn tương tự ta chứng minh được 𝑓 ′(𝑥−0 ) 6 0. Và do 𝑓 ′(𝑥+0 ) = 𝑓 ′(𝑥−0 ) = 𝑓 ′(𝑥0) nên 𝑓 ′(𝑥0) = 0.

Ta có điều phải chứng minh.

INFO-CIRCLE Theorem 1.10 (Định lí Rolle)

Xét hàm số 𝑓 liên tục trên đoạn [𝑎; 𝑏], có đạo hàm trên khoảng (𝑎; 𝑏) và 𝑓(𝑎) = 𝑓(𝑏). Khi đó tồn tại 𝑐
thuộc (𝑎; 𝑏) sao cho 𝑓 ′(𝑐) = 0.
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INFO-CIRCLE Chứng minh

Để chứng minh định lí Rolle chúng ta cần bổ để Fermat và một tính chất của hàm liên tục

Nếu 𝑓 là một hàm số liên tục trên đoạn [𝑎; 𝑏] thì 𝑓 đạt giá trị lớn nhất và giá trị nhỏ nhất
trên đoạn đó.

Nếu cả hai giá trị lớn nhất (GTLN) và giá trị nhỏ nhất (GTNN) của 𝑓 đều đạt tại biên thì do giả thiết
𝑓(𝑎) = 𝑓(𝑏) ta suy ra GTLN = GTNN. Như vậy 𝑓 là hàm hằng nên 𝑓 ′(𝑐) = 0 với mọi 𝑐 ∈ (𝑎; 𝑏).

Ngược lại, có một trong hai giá trị đó đạt được tại điểm 𝑐 ∈ (𝑎; 𝑏). Khi đó 𝑐 là điểm cực trị nên theo bổ
đề Fermat thì 𝑓 ′(𝑐) = 0.

Về mặt vật lí, định lí Rolle cho biết rằng nếu một chất điểm chuyển động trên đường thẳng bắt đầu từ điểm
𝑎 và quay lại điểm xuất phát ở thời điểm 𝑏 thì có một thời điểm 𝑐 nào đó thuộc (𝑎; 𝑏) mà chất điểm dừng
lại, kể cả ta không biết tốc độ của chất điểm như nào.

Định lí Rolle là công cụ giúp khảo sát, đánh giá số nghiệm của các phương trình rất tốt.

Khi mở rộng định lí Rolle chúng ta được định lí Lagrange. Nếu trong khoảng thời gian từ 𝑎 tới 𝑏, chất điểm
di chuyển trên đường thẳng từ vị trí 𝑠(𝑎) tới 𝑠(𝑏) (so với gốc tọa độ) thì vận tốc trung bình trong thời gian

này là 𝑠(𝑏)− 𝑠(𝑎)
𝑏− 𝑎

. Định lí Lagrange nói rằng tồn tại thời điểm 𝑐 thuộc (𝑎; 𝑏) sao cho vận tốc tức thời tại

thời điểm này bằng vận tốc trung bình trên cả quãng đường 𝑠(𝑎) tới 𝑠(𝑏).

INFO-CIRCLE Theorem 1.11 (Định lí Lagrange)

Xét hàm số 𝑓 liên tục trên đoạn [𝑎; 𝑏], có đạo hàm trên khoảng (𝑎; 𝑏). Khi đó tồn tại 𝑐 thuộc (𝑎; 𝑏) sao
cho 𝑓 ′(𝑐)(𝑏− 𝑎) = 𝑓(𝑏)− 𝑓(𝑎).

INFO-CIRCLE Chứng minh

Xét hàm

𝑔(𝑥) = 𝑓(𝑥)− 𝑓(𝑏)− 𝑓(𝑎)
𝑏− 𝑎

· (𝑥− 𝑎).

Khi đó ta có 𝑔(𝑎) = 𝑓(𝑎) và

𝑔(𝑏) = 𝑓(𝑏)− 𝑓(𝑏)− 𝑓(𝑎)
𝑏− 𝑎

· (𝑏− 𝑎) = 𝑓(𝑏)− (𝑓(𝑏)− 𝑓(𝑎)) = 𝑓(𝑎).

Do 𝑔 liên tục trên [𝑎; 𝑏], có đạo hàm trên (𝑎; 𝑏) và 𝑔(𝑎) = 𝑔(𝑏) nên theo định lí Rolle tồn tại 𝑐 ∈ (𝑎; 𝑏) sao
cho 𝑔′(𝑐) = 0. Ta lại có

𝑔′(𝑥) = 𝑓 ′(𝑥)− 𝑓(𝑏)− 𝑓(𝑎)
𝑏− 𝑎

,

nên thay 𝑐 và 𝑔′(𝑥) ta có

0 = 𝑔′(𝑐) = 𝑓 ′(𝑐)− 𝑓(𝑏)− 𝑓(𝑎)
𝑏− 𝑎

⇐⇒ 𝑓 ′(𝑐) =
𝑓(𝑏)− 𝑓(𝑎)

𝑏− 𝑎
.

Với cách tiếp cận và trình bày như trên thì định lí Lagrange được gọi là định lí giá trị trung bình.
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Thay đổi cách kí hiệu, đặt 𝑎 = 𝑥 và 𝑏 = 𝑥+Δ𝑥 thì ta có

𝑓(𝑥+Δ𝑥)− 𝑓(𝑥) = 𝑓 ′(𝑐) ·Δ𝑥

với 𝑐 ∈ (𝑥, 𝑥+Δ𝑥). Lúc này định lí Lagrange được gọi là định lí về số gia hữu hạn.

Về mặt hình học có thể thấy 𝑓(𝑏)− 𝑓(𝑎)
𝑏− 𝑎

là hệ số góc của dây cung nối hai điểm (𝑎, 𝑓(𝑎)) và (𝑏, 𝑓(𝑏)) của

đồ thị hàm số 𝑦 = 𝑓(𝑥), còn 𝑓 ′(𝑐) là hệ số góc của tiếp tuyến tại điểm có hoành độ 𝑥 = 𝑐 thuộc đường cong.
Khi đó định lí Lagrange có ý nghĩa

Nếu hàm số 𝑓 liên tục trên [𝑎; 𝑏] và có đạo hàm trên (𝑎; 𝑏) thì tồn tại điểm 𝑐 ∈ (𝑎; 𝑏) sao cho tiếp
tuyến tại điểm (𝑐, 𝑓(𝑐)) song song với dây cung 𝐴𝐵 nối hai điểm (𝑎, 𝑓(𝑎)) và (𝑏, 𝑓(𝑏)).

1 2 3

1

4

9

A

B

C

f
(b
)
−
f
(a
)

b− a

Tiếp tuyến tại C

A = (a, f(a)), B = (b, f(b))

x

y

Hình 2.45: Minh hoạ hình học của định lí Lagrange

Ở biểu thức của định lí Lagrange, đặt 𝑔(𝑥) = 𝑥 thì 𝑔(𝑏) = 𝑏, 𝑔(𝑎) = 𝑎 và 𝑔′(𝑥) = 1 với mọi 𝑥 ∈ (𝑎; 𝑏). Khi
đó ta có

𝑓 ′(𝑐) =
𝑓(𝑏)− 𝑓(𝑎)

𝑏− 𝑎
⇐⇒ 𝑓 ′(𝑐)

1
=
𝑓 ′(𝑐)

𝑔′(𝑐)
=
𝑓(𝑏)− 𝑓(𝑎)
𝑔(𝑏)− 𝑔(𝑎)

.

Nếu ta thay 𝑔(𝑥) là một hàm số khả vi tùy ý thì biểu thức này còn đúng không?

INFO-CIRCLE Theorem 1.12 (Định lí Cauchy)

Nếu 𝑓(𝑥) và 𝑔(𝑥) là hai hàm số liên tục trên [𝑎; 𝑏], có đạo hàm trên (𝑎; 𝑏) và 𝑔′(𝑥) ̸= 0 với mọi 𝑥 ∈ (𝑎; 𝑏)
thì tồn tại 𝑐 ∈ (𝑎; 𝑏) sao cho

𝑓(𝑏)− 𝑓(𝑎)
𝑔(𝑏)− 𝑔(𝑎)

=
𝑓 ′(𝑐)

𝑔′(𝑐)
.
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INFO-CIRCLE Chứng minh

Ta xét hàm số

ℎ(𝑥) = (𝑓(𝑏)− 𝑓(𝑎)) · (𝑔(𝑥)− 𝑔(𝑎))− (𝑔(𝑏)− 𝑔(𝑎)) · (𝑓(𝑥)− 𝑓(𝑎))

thì ta có ℎ(𝑎) = ℎ(𝑏) = 0. Hơn nữa hàm số ℎ(𝑥) cũng liên tục trên [𝑎; 𝑏] và có đạo hàm trên (𝑎; 𝑏). Áp
dụng định lí Rolle cho hàm số ℎ(𝑥) thì tồn tại số 𝑐 ∈ (𝑎; 𝑏) sao cho ℎ′(𝑥) = 0. Vì

ℎ′(𝑥) = (𝑓(𝑏)− 𝑓(𝑎)) · 𝑔′(𝑥)− (𝑔(𝑏)− 𝑔(𝑎)) · 𝑓 ′(𝑥)

nên suy ra

ℎ′(𝑐) = (𝑓(𝑏)− 𝑓(𝑎)) · 𝑔′(𝑐)− (𝑔(𝑏)− 𝑔(𝑎)) · 𝑓 ′(𝑐) = 0

và ta có điều phải chứng minh.

INFO-CIRCLE Theorem 1.13 (Quy tắc L'Hôpital)

Xét 𝑉 là lân cận của điểm 𝑥0, 𝑓(𝑥) và 𝑔(𝑥) là hai hàm số liên tục trên 𝑉 và có đạo hàm trên 𝑉 ∖ {𝑥0}.
Giả sử

𝑓(𝑥0) = 𝑔(𝑥0) = 0, lim
𝑥→𝑥0

𝑓 ′(𝑥)

𝑔′(𝑥)
= 𝑎.

Khi đó ta có

lim
𝑥→𝑥0

𝑓(𝑥)

𝑔(𝑥)
= 𝑎.

Quy tắc L'Hôpital là công cụ khử dạng vô định 0

0
rất hiệu quả. Tuy nhiên chúng ta cũng cần chú ý rằng

nếu không phải dạng vô định thì quy tắc L'Hôpital không còn đúng.

Tính lồi, lõm và điểm uốn của đồ thị

INFO-CIRCLE Definition 1.53 (Hàm lồi, lõm)

Giả sử I là một khoảng trong R. Hàm số 𝑓 được gọi là lõm trên I nếu và chỉ nếu với mọi 𝛼, 𝛽 > 0 mà
𝛼+ 𝛽 = 1, ta đều có

𝑓(𝛼𝑥+ 𝛽𝑦) 6 𝛼𝑓(𝑥) + 𝛽𝑓(𝑦)

với mọi 𝑥, 𝑦 > 0.

Trong trường hợp ngược lại (đổi chiều bất đẳng thức) thì ta nói 𝑓 là hàm lồi trên I.

Trong một số sách toán ở nước ngoài thì khái niệm lồi, lõm của hàm số được hiểu ngược lại. Khi đó hàm
lõm ở định nghĩa trên được gọi là hàm lồi (lồi dưới) và hàm lồi ở định nghĩa trên gọi là hàm lõm (lồi trên).

Ví dụ ở bài viết Выпуклость и точки перегиба (Tính lồi và điểm uốn) của Moscow State University (MSU)
mang tên Lomonosov thì định nghĩa hàm lồi bên trên được MSU gọi là lồi trên (выпуклая вверх), còn định
nghĩa hàm lõm bên trên được MSU gọi là lồi dưới (выпуклая вниз).
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Ví dụ ở trang wikipedia Concave function thì định nghĩa hàm lồi bên trên (dấu >) được wikipedia định
nghĩa là hàm lõm (concave). Tương tự, ở trang wikipedia Convex function thì định nghĩa hàm lõm bên trên
(dấu 6) được wikipedia định nghĩa là hàm lồi (convex).

Về mặt hình học, các bạn có thể xem 𝑦 = 𝑥2 là một ví dụ của hàm lõm và 𝑦 = −𝑥2 là một ví dụ của hàm
lồi. Sau đây chúng ta sẽ phân tích một số tính chất từ định nghĩa hàm lồi, lõm để đưa ra khía cạnh hình
học này.

INFO-CIRCLE Theorem 1.14

Giả sử 𝑓(𝑥) có đạo hàm trên I. Khi đó 𝑓(𝑥) lõm trên I khi và chỉ khi 𝑓 ′(𝑥) là hàm tăng không nghiêm
ngặt (knn) trên I.

INFO-CIRCLE Chứng minh chiều thuận

Ta có 𝑓(𝑥) là hàm lõm trên I và ta cần chứng minh 𝑓 ′(𝑥) tăng knn trên I, nghĩa là

𝑓 ′(𝑥1) 6 𝑓
′(𝑥2)

với mọi 𝑥1, 𝑥2 ∈ I mà 𝑥1 < 𝑥2.

Từ định nghĩa hàm lồi, ta chọn 𝛼 =
𝑥2 − 𝑥
𝑥2 − 𝑥1

và 𝛽 =
𝑥− 𝑥1
𝑥2 − 𝑥1

với 𝑥1 < 𝑥 < 𝑥2 thì khi đó 𝛼, 𝛽 > 0 và
𝛼+ 𝛽 = 1. Ta có

𝑓(𝑥) = 𝑓

(︂
𝑥2 − 𝑥
𝑥2 − 𝑥1

𝑥1 +
𝑥− 𝑥1
𝑥2 − 𝑥2

𝑥2

)︂
6

𝑥2 − 𝑥
𝑥2 − 𝑥1

𝑓(𝑥1) +
𝑥− 𝑥1
𝑥2 − 𝑥1

𝑓(𝑥2).

Ta biến đổi bất đẳng thức như sau

(𝑥2 − 𝑥1)𝑓(𝑥) 6 (𝑥2 − 𝑥)𝑓(𝑥1) + (𝑥− 𝑥1)𝑓(𝑥2)
⇐⇒ (𝑥2 − 𝑥+ 𝑥− 𝑥1)𝑓(𝑥) 6 (𝑥2 − 𝑥)𝑓(𝑥1) + (𝑥− 𝑥1)𝑓(𝑥2)
⇐⇒ (𝑥2 − 𝑥) [𝑓(𝑥)− 𝑓(𝑥1)] 6 (𝑥− 𝑥1) [𝑓(𝑥2)− 𝑓(𝑥)]

⇐⇒ 𝑓(𝑥)− 𝑓(𝑥1)
𝑥− 𝑥1

6
𝑓(𝑥2)− 𝑓(𝑥)

𝑥2 − 𝑥
.

(2.4)

Cho 𝑥→ 𝑥+1 thì vế phải BĐT là đạo hàm phải tại 𝑥1, nghĩa là

𝑓 ′(𝑥1) 6
𝑓(𝑥2)− 𝑓(𝑥1)

𝑥2 − 𝑥1
.

Tương tự, cho 𝑥→ 𝑥−2 thì vế trái BĐT là đạo hàm trái tại 𝑥2, nghĩa là

𝑓(𝑥2)− 𝑓(𝑥1)
𝑥2 − 𝑥1

6 𝑓 ′(𝑥2).

Từ hai BĐT vừa rồi suy ra 𝑓 ′(𝑥1) 6 𝑓 ′(𝑥2). Ta có điều phải chứng minh.

INFO-CIRCLE Chứng minh chiều ngược

Ở phần trên ta dùng biến đổi tương đương để có (2.4). Như vậy nếu chứng minh được (2.4) thì cũng
đồng nghĩa 𝑓(𝑥) là hàm lõm.
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Theo định lí Lagrange tồn tại các số 𝑥3 và 𝑥4 sao cho 𝑥1 < 𝑥3 < 𝑥 < 𝑥4 < 𝑥2 và

𝑓(𝑥)− 𝑓(𝑥1)
𝑥− 𝑥1

= 𝑓 ′(𝑥3),
𝑓(𝑥2)− 𝑓(𝑥)

𝑥2 − 𝑥
= 𝑓 ′(𝑥4).

Vì 𝑥3 < 𝑥4 và 𝑓 ′(𝑥) tăng knn trên I nên ta có 𝑓 ′(𝑥3) 6 𝑓 ′(𝑥4), suy ra

𝑓(𝑥)− 𝑓(𝑥1)
𝑥− 𝑥1

6
𝑓(𝑥2)− 𝑓(𝑥)

𝑥2 − 𝑥
.

Như vậy (2.4) được chứng minh.

Một hệ quả quan trọng hay được sử dụng của định lí này như sau.

INFO-CIRCLE Corollary 1.1

Nếu 𝑓(𝑥) liên tục trên I và có đạo hàm cấp hai trên I thì 𝑓(𝑥) lõm trên I khi và chỉ khi 𝑓 ′′(𝑥) > 0 với
mọi 𝑥 ∈ I.

Một số tính chất của hàm lồi và hàm lõm là:

1. Nếu 𝑓(𝑥) có đạo hàm và lõm trên khoảng I thì tiếp tuyến tại mọi điểm thuộc I của nó đều nằm phía
dưới đồ thị của hàm 𝑓(𝑥).

2. Nếu 𝑓(𝑥) có đạo hàm và lồi trên khoảng I thì tiếp tuyến tại mọi điểm thuộc I của nó đều nằm phía
trên đồ thị của hàm 𝑓(𝑥).

3. Nếu 𝑓(𝑥) là hàm lõm trên đoạn [𝑎; 𝑏] thì ta có 𝑓(𝑥) 6 max{𝑓(𝑎), 𝑓(𝑏)} với mọi 𝑥 ∈ [𝑎; 𝑏]. Nói cách
khác, giá trị lớn nhất của 𝑓(𝑥) trên [𝑎; 𝑏] đạt được tại đầu mút của đoạn [𝑎; 𝑏].

4. Tương tự, nếu 𝑓(𝑥) là hàm lồi trên đoạn [𝑎; 𝑏] thì giá trị nhỏ nhất của nó trên đoạn này đạt được tại
đầu mút của đoạn [𝑎; 𝑏].

Ý nghĩa hình học của hàm lõm

Giả sử hàm 𝑓(𝑥) lõm trên I. Lấy bất kì 𝑥1, 𝑥2 ∈ I với 𝑥1 < 𝑥2.

Gọi 𝑀1(𝑥1, 𝑓(𝑥1)) và 𝑀2(𝑥2, 𝑓(𝑥2)) là hai điểm trên đồ thị hàm số 𝑦 = 𝑓(𝑥).

Khi đó điểm 𝑀 ′(𝑥, 𝑦) nằm trên đoạn thẳng 𝑀1𝑀2 khi và chỉ khi có số 𝛼 ∈ [0, 1] sao cho
−−−−→
𝑀2𝑀

′ = 𝛼
−−−−→
𝑀2𝑀1

như trên hình vẽ sau.
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M1

M2

M ′

M

f(M1)

f(M2)

αf(x1) + (1− α)f(x2)

f(αx1 + (1− α)x2)

x1 x x2

x

y

Điều kiện này tương đương với {︃
𝑥− 𝑥2 = 𝛼(𝑥1 − 𝑥2),
𝑦 − 𝑓(𝑥2) = 𝛼 [𝑓(𝑥1)− 𝑓(𝑥2)] .

hay {︃
𝑥 = 𝛼𝑥1 + (1− 𝛼)𝑥2,
𝑦 = 𝛼𝑓(𝑥1) + (1− 𝛼)𝑓(𝑥2).

Vì 𝑓(𝑥) lõm trên I nên ta có

𝑦𝑀 = 𝑓(𝛼𝑥1 + (1− 𝛼)𝑥2) 6 𝛼𝑓(𝑥1) + (1− 𝛼)𝑓(𝑥2) = 𝑦′𝑀 .

Kết quả này cho chúng ta kết quả:

Hàm số 𝑓(𝑥) lõm trên I khi và chỉ khi với mọi cặp điểm 𝑀1, 𝑀2 thuộc đồ thị hàm số 𝑦 = 𝑓(𝑥),
cung 𝑀1𝑀2 của đồ thị luôn nằm phía dưới đoạn thẳng 𝑀1𝑀2.

Điểm uốn của đồ thị

INFO-CIRCLE Definition 1.54 (Điểm uốn của đồ thị)

Giả sử hàm số 𝑓(𝑥) có đạo hàm trên khoảng (𝑎; 𝑏) chứa 𝑥0. Nếu đồ thị (𝐶) của hàm số 𝑦 = 𝑓(𝑥) lõm
trên một trong hai khoảng (𝑎, 𝑥0), (𝑥0, 𝑏) và lồi trên khoảng còn lại thì 𝑈(𝑥0, 𝑓(𝑥0)) được gọi là điểm
uốn (hay inflection point, точка перегиба) của đồ thị (𝐶).

Nói cách khác, qua điểm uốn lồi thành lõm hoặc lõm thành lồi.

INFO-CIRCLE Remark 1.13

Tiếp tuyến tại điểm uốn đi xuyên qua đồ thị.

Điều này có nghĩa là trên một trong hai khoảng (𝑎;𝑥0), (𝑥0; 𝑏) thì tiếp tuyến tại 𝑥0 nằm phía dưới đồ thị và
trên khoảng còn lại thì tiếp tuyến đó nằm phía trên đồ thị.
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Từ kết quả trên về tính lồi, lõm chúng ta có định lí sau là công cụ hữu ích để xác định điểm uốn của đồ thị.

INFO-CIRCLE Theorem 1.15

Giả sử hàm số 𝑓(𝑥) có đạo hàm cấp hai trên khoảng I chứa điểm 𝑥0. Nếu 𝑓 ′′(𝑥0) = 0 và 𝑓 ′′(𝑥) đổi dấu
khi 𝑥 đi qua điểm 𝑥0 thì 𝑈(𝑥0, 𝑓(𝑥0)) là một điểm uốn của đồ thị hàm số 𝑦 = 𝑓(𝑥).

Tích phân đường

Tích phân đường trên mặt phẳng

Tích phân đường dùng để tính độ dài đường cong 𝑓(𝑥) trên đoạn [𝑎; 𝑏] nào đó thuộc tập xác định.

Sau đây mình sẽ dùng tổng vô hạn để giải thích một số công thức tính tích phân đường được học ở trường.

Giả sử mình chia đoạn [𝑎; 𝑏] thành 𝑛 phần bằng nhau

𝑎 = 𝑥0 < 𝑥1 < · · · < 𝑥𝑛 = 𝑏

với 𝑥𝑖+1 − 𝑥𝑖 =
𝑏− 𝑎
𝑛

.

Gọi các điểm

𝐿0 = (𝑥0, 𝑓(𝑥0) = 𝑦0), 𝐿1 = (𝑥1, 𝑓(𝑥1) = 𝑦1), . . . , 𝐿𝑛 = (𝑥𝑛, 𝑓(𝑥𝑛) = 𝑦𝑛).

Khi đó độ dài đường cong là tổng độ dài các đoạn thẳng 𝐿0𝐿1, 𝐿1𝐿2, ..., 𝐿𝑛−1𝐿𝑛 khi 𝑛 tiến tới vô cùng.

Độ dài đoạn thẳng 𝐿𝑖−1𝐿𝑖 là khoảng cách từ điểm (𝑥𝑖−1, 𝑓(𝑥𝑖−1)) tới (𝑥𝑖, 𝑓(𝑥𝑖)), nghĩa là

𝐿𝑖−1𝐿𝑖 =
√︀
(𝑥𝑖 − 𝑥𝑖−1)2 + (𝑦𝑖 − 𝑦𝑖−1)2 = |𝑥𝑖 − 𝑥𝑖−1| ·

√︃
1 +

(︂
𝑦𝑖 − 𝑦𝑖−1

𝑥𝑖 − 𝑥𝑖−1

)︂2

.

Khi 𝑛 tiến tới vô cùng thì Δ𝑥 = 𝑥𝑖 − 𝑥𝑖−1 =
𝑏− 𝑎
𝑛

tiến tới 0. Các bạn có thấy biểu thức 𝑦𝑖 − 𝑦𝑖−1

𝑥𝑖 − 𝑥𝑖−1
khi

𝑥𝑖−𝑥𝑖−1 tiến tới 0 quen không? Chính là định nghĩa đạo hàm 𝑓 ′(𝑥) = lim
Δ𝑥→0

Δ𝑦/Δ𝑥 mà chúng ta học ở phổ
thông.

Kí hiệu 𝑙 là độ dài đường cong trên. Do 𝑙 là tổng của những đoạn 𝐿𝑖−1𝐿𝑖 cực nhỏ nên có thể nói

𝑙 = Δ𝑙1⏟ ⏞ 
𝐿0𝐿1

+ Δ𝑙2⏟ ⏞ 
𝐿1𝐿2

+ . . .+ Δ𝑙𝑛⏟ ⏞ 
𝐿𝑛−1𝐿𝑛

khi 𝑛 tiến tới vô cùng.

Điều này có nghĩa là nếu 𝑦 = 𝑓(𝑥) thì chúng ta có

Δ𝑙𝑖 = |𝑥𝑖 − 𝑥𝑖−1| ·

√︃
1 +

(︂
𝑦𝑖 − 𝑦𝑖−1

𝑥𝑖 − 𝑥𝑖−1

)︂2

= Δ𝑥𝑖 ·
√︁
1 + (Δ𝑦𝑖/Δ𝑥𝑖)

2

với Δ𝑦𝑖 = 𝑦𝑖 − 𝑦𝑖−1, và Δ𝑥𝑖 = 𝑥𝑖 − 𝑥𝑖−1 tiến về 0. Thay các Δ bởi vi phân ta sẽ có công thức

𝑑𝑙 =
√︀
1 + (𝑑𝑦/𝑑𝑥)2 𝑑𝑥 =

√︀
1 + (𝑓 ′(𝑥))2 𝑑𝑥.

Công thức này có thể dùng khi 𝑦 phụ thuộc vào 𝑥 hay 𝑦 = 𝑓(𝑥).
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Làm ngược lại quá trình trên, thay 𝑥 thành 𝑦 và 𝑦 thành 𝑥 chúng ta có công thức trên nhưng theo 𝑑𝑦 là

𝑑𝑙 =
√︀

1 + (𝑓 ′(𝑦))2 𝑑𝑦.

Vậy còn trường hợp 𝑥 và 𝑦 là hai hàm số theo tham số 𝑡? Ví dụ như cung tròn bán kính bằng 1 cho bởi
𝑥 = 𝑥(𝑡) = cos(𝑡) và 𝑦 = 𝑦(𝑡) = sin(𝑡), trong đó 𝑡 ∈ [𝑎; 𝑏] ⊂ [0, 2𝜋].

Cách tiếp cận vẫn như vậy, ta chia đoạn [𝑎; 𝑏] thành 𝑛 phần bằng nhau

𝑎 = 𝑡0 < 𝑡1 < · · · < 𝑡𝑛 = 𝑏

với 𝑡𝑖+1 − 𝑡𝑖 =
𝑏− 𝑎
𝑛

.

Khi đó mỗi đoạn thẳng 𝐿𝑖−1𝐿𝑖 sẽ có dạng

Δ𝑙𝑖 = 𝐿𝑖−1𝐿𝑖 =
√︀
(𝑥𝑖 − 𝑥𝑖−1)2 + (𝑦𝑖 − 𝑦𝑖−1)2

= (𝑡𝑖 − 𝑡𝑖−1) ·

√︃(︂
𝑥𝑖 − 𝑥𝑖−1

𝑡𝑖 − 𝑡𝑖−1

)︂2

+

(︂
𝑦𝑖 − 𝑦𝑖−1

𝑡𝑖 − 𝑡𝑖−1

)︂2

= Δ𝑡𝑖 ·
√︀
(Δ𝑥𝑖/Δ𝑡𝑖)2 + (Δ𝑦𝑖/Δ𝑡𝑖)2.

Khi 𝑛 tiến tới vô cực thì Δ𝑡𝑖 tiến về 0, mà 𝑥 và 𝑦 là các hàm số theo biến 𝑡 nên nói cách khác Δ𝑥𝑖/Δ𝑡𝑖 chính
là đạo hàm của hàm số 𝑥 = 𝑥(𝑡), tương tự Δ𝑦𝑖/Δ𝑡𝑖 là đạo hàm của hàm số 𝑦 = 𝑦(𝑡).

Thay các Δ bởi vi phân thì ta có công thức

𝑑𝑙 =
√︀
(𝑥′(𝑡))2 + (𝑦′(𝑡))2 𝑑𝑡.

2.4.2 Phương trình vi phân
Phương trình vi phân bậc nhất

Phương trình vi phân bậc nhất có dạng:

𝑃 (𝑥, 𝑦) 𝑑𝑥+𝑄(𝑥, 𝑦) 𝑑𝑦 = 0.

Nghiệm tổng quát có dạng 𝑦 = 𝜙(𝑥, 𝑐) khả vi và thỏa mãn điều kiện của phương trình vi phân.

1. Hàm 𝜙(𝑥, 𝑐) là nghiệm của phương trình vi phân với hằng số 𝑐.

2. Nếu 𝑦(𝑥0) = 𝑦0 thì có thể tìm được 𝑐0. Khi đó nghiệm được gọi là nghiệm riêng 𝑦 = 𝜙(𝑥, 𝑐0).

INFO-CIRCLE Definition 2.10 (Phương trình tách biến)

Phương trình tách biến (hay разделяющие переменные) là phương trình có dạng:

𝑃1(𝑥) ·𝑄1(𝑦) 𝑑𝑥+ 𝑃2(𝑥) ·𝑄2(𝑦) 𝑑𝑦 = 0.

Để giải phương trình tách biến ta chia hai vế cho 𝑄1(𝑦) · 𝑃2(𝑥) ̸= 0 và giải∫︁
𝑃1(𝑥)

𝑃2(𝑥)
𝑑𝑥+

∫︁
𝑄2(𝑦)

𝑄1(𝑦)
𝑑𝑦 = 0.

Nếu 𝑄1(𝑦) · 𝑃2(𝑥) = 0 thì ta giải từng hàm riêng 𝑄1(𝑦) = 0 hoặc 𝑃2(𝑥) = 0.
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INFO-CIRCLE Definition 2.11 (Hàm thuần nhất bậc 𝑛)

Hàm thuần nhất bậc 𝑛 với tham số 𝜆 bất kì ta luôn có 𝑓(𝜆𝑥, 𝜆𝑦) = 𝜆𝑛𝑓(𝑥, 𝑦).

Ví dụ, 𝑓(𝑥, 𝑦) = 𝑥2 − 2𝑥𝑦. Với các hàm thuần nhất ta có định nghĩa phương trình vi phân thuần nhất.

INFO-CIRCLE Definition 2.12 (Phương trình vi phân thuần nhất)

Phương trình vi phân 𝑦′ = 𝑓(𝑥, 𝑦) được gọi là thuần nhất nếu hàm 𝑓(𝑥, 𝑦) là hàm thuần nhất bậc 0. Khi
đó 𝑦′ = 𝜙

(︁𝑦
𝑥

)︁
.

Để giải dạng này ta đặt 𝑦
𝑥
= 𝑢. Như vậy 𝑦 = 𝑢𝑥 và 𝑦′ = 𝑢′𝑥+ 𝑢𝑥′.

Phương trình tuyến tính và phương trình Bernoulli

INFO-CIRCLE Definition 2.13 (Phương trình vi phân tuyến tính)

Phương trình vi phân được gọi là tuyến tính bậc nhất nếu nó có dạng 𝑦′ + 𝑝(𝑥) · 𝑦 = 𝑔(𝑥).

Để giải phương trình tuyến tính ta có hai phương pháp là phương pháp Bernoulli và phương pháp Lagrange.

Đối với phương pháp Bernoulli, ta đặt 𝑦 = 𝑢𝑣 với 𝑢 = 𝑢(𝑥) và 𝑣 = 𝑣(𝑥) là một hàm được chọn từ lớp các
hàm thỏa mãn với hằng số cố định. Khi đó 𝑦′ = 𝑢′𝑣 + 𝑢𝑣′.

Phương trình vi phân khi này có dạng:

𝑦′ + 𝑝(𝑥) · 𝑦 = 𝑔(𝑥)

⇔𝑢′𝑣 + 𝑣′𝑢+ 𝑝(𝑥) · 𝑢𝑣 = 𝑔(𝑥)

⇔𝑢′𝑣 + 𝑢(𝑣′ + 𝑝(𝑥) · 𝑣) = 𝑔(𝑥)

Ta chọn 𝑣 sao cho 𝑣′+𝑝(𝑥) ·𝑣 = 0. Điều này tương đương với 𝑑𝑣
𝑑𝑥

+𝑝(𝑥) ·𝑣 = 0 nên ln|𝑣| = −
∫︀
𝑝(𝑥) 𝑑𝑥+ ln|𝐶|.

Ở đây 𝐶 là hằng số.

Để đơn giản, ta chọn 𝐶 = 1 thì 𝑣 = 𝑒−
∫︀
𝑝(𝑥) 𝑑𝑥.

Suy ra 𝑢′𝑣 = 𝑢′𝑒−
∫︀
𝑝(𝑥) 𝑑𝑥 = 𝑔(𝑥) và biến đổi

𝑑𝑢

𝑑𝑥
· 𝑒−

∫︀
𝑝(𝑥) 𝑑𝑥 = 𝑔(𝑥)

⇐⇒ 𝑢 =

∫︁
𝑔(𝑥) · 𝑒−

∫︀
𝑝(𝑥) 𝑑𝑥 𝑑𝑥+ 𝐶

⇐⇒ 𝑦 = 𝑢𝑣 = . . .

Đối với phương pháp Lagrange, ta xét phương trình vi phân tuyến tính thuần nhất tương ứng với 𝑦′+𝑝(𝑥)·𝑦 =
𝑔(𝑥) là 𝑦′ + 𝑝(𝑥) · 𝑦 = 0.

Khi đó ta biến đổi 𝑑𝑦
𝑑𝑥

= −𝑝(𝑥) · 𝑦 và giải được 𝑦 = 𝑐𝑒−
∫︀
𝑝(𝑥) 𝑑𝑥 với 𝑐 là hằng số.

Ta thay 𝑐 bởi 𝑐(𝑥) là hàm theo 𝑥:

𝑦 = 𝑐(𝑥) · 𝑒−
∫︀
𝑝(𝑥) 𝑑𝑥

⇐⇒ 𝑦′ = 𝑐′(𝑥) · 𝑒−
∫︀
𝑝(𝑥) 𝑑𝑥 + 𝑐(𝑥) · 𝑒−

∫︀
𝑝(𝑥) 𝑑𝑥 · (−𝑝(𝑥))
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và thay vào phương trình vi phân ban đầu:

𝑐′(𝑥) · 𝑒−
∫︀
𝑝(𝑥) 𝑑𝑥 +

((((((((((((
𝑐(𝑥) · 𝑒−

∫︀
𝑝(𝑥) 𝑑𝑥 · (−𝑝(𝑥)) +((((((((((

𝑐(𝑥) · 𝑒−
∫︀
𝑝(𝑥) 𝑑𝑥 · 𝑝(𝑥) = 𝑔(𝑥)

⇐⇒ 𝑐′(𝑥) · 𝑒−
∫︀
𝑝(𝑥) 𝑑𝑥 = 𝑔(𝑥)

⇐⇒ 𝑑𝑐(𝑥) = 𝑒
∫︀
𝑝(𝑥) 𝑑𝑥 · 𝑔(𝑥) 𝑑𝑥.

Tới đây ta tìm được 𝑐(𝑥) để có 𝑦.

INFO-CIRCLE Example 2.6

Giải phương trình vi phân

𝑦 𝑑𝑥 = (𝑦2 − 𝑥) 𝑑𝑦.

Đầu tiên ta biến đổi phương trình

𝑦 𝑑𝑥 = (𝑦2 − 𝑥) 𝑑𝑦 ⇐⇒ 𝑑𝑥

𝑑𝑦
+
𝑥

𝑦
= 𝑦

⇐⇒𝑥′ +
1

𝑦
= 𝑦.

(2.5)

Đối với phương pháp Bernoulli, đặt 𝑥 = 𝑢𝑣 với 𝑢 = 𝑢(𝑦) và 𝑣 = 𝑣(𝑦). Khi đó ta có 𝑥′ = 𝑢′𝑣 + 𝑢𝑣′.

Từ (2.5) suy ra

𝑢′𝑣 + 𝑣′𝑢+
1

𝑦
· 𝑢𝑣 = 𝑦

⇐⇒𝑢′𝑣 + 𝑢

(︂
𝑣′ +

1

𝑦
· 𝑣
)︂

= 𝑦.

Ta tìm 𝑣 sao cho 𝑣′ + 1

𝑦
𝑣 = 0, tương đương với

𝑑𝑣

𝑑𝑦
= −𝑣

𝑦
⇐⇒ · · · ⇐⇒ 𝑣 =

1

𝑦
.

Thay vào (2.5) ta được

𝑢′𝑣 = 𝑢′ · 1
𝑦
= 𝑦 ⇐⇒ 𝑢′ = 𝑦2 =⇒ 𝑢 =

𝑦3

3
+ 𝐶.

Như vậy

𝑥 = 𝑢𝑣 =

(︂
𝑦3

3
+ 𝑐

)︂
· 1
𝑦
=
𝑦2

3
+
𝐶

𝑦
.

Đối vơi phương pháp Lagrange, ta xét dạng tuyến tính thuần nhất là 𝑥′ + 1

𝑦
· 𝑥 = 0.

Khi đó

𝑑𝑥

𝑥
= −𝑑𝑦

𝑦
⇐⇒ 𝑥 =

𝑐

𝑦

với 𝑐 là hằng số. Bây giờ thay 𝑐 thành 𝑐(𝑦) ta có 𝑥 =
𝑐(𝑦)

𝑦
.
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Thay vào (2.5) ta có

𝑐′(𝑦)𝑦 − 𝑐(𝑦)
𝑦2

+
1

𝑦
· 𝑐(𝑦)
𝑦

= 𝑦

⇐⇒ 𝑐′(𝑦)

𝑦
−

�
�
�𝑐(𝑦)

𝑦2
+

�
�
�𝑐(𝑦)

𝑦2
= 𝑦

=⇒ 𝑐(𝑦) =

∫︁
𝑦2 𝑑𝑦 =

𝑦3

3
+ 𝐶.

Như vậy ta có kết quả

𝑥 =
𝑐(𝑦)

𝑦
=

(︂
𝑦3

3
+ 𝐶

)︂
· 1
𝑦
=
𝑦2

3
+
𝐶

𝑦
.

INFO-CIRCLE Definition 2.14 (Phương trình Bernoulli)

Phương trình Bernoulli là phương trình có dạng:

𝑦′ + 𝑝(𝑥) · 𝑦 = 𝑔(𝑥) · 𝑦𝑛, 𝑛 ∈ N, 𝑛 ̸= 0, 𝑛 ̸= 1.

Khi 𝑛 = 0 thì phương trình trở thành phương trình tuyến tính.

Để giải phương trình Bernoulli ta chia hai vế cho 𝑦𝑛 thì được:

𝑦′

𝑦𝑛
+
𝑝(𝑥)

𝑦𝑛−1
= 𝑔(𝑥).

Đặt 1

𝑦𝑛−1
= 𝑧 thì

𝑧′ =
𝑑𝑧

𝑑𝑥
= (1− 𝑛) 1

𝑦𝑛
𝑦′.

Như vậy 1

𝑦𝑛
· 𝑦′ = 𝑧′

1− 𝑛
và thay vào phương trình ban đầu ta có

1

1− 𝑛
𝑧′ + 𝑝(𝑥) · 𝑧 = 𝑔(𝑥).

Từ đây ta giải phương trình tuyến tính.

Phương trình vi phân toàn phần. Nhân tử tích phân

INFO-CIRCLE Definition 2.15 (Phương trình vi phân toàn phần)

Phương trình vi phân được gọi là toàn phần (hay уравнение в полных дифферециалах) nếu vế
trái có vi phân toàn phần là hàm 𝑢(𝑥, 𝑦), nghĩa là:

𝑃 (𝑥, 𝑦) 𝑑𝑥+𝑄(𝑥, 𝑦) 𝑑𝑦 = 𝑑𝑢(𝑥, 𝑦).
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INFO-CIRCLE Theorem 2.4

Điều kiện cần và đủ để biểu thức

Δ = 𝑃 (𝑥, 𝑦) 𝑑𝑥+𝑄(𝑥, 𝑦) 𝑑𝑦,

với 𝑃 (𝑥, 𝑦) và 𝑄(𝑥, 𝑦) và đạo hàm riêng 𝜕𝑃

𝜕𝑦
và 𝜕𝑄

𝜕𝑥
liên tục trên tập 𝐷 nào đó, là phương trình vi phân

toàn phần:

𝜕𝑃

𝜕𝑦
=
𝜕𝑄

𝜕𝑥
.

INFO-CIRCLE Chứng minh

Để chứng minh điều kiện cần, đặt Δ là biểu thức có vi phân toàn phần, nghĩa là

𝑃 (𝑥, 𝑦) 𝑑𝑥+𝑄(𝑥, 𝑦) 𝑑𝑦 = 𝑑𝑢(𝑥, 𝑦)

⇐⇒ 𝑑𝑢(𝑥, 𝑦) =
𝜕𝑢

𝜕𝑥
𝑑𝑥+

𝜕𝑢

𝜕𝑦
𝑑𝑦,

với 𝑃 (𝑥, 𝑦) = 𝜕𝑢

𝜕𝑥
và 𝑄(𝑥, 𝑦) =

𝜕𝑢

𝜕𝑦
.

Suy ra 𝜕𝑃

𝜕𝑦
=

𝜕2𝑢

𝜕𝑥𝜕𝑦
và 𝜕𝑄

𝜕𝑥
=

𝜕2𝑢

𝜕𝑦𝜕𝑥
.

Khi đó 𝜕𝑃

𝜕𝑦
=
𝜕𝑄

𝜕𝑥
và ta có điều phải chứng minh.

Để chứng minh điều kiện đủ, trên tập 𝐷 ta có 𝜕𝑃

𝜕𝑦
=
𝜕𝑄

𝜕𝑥
.

Lúc này ta chứng minh tồn tại hàm 𝑢(𝑥, 𝑦) trên 𝐷 mà

𝑑𝑢(𝑥, 𝑦) = 𝑃 (𝑥, 𝑦) 𝑑𝑥+𝑄(𝑥, 𝑦) 𝑑𝑦.

Giả sử ngược lại, 𝜕𝑢
𝜕𝑥

= 𝑃 (𝑥, 𝑦) và 𝜕𝑢

𝜕𝑦
= 𝑄(𝑥, 𝑦).

Ở đây, ta cố định 𝑦 và lấy tích phân theo 𝑥 thì được:

𝑢(𝑥, 𝑦) =

∫︁
𝑃 (𝑥, 𝑦) 𝑑𝑥+ 𝜙(𝑦),

với 𝑐 = 𝜙(𝑦) là hằng số (do 𝑦 cố định nên 𝜙(𝑦) cũng cố định). Suy ra ta có:

𝜕𝑢

𝜕𝑦
=

(︂∫︁
𝑃 (𝑥, 𝑦) 𝑑𝑥

)︂′

𝑦

+ 𝜙′(𝑦)

⇐⇒ 𝑄(𝑥, 𝑦) =

(︂∫︁
𝑃 (𝑥, 𝑦) 𝑑𝑥

)︂′

𝑦

+ 𝜙′(𝑦)

⇐⇒ 𝜙′(𝑦) = 𝑄(𝑥, 𝑦)−
(︂∫︁

𝑃 (𝑥, 𝑦) 𝑑𝑥

)︂′

𝑦

.
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Vế phải khi đạo hàm theo 𝑥 là:

𝜕

𝜕𝑥

(︂
𝑄(𝑥, 𝑦)− 𝜕

𝜕𝑦

(︂∫︁
𝑃 (𝑥, 𝑦) 𝑑𝑥

)︂)︂
=
𝜕𝑄

𝜕𝑥
− 𝜕

𝜕𝑥

(︂
𝜕

𝜕𝑦

(︂∫︁
𝑃 (𝑥, 𝑦) 𝑑𝑥

)︂)︂
=
𝜕𝑄

𝜕𝑥
− 𝜕

𝜕𝑦

(︂
𝜕

𝜕𝑥

(︂∫︁
𝑃 (𝑥, 𝑦) 𝑑𝑥

)︂)︂
=
𝜕𝑄

𝜕𝑥
− 𝜕

𝜕𝑦
(𝑃 ) = 0,

từ đây suy ra:

𝜙(𝑦) =

∫︁ (︂
𝑄(𝑥, 𝑦)− 𝜕

𝜕𝑦

(︂∫︁
𝑃 (𝑥, 𝑦) 𝑑𝑥

)︂)︂
𝑑𝑦 + 𝑐,

với 𝑐 là hằng số.

Khi điều kiện 𝜕𝑃

𝜕𝑦
=
𝜕𝑄

𝜕𝑥
không thỏa mãn, ta nhân thêm hàm 𝑡(𝑥, 𝑦) để thỏa điều kiện:

𝜕

𝜕𝑦
(𝑡(𝑥, 𝑦) · 𝑃 (𝑥, 𝑦)) = 𝜕

𝜕𝑥
(𝑡(𝑥, 𝑦) ·𝑄(𝑥, 𝑦)).

Hàm 𝑡(𝑥, 𝑦) khi đó được gọi là nhân tử tích phân (hay интегрирующий множитель). Lúc này
phương trình biến đổi thành:

𝜕𝑡

𝜕𝑦
· 𝑃 +

𝜕𝑃

𝜕𝑦
· 𝑡 = 𝜕𝑡

𝜕𝑥
·𝑄+

𝜕𝑄

𝜕𝑥
· 𝑡

⇐⇒ 𝜕𝑡

𝜕𝑦
· 𝑃 − 𝜕𝑡

𝜕𝑥
·𝑄 = 𝑡

(︂
𝜕𝑄

𝜕𝑥
− 𝜕𝑃

𝜕𝑦

)︂
.

Lúc này ta chỉ cần tìm hàm 𝑡 chỉ phụ thuộc 𝑥 hoặc 𝑦. Ví dụ với 𝑡 = 𝑡(𝑥) ta có thể biến đổi:

− 𝑑𝑡

𝑑𝑥
𝑄 = 𝑡

(︂
𝜕𝑄

𝜕𝑥
− 𝜕𝑃

𝜕𝑦

)︂
⇐⇒ 𝑑𝑡

𝑡
=
𝜕𝑃/𝜕𝑦 − 𝜕𝑄/𝜕𝑥

𝑄
𝑑𝑥

⇐⇒ 𝑡(𝑥) = exp
(︂∫︁

𝜕𝑃/𝜕𝑦 − 𝜕𝑄/𝜕𝑥

𝑄
𝑑𝑥

)︂
.

Tương tự, 𝑡(𝑦) = exp
(︂∫︁

𝜕𝑄/𝜕𝑥− 𝜕𝑃/𝜕𝑦
𝑃

𝑑𝑦

)︂
.

Phương trình Lagrange và Clairaut

INFO-CIRCLE Definition 2.16 (Phương trình Lagrange)

Phương trình Lagrange (уравнение Лагранжа) là phương trình có dạng:

𝑦 = 𝑥𝜙(𝑦′) + 𝜓(𝑦′),
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với 𝜙 và 𝜓 là hai hàm số với 𝑦′ = 𝑑𝑦

𝑑𝑥
.

Để giải phương trình Lagrange ta đặt 𝑝 = 𝑦′. Khi đó 𝑦 = 𝑥𝜙(𝑝) + 𝜓(𝑝). Lấy vi phân hai vế ta có:

𝑑𝑦

𝑑𝑥
= 𝜙(𝑝) + 𝑥𝜙′(𝑝)𝑝′ + 𝜓′(𝑝)𝑝′

= 𝜙(𝑝) + 𝑥𝜙′(𝑝)
𝑑𝑝

𝑑𝑥
+ 𝜓′(𝑝)

𝑑𝑝

𝑑𝑥
.

Thay vào điều kiện ban đầu ta được:

(𝑝− 𝜙(𝑝))𝑑𝑥
𝑑𝑝
− 𝑥𝜙′(𝑥) = 𝜓′(𝑝).

Đây là phương trình vi phân tuyến tính theo 𝑥 = 𝑥(𝑝).

Giải phương trình tìm được 𝑥 = 𝜆(𝑝, 𝑐) với 𝑐 là hằng số, thay lại điều kiện 𝑝 = 𝑦′ tìm được 𝑦 = 𝛾(𝑥, 𝑐).

Chú ý rằng khi thay vào điều kiện ban đầu ta chia cho 𝑑𝑝 nên trước đó phải xét trường hợp 𝑑𝑝 = 0, nói cách
khác 𝑝 = 𝑝0 là hằng số và 𝑝− 𝜙(𝑝) = 0.

Nghiệm 𝑦 = 𝑥𝜙(𝑝0) + 𝜓(𝑝0) gọi là nghiệm đặc trưng (hay особое решение).

INFO-CIRCLE Definition 2.17 (Phương trình Clairaut)

Phương trình Clairaut (уравнение Клеро) có dạng:

𝑦 = 𝑥𝑦′ + 𝜓(𝑦′).

Đây là phương trình Lagrange khi 𝜙(𝑦′) = 𝑦′.

Để giải phương trình này, đặt 𝑦′ = 𝑝 thì 𝑦 = 𝑥𝑝+ 𝜓(𝑝). Khi đó:

𝑑𝑦

𝑑𝑥
= 𝑝+ 𝑥𝑝′ + 𝜓′(𝑝)𝑝′

⇐⇒ 𝑝 = 𝑝+ 𝑥
𝑑𝑝

𝑑𝑥
+ 𝜓′(𝑝)

𝑑𝑝

𝑑𝑥

⇐⇒ (𝑥+ 𝜓′(𝑝))
𝑑𝑝

𝑑𝑥
= 0.

Nếu 𝑑𝑝

𝑑𝑥
= 0 thì 𝑝 = 𝑐 là hằng số. Nghiệm tổng quát là 𝑦 = 𝑐𝑥+ 𝜓(𝑐).

Nếu 𝑥+ 𝜓′(𝑝) = 0 thì 𝑥 = −𝜓′(𝑝). Suy ra 𝑦 = 𝑥𝑝+ 𝜓(𝑝) là nghiệm đặc trưng và không có dạng tổng quát.

2.4.3 Chuỗi số
Xét dãy số {𝑎𝑛}. Đặt

𝑆𝑛 = 𝑎1 + 𝑎2 + . . .+ 𝑎𝑛.

Khi đó {𝑆𝑛} là chuỗi số. Tương tự như sự hội tụ hoặc phân kỳ của dãy số, ta cũng quan tâm đến sự hội tụ
và phân kỳ của chuỗi số.
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INFO-CIRCLE Definition 3.15 (Chuỗi số hội tụ)

Chuỗi số {𝑆𝑛} được gọi là hội tụ nếu tồn tại giới hạn hữu hạn 𝐿 = lim
𝑛→∞

𝑆𝑛.

Ngược lại ta gọi là chuỗi phân kỳ, nghĩa là lim
𝑛→∞

𝑆𝑛 =∞ hoặc không tồn tại lim
𝑛→∞

𝑆𝑛.

INFO-CIRCLE Example 3.14

Xét dãy số 𝑎𝑛 =
1

2𝑛
với 𝑛 = 1, 2, . . .

Khi đó

𝑆𝑛 =
1

2
+

1

22
+ . . .+

1

2𝑛

=
1

2
·
1− 1

2𝑛

1− 1

2

−→ 1

2
· 1

1− 1

2

= 1

khi 𝑛→∞. Như vậy 𝑆𝑛 là chuỗi hội tụ.

Tiêu chuẩn Cauchy

Theo định nghĩa, chuỗi số hội tụ khi tồn tại giới hạn hữu hạn. Do đó ta có thể viết theo ngôn ngữ 𝛿− 𝜀 như
đối với dãy số.

INFO-CIRCLE Theorem 3.14 (Tiêu chuẩn Cauchy)

Chuỗi số
∞∑︁
𝑖=1

𝑎𝑖 hội tụ nếu với mọi 𝜀 > 0, tồn tại 𝑁 ∈ N, sao cho với mọi 𝑛 > 𝑚 > 𝑁 , ta có

⃒⃒⃒⃒
⃒

𝑚∑︁
𝑖=𝑛

𝑎𝑖

⃒⃒⃒⃒
⃒ < 𝜀.

INFO-CIRCLE Chứng minh

Do
𝑛∑︁

𝑖=𝑚

𝑎𝑖 =

𝑛∑︁
𝑖=1

𝑎𝑖 −
𝑚−1∑︁
𝑖=1

𝑎𝑖 nên chuỗi số hội tụ từ một điểm 𝑚 nào đó trở đi thì chuỗi hội tụ. Tương tự

cho phân kỳ.

INFO-CIRCLE Corollary 3.2

Nếu chuỗi số
∞∑︁

𝑛=1

𝑎𝑖 hội tụ thì lim
𝑛→∞

𝑎𝑛 = 1.
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INFO-CIRCLE Chứng minh

Theo tiêu chuẩn Cauchy, với mọi 𝜀 > 0, do chuỗi hội tụ nên tồn tại 𝑁 ∈ N sao cho với mọi 𝑛 > 𝑚 > 𝑁

ta có
⃒⃒⃒⃒

𝑛∑︀
𝑖=𝑚

𝑎𝑖

⃒⃒⃒⃒
< 𝜀.

Nếu ta chọn 𝑚 = 𝑛 thì điều kiện trở thành với mọi 𝜀 > 0, tồn tại 𝑁 ∈ N sao cho với mọi 𝑛 > 𝑁 ta có
|𝑎𝑛| < 𝜀. Nói cách khác lim

𝑛→∞
𝑎𝑛 = 0 (định nghĩa giới hạn dãy số).

Dựa vào tiêu chuẩn Cauchy ta có một số tiêu chuẩn hội tụ hữu dụng như sau.

INFO-CIRCLE Theorem 3.15 (Tiêu chuẩn thứ nhất về sự hội tụ)

Xét hai chuỗi số
∞∑︁

𝑛=1

𝑎𝑛 và
∞∑︁

𝑛=1

𝑏𝑛. Khi điều kiện 0 6 𝑎𝑛 6 𝑏𝑛 thỏa mãn, ta có các kết quả sau:

1. Nếu
∑︀
𝑏𝑛 hội tụ thì

∑︀
𝑎𝑛 cũng hội tụ.

2. Nếu
∑︀
𝑎𝑛 phân kỳ thì

∑︀
𝑏𝑛 cũng phân kỳ.

INFO-CIRCLE Chứng minh

Ta thấy rằng nếu
∑︀
𝑏𝑛 hội tụ thì với mọi 𝜀 > 0, tồn tại 𝑁 ∈ N sao cho với mọi 𝑛 > 𝑚 > 𝑁 ,

⃒⃒⃒⃒
⃒

𝑛∑︁
𝑖=𝑚

𝑎𝑖

⃒⃒⃒⃒
⃒ < 𝜀.

Do 0 6 𝑎𝑖 6 𝑏𝑖 nên

⃒⃒⃒⃒
⃒

𝑛∑︁
𝑖=𝑚

𝑎𝑖

⃒⃒⃒⃒
⃒ <

⃒⃒⃒⃒
⃒

𝑛∑︁
𝑖=𝑚

𝑏𝑖

⃒⃒⃒⃒
⃒ < 𝜀. Như vậy chuỗi

∞∑︁
𝑛=1

𝑎𝑛 cũng hội tụ.

INFO-CIRCLE Theorem 3.16 (Tiêu chuẩn so sánh)

Xét hai chuỗi số dương
∞∑︁

𝑛=1

𝑎𝑛 và
∞∑︁

𝑛=1

𝑏𝑛. Nếu tồn tại giới hạn hữu hạn lim
𝑛→∞

𝑎𝑛
𝑏𝑛

= 𝐿 thì hai dãy số trên

cùng hội tụ hoặc cùng phân kỳ.

INFO-CIRCLE Chứng minh

Do dãy số 𝑎𝑛
𝑏𝑛

có giới hạn hữu hạn 𝐿 nên với mọi 𝜀 > 0, tồn tại 𝑁 ∈ N sao cho với mọi 𝑛 > 𝑁 , ta có⃒⃒⃒⃒
𝑎𝑛
𝑏𝑛
− 𝐿

⃒⃒⃒⃒
< 𝜀. Tương đương với 𝑏𝑛(−𝜀+ 𝐿) < 𝑎𝑛 < 𝑏𝑛(𝜀+ 𝐿). Từ tiêu chuẩn thứ nhất về sự hội tụ và

bất đẳng thức thứ hai suy ra nếu chuỗi
∑︀
𝑏𝑛 hội tụ thì chuỗi

∑︀
𝑎𝑛 cũng hội tụ.

Tương tự, với bất đẳng thức thứ nhất, nếu
∑︀
𝑏𝑛 phân kỳ thì

∑︀
𝑎𝑛 cũng phân kỳ.
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INFO-CIRCLE Theorem 3.17 (Tiêu chuẩn tích phân Cauchy)

Xét chuỗi số dương
∞∑︁

𝑛=1

𝑎𝑛. Nếu 𝑎𝑛 là dãy số có dạng 𝑎𝑛 = 𝑓(𝑛), ta chuyển qua xét hàm số 𝑓(𝑥).

Nếu hàm số 𝑓(𝑥) thỏa mãn:

1. 𝑓(𝑥) không tăng.

2.
∞∫︁
0

𝑓(𝑥) 𝑑𝑥 hữu hạn.

Khi đó chuỗi số
∞∑︁

𝑛=1

𝑎𝑛 hội tụ.

2.4.4 Hàm gamma, hàm beta, hàm zeta
[TODO] Triển khai hàm gamma và beta thành mục riêng.

Hàm gamma được định nghĩa bởi tích phân

Γ(𝑧) =

∞∫︁
0

𝑡𝑧−1𝑒−𝑡 𝑑𝑡,

với 𝑧 ∈ C và Re(𝑧) > 0.

Hàm gamma có một số tính chất thú vị:

• Γ(𝑛) = (𝑛− 1)! khi 𝑛 là số nguyên dương với Γ(1) = 1;

• Γ(𝑧 + 1) = 𝑧Γ(𝑧).

Tính chất thứ hai có thể chứng minh bằng tích phân từng phần

Γ(𝑧 + 1) =

∞∫︁
0

𝑡𝑧𝑒−𝑡 𝑑𝑡 = (−𝑡𝑧𝑒−𝑡)
⃒⃒⃒∞
0

+

∞∫︁
0

𝑧𝑡𝑧−1𝑒−𝑡 𝑑𝑡

= 𝑧

∞∫︁
0

𝑡𝑧−1𝑒−𝑡 𝑑𝑡 = 𝑧Γ(𝑧).

Euler's reflection formula:

Γ(1− 𝑧) · Γ(𝑧) = 𝜋

sin𝜋𝑧
, 𝑧 ̸∈ Z.

Từ công thức Euler ta suy ra

Γ(𝑧 − 𝑛) = (−1)𝑛−1Γ(−𝑧) · Γ(1 + 𝑧)

Γ(𝑛+ 1− 𝑧)
, 𝑛 ∈ Z.

Legendre duplication formula:

Γ(𝑧) · Γ(𝑧 + 1

2
) = 21−2𝑧

√
𝜋Γ(2𝑧).

Từ công thức Legendre có thể suy ra một số tính chất:
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• Γ(1/2) =
√
𝜋;

• nếu Γ(𝑧) = Γ(𝑧) thì Γ(𝑧) · Γ(𝑧) ∈ R.

Tính chất thứ hai, cụ thể hơn, nếu đặt 𝑧 = 𝑎+ 𝑏𝑖 thì

|Γ(𝑎+ 𝑏)|2 = |Γ(𝑎)|2
∞∏︁
𝑘=0

1

1 +
𝑏2

(𝑎+ 𝑘)2

.

Ta có thể mở rộng hàm gamma cho phần thực âm với công thức Euler

Γ(−𝑥) = 1

Γ(𝑥+ 1)
· 𝜋

sin(𝜋(𝑥+ 1))
,

hoặc tính chất của hàm gamma ở trên

Γ(−𝑥+ 1) = (−𝑥) · Γ(−𝑥)⇒ Γ(−𝑥) = − 1

𝑥
Γ(−𝑥+ 1), 𝑥 ̸∈ Z.

Hàm beta được định nghĩa bởi tích phân

𝐵(𝑧1, 𝑧2) =

1∫︁
0

𝑡𝑧1−1(1− 𝑡)𝑧2−1 𝑑𝑡

với đầu vào là các số phức 𝑧1, 𝑧2 mà Re(𝑧1) > 0, Re(𝑧2) > 0.

Hàm beta còn được định nghĩa thông qua tích phân

𝐵(𝑧1, 𝑧2) =

∞∫︁
0

𝑢𝑧1−1

(1 + 𝑢)𝑧1+𝑧2
𝑑𝑢.

Tại sao hai định nghĩa lại tương đương nhau? Các bạn hãy đặt 𝑡 = 𝑢

1 + 𝑢
. Khi 𝑢→∞ thì 𝑡→ 1 và sử dụng

phương pháp đổi biến để biến đổi hai dạng tích phân.

Một số tính chất của hàm beta

• 𝐵(𝑧1, 𝑧2) =
Γ(𝑧1) · Γ(𝑧2)
Γ(𝑧1 + 𝑧2)

;

• 𝐵(1, 𝑥) =
1

𝑥
;

• 𝐵(𝑥, 1− 𝑥) = 𝜋

sin𝜋𝑥
với 𝑥 ̸∈ Z.

Ví dụ, tính tích phân

𝐼 =

+∞∫︁
0

𝑥1/4

(1 + 𝑥)2
𝑑𝑥

với tích phân Euler.

Theo định nghĩa hàm beta thì

𝐵(𝑝, 𝑞) =

+∞∫︁
0

𝑢𝑝−1

(1 + 𝑢)𝑝+𝑞
𝑑𝑢
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nên 𝐼 = 𝐵

(︂
5

4
,
3

4

)︂
.

Theo tính chất của hàm beta (liên hệ với hàm gamma) thì

𝐵(𝑝, 𝑞) =
Γ(𝑝) · Γ(𝑞)
Γ(𝑝+ 𝑞)

⇒ 𝐼 =

Γ

(︂
5

4

)︂
· Γ
(︂
3

4

)︂
Γ(2)

.

Vì Γ(𝑛) = (𝑛− 1)! với 𝑛 là số nguyên dương nên 𝐼 = Γ

(︂
5

4

)︂
· Γ
(︂
3

4

)︂
.

Vì Γ(𝑝+ 1) = 𝑝Γ(𝑝) với 𝑝 > 0 (ở đây 𝑝 là số thực) nên

Γ

(︂
5

4

)︂
=

1

4
· Γ
(︂
1

4

)︂
,

mà theo tính chất của hàm gamma

Γ(𝑝) · Γ(1− 𝑝) = 𝜋

sin𝜋𝑝

nên

Γ

(︂
3

4

)︂
· Γ
(︂
1

4

)︂
=

𝜋

sin(𝜋/4)
=

𝜋√
2/2

= 𝜋
√
2.

Như vậy đáp án là

𝐼 = Γ

(︂
5

4

)︂
· Γ
(︂
3

4

)︂
=

1

4
· Γ
(︂
1

4

)︂
· Γ
(︂
3

4

)︂
=

1

4
· 𝜋
√
2 =

𝜋

2
√
2
.

Hàm zeta được định nghĩa bởi tích phân

𝜁(𝑠) =

∞∑︁
𝑛=1

1

𝑛𝑠
=

1

1𝑠
+

1

2𝑠
+ · · ·

với đầu vào 𝑠 ∈ C có Re(𝑠) > 1.

Liên hệ giữa hàm zeta và hàm gamma là

𝜁(𝑠) =

∞∑︁
𝑛=1

1

𝑛𝑠
=

1

Γ(𝑠)

∞∫︁
0

𝑥𝑠−1

𝑒𝑥 − 1
𝑑𝑥.

2.5 Xác suất thống kê

2.5.1 Xác suất thống kê
Xác suất là gì?

INFO-CIRCLE Definition 1 (Định nghĩa cổ điển của xác suất)

Định nghĩa thống kê của xác suất nói rằng, giả sử trong một phép thử có 𝑛 khả năng có thể xảy ra. Xét
một biến cố 𝐴 xảy ra khi thực hiện phép thử có 𝑘 khả năng xảy ra. Khi đó xác suất của biến cố 𝐴 kí
hiệu là 𝑃 (𝐴) và được tính:

𝑃 (𝐴) =
𝑘

𝑛
.
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Dễ thấy, do biến cố 𝐴 là một trường hợp nhỏ trong tổng thể tất cả trường hợp khi thực hiện phép thử, nên
0 6 𝑘 6 𝑛. Nghĩa là:

0 6 𝑃 (𝐴) 6 1

với mọi biến cố 𝐴 bất kì.

INFO-CIRCLE Example 1

Xét phép thử tung hai đồng xu. Gọi 𝐴 là biến cố hai đồng xu cùng mặt.

Ta kí hiệu 𝑆 là đồng xu sấp, 𝑁 là đồng xu ngửa. Khi đó các trường hợp có thể xảy ra của phép thử là
𝑆 − 𝑆, 𝑆 −𝑁 , 𝑁 − 𝑆, 𝑁 −𝑁 (4 trường hợp).

Trong khi đó, các trường hợp có thể xảy ra của biến cố 𝐴 là 𝑆 − 𝑆, 𝑁 −𝑁 (2 trường hợp).

Kết luận: 𝑃 (𝐴) = 2

4
=

1

2
.

Chúng ta gọi tập hợp tất cả các trường hợp khi thực hiện phép thử là không gian mẫu và kí hiệu là Ω.
Mỗi phần tử trong không gian mẫu được gọi là biến cố sơ cấp. Trong ví dụ trên:

Ω = {𝑆 − 𝑆, 𝑆 −𝑁,𝑁 − 𝑆,𝑁 −𝑁}.

Tập hợp các trường hợp có thể xảy ra của biến cố gọi là không gian biến cố và kí hiệu là Ω𝐴. Trong ví
dụ trên, Ω𝐴 = {𝑆 − 𝑆,𝑁 −𝑁}.

Như vậy, 𝑃 (𝐴) = |Ω𝐴|
|Ω|

.

INFO-CIRCLE Example 2

Tung hai con súc sắc cân đối và đồng chất. Tính xác suất tổng số nút của hai con súc sắc bằng 4.

Việc tung mỗi con súc sắc có 6 trường hợp. Do đó |Ω| = 62 = 36.

Gọi 𝐴 là biến cố tổng số nút của hai con súc sắc bằng 4. Ta có các trường hợp là 4 = 1+3 = 3+1 = 2+2
(3 trường hợp).

Như vậy |Ω𝐴| = 3 và 𝑃 (𝐴) = 3

36
=

1

12
.

Ba tiên đề về sự nhất quán của xác suất

Tiên đề 1. Nếu 𝐴 là một sự kiện và kí hiệu 𝑃 (𝐴) là xác suất của 𝐴 thì:

0 6 𝑃 (𝐴) 6 1.

Tiên đề 2. Nếu 𝐴 là một sự kiện và kí hiệu 𝐴 là sự kiện phủ định của 𝐴 thì:

𝑃 (𝐴) + 𝑃 (𝐴) = 1.

Tiên đề 3. Với hai sự kiện 𝐴 và 𝐵, nếu hai sự kiện 𝐴 và 𝐵 không thể cùng xảy ra thì xác suất của sự kiện
"xảy ra 𝐴 hoặc 𝐵" bằng tổng các xác suất của 𝐴 và 𝐵:

𝑃 (𝐴 ∩𝐵) = 0⇒ 𝑃 (𝐴 ∪𝐵) = 𝑃 (𝐴) + 𝑃 (𝐵).
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Không gian xác suất

INFO-CIRCLE Definition 2 (Không gian xác suất)

Một không gian xác suất là một tập hợp Ω cùng với:

1) Một họ 𝒮 các tập con của Ω, thỏa mãn các tính chất sau:

• Ω ∈ 𝒮;

• nếu 𝐴,𝐵 ∈ 𝒮 thì 𝐴 ∪𝐵 ∈ 𝒮, 𝐴 ∩𝐵 ∈ 𝒮 và 𝐴 = Ω ∖𝐴 ∈ 𝒮.

Một họ như vậy được gọi là một đại số các tập con của Ω.

Trong trường hợp Ω là tập có vô hạn phần tử thì ta cần thêm điều kiện sau: nếu 𝐴𝑖, 𝑖 = 1, 2, 3, . . . là
một dãy vô hạn các phần tử của 𝒮 thì hợp

∞⋃︀
𝑖=1

𝐴𝑖 cũng thuộc họ 𝒮.

Với điều kiện thêm này, 𝒮 được gọi là một sigma-đại số. Các phần tử của 𝒮 được gọi là tập hợp con
đo được của không gian xác suất.

2) Một hàm số thực 𝑃 : 𝒮 → R, được gọi là phân bố xác suất hay độ đo xác suất trên Ω, thỏa
mãn các tính chất sau:

i) với mọi 𝐴 ∈ 𝒮 ta có:

0 6 𝑃 (𝐴) 6 1

ii)

𝑃 (∅) = 0, 𝑃 (Ω) = 1

iii) nếu 𝐴 ∩𝐵 = ∅ thì:

𝑃 (𝐴 ∪𝐵) = 𝑃 (𝐴) + 𝑃 (𝐵).

Tổng quát hơn, nếu 𝐴𝑖, với 𝑖 = 1, 2, 3, . . . là một dãy các tập hợp con đo được và chúng đôi một không
giao nhau thì:

𝑃

(︃⋃︁
𝑖

𝐴𝑖

)︃
=
∑︁
𝑖

𝑃 (𝐴𝑖).

Một số lưu ý:

1. Không gian xác suất Ω còn được gọi là không gian mẫu (hay sample space) và nó là mô hình toán
học trừu tượng cho vấn đề tính toán xác suất đang được quan tâm. Mỗi phần tử của Ω có thể được
gọi là một sự kiện thành phần (hay biến cố sơ cấp, elementary event). Nếu 𝐴 là một phần tử
trong Ω thì ta cũng có thể viết 𝑃 (𝐴) và hiểu là 𝑃 ({𝐴}), trong đó {𝐴} là tập con của Ω chứa duy nhất
một phần tử 𝐴. Mỗi sự kiện là một tập con của Ω nên có thể chứa nhiều (thậm chí vô hạn) sự kiện
thành phần. Không nhất thiết tập con nào của Ω cũng đo được (nằm trong họ 𝒮) và chúng ta sẽ chỉ
quan tâm đến các tập con đo được.

2. Trong toán học, một đại số là một tập hợp với các phép tính cộng, trừ và nhân (vành). Các tính chất
của họ 𝒮 trong định nghĩa không gian xác suất khiến nó là một đại số theo nghĩa:

• phần tử 0 trong 𝒮 là tập rỗng;

• phần tử đơn vị trong 𝒮 là tập Ω;
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• phép nhân trong 𝒮 là phép giao 𝐴×𝐵 = 𝐴 ∩𝐵;

• phép cộng trong 𝒮 là phép

𝐴+𝐵 = (𝐴 ∪𝐵) ∖ (𝐴 ∩𝐵) = (𝐴 ∖𝐵) ∪ (𝐵 ∖𝐴).

Đại số này có đặc số (số đặc trưng, characteristic) bằng 2, tức là 2𝐴 = 𝐴+ 𝐴 = 0 với mọi 𝐴. Vì lý do này
mà phép cộng và phép trừ là một. Chúng ta muốn 𝒮 là một đại số để thuận tiện thực hiện tính toán số học.

1. Đẳng thức 𝑃
(︂⋃︀

𝑖

𝐴𝑖

)︂
=
∑︀
𝑖

𝑃 (𝐴𝑖) được gọi là tính chất sigma của xác suất. Tính chất sigma là tính

chất cộng vô hạn: khi có một dãy vô hạn các tập con không giao nhau thì xác suất của hợp của
chúng cũng bằng tổng vô hạn của các xác suất của các tập con. Tính chất sigma chính là tính chất
cho phép chúng ta lấy giới hạn cho việc tính toán xác suất.

Ví dụ, nếu 𝐴1 ⊂ 𝐴2 ⊂ . . . là một dãy tăng các tập con của Ω và 𝐴 = lim
𝑛→∞

𝐴𝑛 =
∞⋃︀

𝑛=1
𝐴𝑛, thì ta có thể viết

𝑃 (𝐴) = lim
𝑛→∞

𝑃 (𝐴𝑛) bởi vì:

𝑃 (𝐴) = 𝑃 (𝐴1 ∪
∞⋃︁

𝑛=1

(𝐴𝑛+1 ∖𝐴𝑛)) = 𝑃 (𝐴1) +
∞∑︁

𝑛=1

𝑃 (𝐴𝑛+1 ∖𝐴𝑛)

= 𝑃 (𝐴1) + lim
𝑛→∞

𝑃 (𝐴𝑛+1 ∖𝐴𝑛) = 𝑃 (𝐴1) + lim
𝑛→∞

(𝑃 (𝐴𝑛+1)− 𝑃 (𝐴1)).

Đẳng thức 𝑃
(︂⋃︀

𝑖

𝐴𝑖

)︂
=
∑︀
𝑖

𝑃 (𝐴𝑖) không được suy ra từ 𝑃 (𝐴 ∪𝐵) = 𝑃 (𝐴) + 𝑃 (𝐵) mà là một tiên đề trong

xác suất. Tiên đề này được đưa ra bởi nhà toán học người Nga Andrei Nikolaievich Kolmogorov.

Phép cộng xác suất mở rộng

Ở tiên đề 3 bên trên, hai biến cố khi đó được gọi là xung khắc, nghĩa là nếu biến cố này xảy ra thì biến cố
kia chắc chắn không xảy ra. Nói cách khác giao của chúng bằng rỗng.

Ta còn có thể kí hiệu giao hai biến cố 𝑃 (𝐴 ∩𝐵) là 𝑃 (𝐴𝐵).

Một trường hợp đơn giản nhất của hai biến cố xung khắc là biến cố đối.

INFO-CIRCLE Example 3

Tung một đồng xu và gọi 𝐴 là biến cố đồng xu ra mặt ngửa. Khi đó biến cố đối của 𝐴, kí hiệu là 𝐴 là
biến cố ra mặt sấp. Ở đây 𝐴 ∪𝐴 = Ω và 𝐴 ∩𝐴 = ∅.

Từ đó:

1 = 𝑃 (Ω) = 𝑃 (𝐴 ∪𝐴) = 𝑃 (𝐴) + 𝑃 (𝐴),

nói cách khác 𝑃 (𝐴) = 1− 𝑃 (𝐴).

Xét hai tập hợp 𝐴 và 𝐵. Số phần tử của phép hợp hai tập hợp trong trường hợp tổng quát được tính như
sau:

|𝐴 ∪𝐵| = |𝐴|+ |𝐵| − |𝐴 ∩𝐵|.

Tương tự, xác suất của phép cộng xác suất đối với hai biến cố có giao khác rỗng là:

𝑃 (𝐴 ∪𝐵) = 𝑃 (𝐴) + 𝑃 (𝐵)− 𝑃 (𝐴𝐵).
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Xét các tập hợp 𝐴1, 𝐴2, ..., $A_n$. Khi đó, số phần tử khi hợp các tập hợp này là:

|𝐴1 ∪𝐴2 ∪ · · · ∪𝐴𝑛| = |𝐴1|+ |𝐴2|+ · · ·+ |𝐴𝑛| −
∑︁
𝑖,𝑗

|𝐴𝑖 ∩𝐴𝑗 |

+
∑︁
𝑖,𝑗,𝑘

|𝐴𝑖 ∩𝐴𝑗 ∩𝐴𝑘|+ · · ·

=

𝑛∑︁
𝑖=1

(−1)𝑖+1
∑︁

𝑗1,𝑗2,··· ,𝑗𝑖

|𝐴𝑗1 ∩𝐴𝑗2 ∩ · · · ∩𝐴𝑗𝑖 |.

Tương tự, ta có phép cộng xác suất:

INFO-CIRCLE Theorem 1 (Phép cộng xác suất mở rộng)

𝑃 (𝐴1 ∪𝐴2 ∪ · · · ∪𝐴𝑛) =

𝑛∑︁
𝑖=1

(−1)𝑖+1
∑︁

𝑗1,𝑗2,··· ,𝑗𝑖

𝑃 (𝐴𝑗1 ∩𝐴𝑗2 ∩ · · · ∩𝐴𝑗𝑖).

Mô hình xác suất với vô hạn các sự kiện

INFO-CIRCLE Example 4 (Phân phối Poisson)

Giả sử tỉ lệ số khách hàng trung bình đến siêu thị trong một đơn vị thời gian cố định là 𝜆.

Phân phối Poisson 𝑃 (𝑛) = 𝑒−𝜆 · 𝜆
𝑛

𝑛!
thể hiện xác suất có 𝑛 khách hàng đến siêu thị theo tỉ lệ thời gian 𝜆.

Ở phân phối Poisson, 𝑛 nhận tất cả giá trị nguyên không âm 0, 1, ... cũng như thỏa điều kiện:
∞∑︁

𝑛=0

𝑃 (𝑛) =

∞∑︁
𝑛=0

𝑒−𝜆 · 𝜆
𝑛

𝑛!
= 𝑒−𝜆

∞∑︁
𝑛=0

𝜆𝑛

𝑛!
= 𝑒−𝜆 · 𝑒𝜆 = 1.

Ở biến đổi trên,
∑︀∞

𝑛=0
𝜆𝑛

𝑛! = 𝑒𝜆 là khai triển Taylor.

INFO-CIRCLE Example 5

Giả sử ta biết rằng có một xe hơi 𝑋 đang đậu trên một khúc phố 𝑍 và ta quan tâm đến vị trí của 𝑋 trên
khúc phố đó. Ta có thể mô hình 𝑋 bằng một điểm và 𝑍 là một đoạn thẳng và lấy đoạn thẳng đó làm
không gian xác suất Ω = [𝑎; 𝑏], 𝑎, 𝑏 ∈ R, 𝑎 < 𝑏 (mô hình xác suất liên tục này có lực lượng continuum,
không đếm được).

Sự kiện "xe hơi đỗ chỗ nào đó trên khúc phố" chuyển thành sự kiện "điểm 𝑥 nằm trong một đoạn thẳng
con nào đó trên đoạn thẳng Ω = [𝑎; 𝑏]".

Ta có thể chọn phân bố xác suất đều trên Ω = [𝑎; 𝑏] theo nghĩa sau: xác suất mỗi đoạn thẳng con trên
Ω tỷ lệ thuận với độ dài của đoạn thẳng con đó, hay 𝑃 ([𝑐; 𝑑]) = (𝑑− 𝑐)/(𝑏− 𝑎).
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Ánh xạ giữa các không gian xác suất

INFO-CIRCLE Definition 3 (Ánh xạ bảo toàn xác suất)

Một ánh xạ 𝜑 : (Ω1, 𝑃1) → (Ω2, 𝑃2) từ một không gian xác suất (Ω1, 𝑃1) vào một không gian xác suất
(Ω2, 𝑃2) được gọi là một ánh xạ bảo toàn xác suất nếu nó bảo toàn độ đo xác suất, nghĩa là với mọi
tập con 𝐵 ⊂ Ω2 đo được, ta có:

𝑃1(𝜑
−1(𝐵)) = 𝑃2(𝐵).

Hơn nữa, nếu 𝜑 là một song ánh modulo những tập có xác suất bằng 0, nghĩa là tồn tại các tập con 𝐴 ∈ Ω1,
𝐵 ∈ Ω2 sao cho 𝑃1(𝐴) = 𝑃2(𝐵) = 0 và 𝜑 : Ω1 ∖𝐴→ Ω2 ∖𝐵 là song ánh bảo toàn xác suất, thì 𝜑 được gọi là
đẳng cấu xác suất, và ta nói rằng (Ω1, 𝑃1) đẳng cấu xác suất với (Ω2, 𝑃2).

INFO-CIRCLE Theorem 2

Nếu (Ω1, 𝑃1) là một không gian xác suất và 𝜑 : Ω1 → Ω2 là một ánh xạ tùy ý thì tồn tại một độ đo xác
suất 𝑃2 sao cho ánh xạ 𝜑 : (Ω1, 𝑃1)→ (Ω2, 𝑃2) là ánh xạ bảo toàn xác suất.

Ta xây dựng 𝑃2 theo công thức: với mỗi tập con 𝐵 ⊂ Ω2, nếu tồn tại 𝑃1(𝜑
−1(𝐵)) thì ta đặt

𝑃2(𝐵) = 𝑃1(𝜑
−1(𝐵)).

Độ đo xác suất 𝑃2 như trên gọi là push-forward của 𝑃1 qua ánh xạ 𝜑, hay phân bố xác suất cảm sinh
từ 𝑃1 qua ánh xạ 𝜑.

Câu hỏi: chứng minh rằng quan hệ đẳng cấu xác suất giữa các không gian xác suất là một quan hệ tương
đương.

Giải: vì 𝜑 là song ánh, đối với tính phản xạ chúng ta lấy ánh xạ đồng nhất, tính đối xứng thì ánh xạ ngược
của song ánh (vẫn là song ánh), bắc cầu thì ta hợp hai song ánh vẫn là song ánh.

Tích của các không gian xác suất

Nếu (Ω1, 𝑃1) và (Ω2, 𝑃2) là hai không gian xác suất thì tích Ω1×Ω2 cũng có một độ đo xác suất 𝑃 được xác
định bởi 𝑃1 và 𝑃2 bằng công thức: nếu 𝐴1 ⊂ Ω1 và 𝐴2 ⊂ Ω2 nằm trong các sigma-đại số tương ứng của 𝑃1

và 𝑃2 thì:

𝑃 (𝐴1 ×𝐴2) = 𝑃1(𝐴1)× 𝑃2(𝐴2).

Sigma-đại số của 𝑃 chính là sigma-đại số sinh bởi các tập con của Ω1 × Ω2 có dạng 𝐴1 ×𝐴2 như trên.

Tương tự ta có thể định nghĩa tích trực tiếp của 𝑛 không gian xác suất hay thập chí một dãy vô hạn các
không gian xác suất.

INFO-CIRCLE Theorem 3

Hai phép chiếu tự nhiên từ tích (Ω1, 𝑃1)×(Ω2, 𝑃2) của hai không gian xác suất xuống (Ω1, 𝑃1) và (Ω2, 𝑃2)
là hai ánh xạ bảo toàn xác suất.
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Xác suất có điều kiện

Xác suất có điều kiện

INFO-CIRCLE Definition 4 (Xác suất có điều kiện)

Xét hai biến cố 𝐴 và 𝐵. Khi đó xác suất xảy ra của biến cố 𝐵 với điều kiện biến cố 𝐴 xảy ra là:

𝑃 (𝐴|𝐵) =
𝑃 (𝐴𝐵)

𝑃 (𝐵)
.

Ý nghĩa của công thức trên có thể hiểu là, việc biến cố 𝐴 xảy ra dựa trên cơ sở biến cố 𝐵 đã xảy ra, do đó
không gian mẫu sẽ giảm xuống còn 𝐵 và biến cố giảm còn 𝐴𝐵.

Dựa trên định nghĩa của xác suất có điều kiện có thể đưa ra nhận xét sau.

INFO-CIRCLE Remark 1

Từ công thức trên có thể thấy sự tương đương:

𝑃 (𝐴𝐵) = 𝑃 (𝐵) · 𝑃 (𝐴|𝐵) = 𝑃 (𝐴) · 𝑃 (𝐵|𝐴).

Nhận xét trên cho thấy sự liên hệ của hai biến cố. Nói cách khác việc xảy ra của biến cố này sẽ ảnh hưởng
đến biến cố kia và ngược lại.

Tổng quát, nếu 𝑛 biến cố 𝐴𝑖, 𝑖 = 1, . . . , 𝑛 không độc lập thì:

𝑃 (𝐴1𝐴2 · · ·𝐴𝑛) =𝑃 (𝐴1) · 𝑃 (𝐴2|𝐴1) · 𝑃 (𝐴3|𝐴2𝐴1) · · ·
𝑃 (𝐴𝑛|𝐴1𝐴2 · · ·𝐴𝑛−1).

Sử dụng nhận xét trên có thể chứng minh công thức này bằng quy nạp. Về mặt ý nghĩa, biến cố 𝐴1 xảy ra
đầu tiên. Tiếp theo đó 𝐴2 xảy ra với điều kiện 𝐴1 đã xảy ra. Tiếp theo nữa, 𝐴3 xảy ra khi cả 𝐴1 và 𝐴2 xảy
ra, chính là 𝐴1𝐴2.

Tương tự như vậy, 𝐴𝑖 xảy ra với điều kiện tất cả 𝐴1, ..., 𝐴𝑖−1 đều đã xảy ra, là biến cố giao 𝐴1 . . . 𝐴𝑖1 .

Cũng từ nhận xét trên, các biến cố có vai trò như nhau nên việc đổi vị trí không thay đổi kết quả 𝑃 (𝐴1 . . . 𝐴𝑛).

Sự độc lập và phụ thuộc của các sự kiện

Nếu hai biến cố không ảnh hưởng việc xảy ra của nhau thì ta gọi là biến cố độc lập.

INFO-CIRCLE Definition 5 (Biến cố độc lập)

Hai biến cố được gọi là độc lập nếu việc xảy ra của biến cố này không ảnh hưởng đến việc xảy ra của
biến cố kia, hay:

𝑃 (𝐴) = 𝑃 (𝐴|𝐵) = 𝑃 (𝐴𝐵)/𝑃 (𝐵).

Viết cách khác là:

𝑃 (𝐴𝐵) = 𝑃 (𝐴) · 𝑃 (𝐵).
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Khi đó, giả sử ta có một họℳ các sự kiện.

INFO-CIRCLE Definition 6 (Họ các sự kiện độc lập)

Họℳ được gọi là một họ các sự kiện độc lập nếu như với bất kì số tự nhiên 𝑘 nào và bất kì sự kiện
𝐴𝑖, ..., 𝐴𝑘 khác nhau nào trong họℳ ta cũng có:

𝑃 (𝐴1 · · ·𝐴𝑘) = 𝑃 (𝐴1) · 𝑃 (𝐴2) · · ·𝑃 (𝐴𝑘).

INFO-CIRCLE Remark 2

Nếu ta có một họ các sự kiện độc lập thì các sự kiện trong họ độc lập đôi một với nhau. Nhưng ngược
lại chưa chắc: có những họ không độc lập mà trong đó các sự kiện độc lập từng đôi một với nhau!

Công thức xác suất toàn phần

INFO-CIRCLE Definition 7 (Hệ biến cố đầy đủ)

Xét phép thử có không gian mẫu là Ω. Một hệ các biến cố 𝐴1, 𝐴2, ..., 𝐴𝑛 là một hệ biến cố đầy đủ
(hoặc phân hoạch) của Ω nếu chúng thỏa các điều kiện:

• 𝐴1 ∪𝐴2 ∪ · · · ∪𝐴𝑛 = Ω;

• 𝐴𝑖 ∩𝐴𝑗 = ∅ với mọi 𝑖 ̸= 𝑗.

INFO-CIRCLE Example 6

Một hệ biến cố đầy đủ đơn giản là Ω = {𝐴,𝐴} gồm biến cố 𝐴 và biến cố đối của 𝐴 là 𝐴.

Khi có một hệ biến cố đầy đủ, ta có thể tính xác suất của một biến cố bất kì nếu biết xác suất của các biến
cố trong hệ biến cố đầy đủ và xác suất có điều kiện tương ứng.

INFO-CIRCLE Theorem 4 (Công thức xác suất toàn phần)

Gọi 𝐴1, 𝐴2, ..., 𝐴𝑛 là một hệ biến cố đầy đủ của Ω. Khi đó, với biến cố 𝐵 bất kì trong phép thử:

𝑃 (𝐵) = 𝑃 (𝐴1) · 𝑃 (𝐵|𝐴1) + · · ·+ 𝑃 (𝐴𝑛) · 𝑃 (𝐵|𝐴𝑛).

INFO-CIRCLE Example 7

Đề bài. Trong một lớp học có 15 bạn nam và 10 bạn nữ. Trong đó có 5 bạn nam biết chơi bóng chuyền
và 2 bạn nữ biết chơi bóng chuyền. Chọn ngẫu nhiên một bạn trong lớp, tính xác suất bạn đó biết chơi
bóng chuyền.

Giải. Bài này có thể giải đơn giản bằng việc xác định số bạn biết chơi bóng chuyền là 5 + 2 = 7 (5 nam
và 2 nữ), trong khi không gian mẫu là 15 + 10 = 25 nên kết quả là 7

25
.
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Bài này nhằm đưa ra cái nhìn đơn giản về việc xác định điều kiện để thành lập hệ biến cố đầy đủ và giải
bài toán.

Ở đây chúng ta cần tìm một hệ biến cố đầy đủ. Gọi 𝐴1 là biến cố bạn được chọn là nam và 𝐴2 là biến
cố bạn được chọn là nữ.

Như vậy Ω = {𝐴1, 𝐴2} thỏa định nghĩa về hệ biến cố đầy đủ.

Dễ thấy 𝑃 (𝐴1) =
15

25
=

3

5
và 𝑃 (𝐴2) =

10

25
=

2

5
.

Tiếp theo, gọi 𝐵 là biến cố bạn được chọn biết chơi bóng chuyền.

Khi đó, xác suất một bạn biết chơi bóng chuyền với điều kiện bạn đó là nam bằng 𝑃 (𝐵|𝐴1) =
5

15
=

1

3
.

Tương tự, xác suất một bạn biết chơi bóng chuyền với điều kiện bạn đó là nữ bằng 𝑃 (𝐵|𝐴2) =
2

10
=

1

5
.

Theo công thức xác suất toàn phần, xác suất bạn được chọn ngẫu nhiên biết chơi bóng chuyền là 𝑃 (𝐵)
và ta tính được

𝑃 (𝐵) = 𝑃 (𝐴1) · 𝑃 (𝐵|𝐴1) + 𝑃 (𝐴2) · 𝑃 (𝐵|𝐴2) =
3

5
· 1
3
+

2

5
· 1
5
=

7

25
.

Ở đây, nếu chúng ta đảo điều kiện đề bài, ví dụ như bạn được chọn ngẫu nhiên là nữ với điều kiện bạn đó
biết chơi bóng chuyền thì sao? Đề bài lúc này tương đương việc tính 𝑃 (𝐴2|𝐵).

Để trả lời câu hỏi này chúng ta sử dụng công thức Bayes.

Công thức Bayes

INFO-CIRCLE Theorem 5 (Công thức Bayes)

Xét hệ biến cố đầy đủ {𝐴1, 𝐴2, . . . , 𝐴𝑛} của không gian xác suất. Với biến cố 𝐵 bất kì ta có công thức
Bayes:

𝑃 (𝐴𝑖|𝐵) =
𝑃 (𝐴𝑖)𝑃 (𝐵|𝐴𝑖)

𝑛∑︁
𝑗=1

𝑃 (𝐴𝑗)𝑃 (𝐵|𝐴𝑗)

với mọi 1 6 𝑖 6 𝑛.

Công thức Bayes thực ra là công thức xác suất có điều kiện 𝑃 (𝐵) · 𝑃 (𝐴|𝐵) = 𝑃 (𝐴) · 𝑃 (𝐵|𝐴), trong đó ta
thay 𝑃 (𝐵) bởi công thức xác suất toàn phần.

Như vậy, để trả lời cho câu hỏi trên, ta có

𝑃 (𝐴2|𝐵) =
𝑃 (𝐴2) · 𝑃 (𝐵|𝐴2)

𝑃 (𝐵)
=

2

5
· 1
5

7

25

=
2

7
.
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Biến ngẫu nhiên

Biến ngẫu nhiên

Xét phép thử với không gian mẫu Ω. Với mỗi biến cố sơ cấp 𝜔 ∈ Ω ta liên kết với một số thực 𝜉(𝜔) ∈ R thì
𝜉 được gọi là biến ngẫu nhiên (hay random variable, BNN).

INFO-CIRCLE Definition 8 (Biến ngẫu nhiên)

Biến ngẫu nhiên 𝜉 của một phép thử với không gian mẫu Ω là ánh xạ:

𝜉 = 𝜉(𝜔), 𝜔 ∈ Ω.

Giá trị 𝜉(𝜔) được gọi là một giá trị của biến ngẫu nhiên 𝜉.

• Nếu 𝜉(𝜔) là một tập hữu hạn {𝜉1, 𝜉2, . . . , 𝜉𝑛} hay tập vô hạn đếm được thì 𝜉 được gọi là biến ngẫu
nhiên rời rạc.

• Nếu 𝜉(𝜔) là một khoảng của R hay toàn bộ R thì 𝜉 được gọi là biến ngẫu nhiên liên tục.

Phân bố xác suất của biến ngẫu nhiên

INFO-CIRCLE Definition 9 (Hàm phân phối xác suất)

Hàm phân phối của biến ngẫu nhiên 𝜉 là hàm số 𝐹 (𝑥), xác định bởi:

𝐹 (𝑥) = 𝑃 (𝜉 6 𝑥), 𝑥 ∈ R.

Ở đây ta viết gọn 𝑃 (𝜉 6 𝑥) từ 𝑃 ({𝜔 : 𝜉(𝜔) 6 𝑥}). Tập hợp {𝜔 : 𝜉(𝜔) 6 𝑥} có thể không thuộc một biến cố
nào, do đó có thể là tập rỗng (ứng với xác suất là 0).

Tính chất của hàm phân phối

Tính chất 1. Hàm phân phối 𝐹 (𝑥) không giảm trên mọi đoạn thẳng.

INFO-CIRCLE Chứng minh

Đặt 𝑥2 > 𝑥1. Ta thấy rằng

{𝜉 6 𝑥2} = {𝜉 6 𝑥1}+ {𝑥1 < 𝜉 6 𝑥2}.

Do đó nếu ta lấy xác suất thì cũng có

𝑃 (𝜉 6 𝑥2) = 𝑃 (𝜉 6 𝑥1) + 𝑃 (𝑥1 < 𝜉 6 𝑥2).

Xác suất luôn không âm, hay 𝑃 (𝑥1 < 𝜉 6 𝑥2) > 0, suy ra 𝑃 (𝜉 6 𝑥2) > 𝑃 (𝜉 6 𝑥1), hay 𝐹 (𝑥2) > 𝐹 (𝑥1).

Tính chất 2. lim
𝑥→−∞

𝐹 (𝑥) = 0.

Tính chất 3. lim
𝑥→+∞

𝐹 (𝑥) = 1.

Tính chất 4. Hàm phân phối 𝐹 (𝑥) liên tục phải trên toàn trục số.
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Để chứng minh các tính chất 2, 3, 4 chúng ta cần các tiên đề của sự liên tục (continunity axioms) và sẽ
không đề cập ở đây.

Biến ngẫu nhiên rời rạc

Cho BNN rời rạc

𝜉 = 𝜉(𝜔), 𝜉 = {𝑎1, 𝑎2, . . . , 𝑎𝑛, . . .}.

Giả sử 𝑎1 < 𝑎2 < · · · < 𝑎𝑛 < · · · với xác suất tương ứng là 𝑃 (𝜉 = 𝑎𝑖) = 𝑝𝑖, 𝑖 = 1, 2, . . .

Ta có thể biểu diễn biến ngẫu nhiên và xác suất tương ứng của nó bằng bảng phân phối xác suất của 𝜉.

𝜉 𝑎1 𝑎2 ... 𝑎𝑛 ...
𝑃 𝑝1 𝑝2 ... 𝑝𝑛 ...

Rõ ràng rằng 𝑝𝑛 > 0 với mọi 𝑛. Hơn nữa:
∞∑︁

𝑛=1

𝑝𝑛 = 1.

Không gian mẫu lúc này là hợp của các tập biến ngẫu nhiên rời rạc:

Ω = {𝜉 = 𝑎1} ∪ {𝜉 = 𝑎2} ∪ · · ·

Các biến ngẫu nhiên xung khắc nhau (vì 𝜉 không thể nhận hai giá trị khác nhau cùng lúc), do đó xác suất
cả không gian mẫu là

1 = 𝑃 (Ω) = 𝑃 (𝜉 = 𝑎1) + 𝑃 (𝜉 = 𝑎2) + · · · = 𝑝1 + 𝑝2 + · · ·

INFO-CIRCLE Definition 10 (Phân bố Bernoulli)

Phân bố xác suất cho không gian sinh bởi đúng một sự kiện 𝐴 và phủ định của nó 𝐴, hay Ω = {𝐴,𝐴}.
Nếu xác suất xảy ra sự kiện 𝐴 là 𝑝 thì xác suất xảy ra 𝐴 là 1− 𝑝.

Phân bố Bernoulli được đặt tên theo nhà toán học Jacob Bernoulli (1654-1705).

INFO-CIRCLE Definition 11 (Phân phối nhị thức)

Biến ngẫu nhiên 𝜉 được gọi là có phân phối nhị thức với tham số 𝑝, 𝑛, với 𝑝 ∈ [0; 1] và 𝑛 là số tự
nhiên, nếu 𝜉 nhận các giá trị 0, 1, ..., 𝑛 và

𝑃 (𝜉 = 𝑘) = 𝐶𝑘
𝑛𝑝

𝑘𝑞𝑛−𝑘, 𝑘 = 0, 1, . . . , 𝑛,

ở đây 𝑞 = 1− 𝑝.
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INFO-CIRCLE Example 8

Một bài kiểm tra có 100 câu hỏi trắc nghiệm bốn đáp án. Xác suất chọn ngẫu nhiên đúng đáp án của
mỗi câu hỏi thì giống nhau và bằng 1

4
.

Ở đây xác suất chọn ngẫu nhiên đúng đáp án của một câu hỏi bất kì là 𝑝 =
1

4
, và số lượng câu hỏi là

𝑛 = 100.

Gọi 𝜉 là biến ngẫu nhiên số câu hỏi trả lời đúng. Khi đó 𝜉 nhận các giá trị 0, 1, ..., 100.

Do đó bài toán này có phân phối nhị nhức và

𝑃 (𝜉 = 𝑘) = 𝐶𝑘
100

(︂
1

4

)︂𝑘 (︂
3

4

)︂100−𝑘

.

INFO-CIRCLE Definition 12 (Phân bố xác suất đều)

Phân bố xác suất 𝑃 trên không gian xác suất hữu hạn với 𝑁 phần tử Ω = {𝐴1, . . . , 𝐴𝑛} được gọi là
phân bố xác suất đều nếu như

𝑃 (𝐴1) = · · · = 𝑃 (𝐴𝑛) = 1/𝑁.

Khái niệm phân bố đều không mở rộng được lên các không gian xác suất có số phần tử là vô hạn và đếm
được vì 1 chia vô cùng bằng 0 mà tổng của chuỗi vô hạn số 0 vẫn bằng 0 chứ không bằng 1.

INFO-CIRCLE Remark 3

Phân bố xác suất đều có tính đối xứng, cân bằng hay hoán vị được của các sự kiện thành phần.

INFO-CIRCLE Definition 13 (Phân phối Poisson)

Biến ngẫu nhiên 𝜉 được gọi là có phân phối Poisson với tham số 𝜆, nếu 𝜉 nhận các giá trị 0, 1, ..., 𝑛 và

𝑃 (𝜉 = 𝑘) =
𝜆𝑘 · 𝑒−𝜆

𝑘!
, 𝑘 = 0, 1, . . . , 𝑛.

Tham số 𝜆 thể hiện số lần trung bình mà một sự kiện xảy ra trong một khoảng thời gian nhất định. Khi đó,
nếu một biến ngẫu nhiên có số lần xuất hiện trung bình của một sự kiện trong thời gian 𝑡 thì nó có phân
phối Poisson với tham số 𝜆𝑡, với 𝜆 là số lần trung bình trong một đơn vị thời gian.

Biến ngẫu nhiên liên tục

INFO-CIRCLE Definition 14 (Biến ngẫu nhiên liên tục)

Biến ngẫu nhiên 𝜉 được gọi là liên tục, nếu nó nhận giá trị tại mọi điểm thuộc một đoạn liên tục nào
đó trên trục số, và tồn tại một hàm số không âm 𝑝(𝑥) sao cho với mọi đoạn $[a ,b]$ (hữu hạn hoặc vô
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hạn) ta có

𝑃 (𝑎 6 𝜉 6 𝑏) =

𝑏∫︁
𝑎

𝑝(𝑥) 𝑑𝑥

Hàm 𝑝(𝑥) được gọi là hàm mật độ của biến ngẫu nhiên 𝜉.

Tương tự biến ngẫu nhiên rời rạc, 𝑝(𝑥) > 0 với mọi 𝑥 ∈ R và khi hai cận là vô cực thì biến ngẫu nhiên bao
quát toàn bộ không gian mẫu, nghĩa là

+∞∫︁
−∞

𝑝(𝑥) 𝑑𝑥 = 1.

Từ định nghĩa của hàm phân phối $F(x) = P(xi leqslant x)$ ta có hai tính chất của hàm mật độ:

1. 𝐹 (𝑥) =
𝑥∫︁

−∞

𝑝(𝑥) 𝑑𝑥.

2. 𝑝(𝑥) = 𝐹 ′(𝑥).

Tính chất thứ nhất là từ định nghĩa hàm phân phối. Tính chất thứ hai suy ra từ việc cận trên của tích phân
là hữu hạn.

Hàm mật độ của biến ngẫu nhiên rời rạc

Biến ngẫu nhiên rời rạc có bảng xác suất sau:

𝑥 𝑥1 𝑥2 ... 𝑥𝑛 ...
𝑃 𝑝1 𝑝2 ... 𝑝𝑛 ...

Khi đó hàm mật độ của 𝑋 là:

𝑓(𝑥) =

{︃
𝑝𝑖 khi 𝑥 = 𝑥𝑖,

0 khi 𝑥 ̸= 𝑥𝑖, với mọi 𝑖.

INFO-CIRCLE Remark 4

Ta có các lưu ý sau:

• 𝑝𝑖 > 0,
∑︀
𝑝𝑖 = 1, 𝑖 = 1, 2, . . .

• 𝑃 (𝑎 < 𝑋 6 𝑏) =
∑︁

𝑎<𝑥𝑖6𝑏

𝑝𝑖.

Hàm mật độ của biến ngẫu nhiên liên tục
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INFO-CIRCLE Definition 15

Hàm số $f: mathbb{R} mapsto mathbb{R}$ được gọi là hàm mật độ của biến ngẫu nhiên liên tục 𝑋
nếu:

𝑃 (𝑎 6 𝑋 6 𝑏) =

𝑏∫︁
𝑎

𝑓(𝑥) 𝑑𝑥,∀𝑎, 𝑏 ∈ R.

INFO-CIRCLE Remark 5

Với mọi 𝑥 ∈ R, 𝑓(𝑥) > 0 và
+∞∫︁

−∞

𝑓(𝑥) 𝑑𝑥 = 1.

Ý nghĩa hình học. Xác suất của biến ngẫu nhiên 𝑋 nhận giá trị trong [𝑎; 𝑏] bằng diện tích hình thang
cong giới hạn bởi 𝑥 = 𝑎, 𝑥 = 𝑏, 𝑦 = 𝑓(𝑥) và 𝑂𝑥.

2.5.2 Machine Learning
Mình học ML đa phần từ blog machinelearningcoban.com của anh Vũ Hữu Tiệp [11].

Và mình nhận ra rằng mình không học được ML. :)))

Trong nhiều vấn đề đại số tuyến tính, đặc biệt là phép toán trên ma trận và vector, mình không hiểu công
thức nên cách giải quyết của mình luôn là ... viết ra hết. Ở các bài viết trong phần này mình lý giải theo
góc nhìn của mình.

Phần này không phải chuyên môn của mình và mình chỉ tự kỷ ở đây :)))

Linear Regression

Giả sử ta có 𝑁 điểm dữ liệu đầu vào 𝑥1, 𝑥2, ..., 𝑥𝑁 với 𝑥𝑖 ∈ R𝑑. Ứng với từng điểm dữ liệu đầu vào 𝑥𝑖 ta
có một đầu ra 𝑦𝑖, nghĩa là ta có 𝑁 cặp dữ liệu (𝑥𝑖, 𝑦𝑖). Khi đó 𝑦𝑖 được gọi là nhãn (hay label) tương ứng
với điểm dữ liệu 𝑥𝑖.

Mục tiêu là xây dựng hàm số 𝑦 = 𝑓(𝑥1, 𝑥2, . . . , 𝑥𝑑) sao cho tổng sai số của 𝑦𝑖 và 𝑦𝑖 là nhỏ nhất, tức là

𝑁∑︁
𝑖=1

‖𝑦𝑖 − 𝑦𝑖‖2 → min .

Để hàm số đạt giá trị nhỏ nhất (hoặc lớn nhất) ta tìm cực trị của hàm số và khảo sát. Tuy nhiên không
phải hàm số nào cũng đạo hàm được. Một cách tiếp cận đơn giản là sử dụng hàm tuyến tính, dễ xây dựng
và luôn khả vi. Ta đặt

𝑦 = 𝑓(𝑥1, 𝑥2, . . . , 𝑥𝑑) = 𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2 + . . .+ 𝑤𝑑𝑥𝑑.

Lúc này, hàm mất mát có dạng

ℒ =

𝑁∑︁
𝑖=1

‖𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖1 + 𝑤2𝑥𝑖2 + . . .+ 𝑤𝑑𝑥𝑖𝑑)‖2.
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Bình phương chuẩn Euclid chính là bình phương của vector. Do đó dưới dấu tổng là các hàm số bình phương.
Khi đạo hàm riêng theo 𝑤𝑗 ta có

𝜕ℒ
𝜕𝑤𝑗

=

𝑁∑︁
𝑖=1

2𝑥𝑖𝑗 · [𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖1 + 𝑤2𝑥𝑖2 + . . .+ 𝑤𝑑𝑥𝑖𝑑)]

với 1 6 𝑗 6 𝑑.

Với 𝑗 = 0 có chút khác biệt:

𝜕ℒ
𝜕𝑤0

=

𝑁∑︁
𝑖=1

2 · [𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖1 + . . .+ 𝑤𝑑𝑥𝑖𝑑)] .

Ta cho các đạo hàm riêng 𝜕ℒ
𝜕𝑤𝑗

bằng 0 thì được

𝑁∑︁
𝑖=1

𝑥𝑖𝑗(𝑤0 + 𝑤1𝑥𝑖1 + 𝑤2𝑥𝑖2 + . . .+ 𝑤𝑑𝑥𝑖𝑑) =

𝑁∑︁
𝑖=1

𝑥𝑖𝑗𝑦𝑖

⇔ 𝑤0

𝑁∑︁
𝑖=1

𝑥𝑖𝑗 + 𝑤1

𝑁∑︁
𝑖=1

𝑥𝑖𝑗𝑥𝑖1 + 𝑤2

𝑁∑︁
𝑖=1

𝑥𝑖𝑗𝑥𝑖2

+ · · ·+ 𝑤𝑑

𝑁∑︁
𝑖=1

𝑥𝑖𝑗𝑥𝑖𝑑 =

𝑁∑︁
𝑖=1

𝑥𝑖𝑗𝑦𝑖.

Bây giờ chúng ta cần biểu diễn các dấu tổng lại thành dạng đại số (ma trận, vector) vì chúng sẽ được sử
dụng để nhân với vector 𝑤 = (𝑤0, 𝑤1, . . . , 𝑤𝑑).

Ta có

𝑁∑︁
𝑖=1

𝑥𝑖𝑗 =
(︀
1 1 · · · 1

)︀
·

⎛⎜⎜⎜⎝
𝑥1𝑗
𝑥2𝑗
...

𝑥𝑁𝑗

⎞⎟⎟⎟⎠ .

Ta cũng có

𝑁∑︁
𝑖=1

𝑥𝑖𝑗𝑥𝑖1 =
(︀
𝑥11 𝑥21 · · · 𝑥𝑁1

)︀
·

⎛⎜⎜⎜⎝
𝑥1𝑗
𝑥2𝑗
...

𝑥𝑁𝑗

⎞⎟⎟⎟⎠ .

Cứ tương tự như vậy, ta xếp các dấu sigma thành dạng cột thì tương đương với⎛⎜⎜⎜⎝
*

∑︀𝑁
𝑖=1 𝑥𝑖𝑗 *

*
∑︀𝑁

𝑖=1 𝑥𝑖𝑗𝑥𝑖1 *
...

...
...

*
∑︀𝑁

𝑖=1 𝑥𝑖𝑗𝑥𝑖𝑑 *

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
1 1 · · · 1
𝑥11 𝑥21 · · · 𝑥𝑁1

· · · · · ·
. . . · · ·

𝑥1𝑑 𝑥2𝑑 · · · 𝑥𝑁𝑑

⎞⎟⎟⎟⎠ ·
⎛⎜⎜⎜⎝
* 𝑥1𝑗 *
* 𝑥2𝑗 *
...

...
...

* 𝑥𝑁𝑗 *

⎞⎟⎟⎟⎠ .
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Ghép các cột theo thứ tự 𝑗 từ 0 tới 𝑑 ta có

(︀
𝑤0 𝑤1 · · · 𝑤𝑑

)︀
·

⎛⎜⎜⎜⎝
1 1 · · · 1
𝑥11 𝑥21 · · · 𝑥𝑁1

· · · · · ·
. . . · · ·

𝑥1𝑑 𝑥2𝑑 · · · 𝑥𝑁𝑑

⎞⎟⎟⎟⎠

×

⎛⎜⎜⎜⎝
1 𝑥11 · · · 𝑥1𝑑
1 𝑥21 · · · 𝑥2𝑑

· · · · · ·
. . . · · ·

1 𝑥𝑁1 · · · 𝑥𝑁𝑑

⎞⎟⎟⎟⎠

=
(︀
𝑦1 𝑦2 · · · 𝑦𝑁

)︀
·

⎛⎜⎜⎜⎝
1 𝑥11 · · · 𝑥1𝑑
1 𝑥21 · · · 𝑥2𝑑

· · · · · ·
. . . · · ·

1 𝑥𝑁1 · · · 𝑥𝑁𝑑

⎞⎟⎟⎟⎠ .

Hay nói cách khác, nếu ta đặt 𝑤 = (𝑤0, 𝑤1, . . . , 𝑤𝑑) là ma trận hàng, 𝑋 là ma trận có các hàng là các input,
thì phương trình trên được viết lại là 𝑤𝑋𝑇𝑋 = 𝑦𝑋.

Nếu đặt 𝐴 = 𝑋𝑇𝑋 và 𝑏 = 𝑦𝑋 thì đây là hệ phương trình theo các ẩn 𝑤0, 𝑤1, ..., 𝑤𝑑. Tuy nhiên không
phải lúc nào 𝐴 cũng khả nghịch nên chúng ta sẽ sử dụng một khái niệm gọi là giả nghịch đảo (hay
pseudo-inverse) để tìm nghiệm cho hệ phương trình.

Kí hiệu 𝐴† là giả nghịch đảo của ma trận 𝐴. Khi đó nghiệm của hệ phương trình là 𝑤 = 𝑏𝐴†.

K-Means clustering

Một công việc thường được quan tâm khi xử lý dữ liệu là phân loại một nhóm các đối tượng thành những
nhóm nhỏ hơn theo những tiêu chí nhất định.

Tương tự như phần trước, chúng ta có 𝑁 điểm dữ liệu 𝑥𝑖 thuộc R𝑑. Ta muốn phân cụm các vector này vào
những cluster (cụm) sao cho chúng gần nhau nhất (về mặt khoảng cách Euclid).

Giả sử ta muốn phân 𝑁 điểm dữ liệu trên vào 𝐾 < 𝑁 cluster. Ta cần tìm các điểm 𝑚1, 𝑚2, ..., 𝑚𝐾 là tâm
của các cụm, sao cho tổng khoảng cách từ các điểm 𝑥𝑖 tới tâm cluster mà nó được phân vào là nhỏ nhất.

Nghĩa là ứng với center 𝑚1 ta cần tìm các điểm 𝑥𝑖1 , 𝑥𝑖2 , ..., 𝑥𝑖𝑡 sao cho
𝑡∑︀

𝑗=1

‖𝑥𝑖𝑗 −𝑚1‖2 nhỏ nhất. Tương

tự cho các tâm khác.

Nhưng câu chuyện phức tạp ở đây là, tâm nằm ở đâu để có thể bao quát các điểm? Tâm được chọn phải có
tính tổng quát, và việc phân các điểm vào cluster tương ứng với tâm thực hiện như thế nào?

Một kỹ thuật thường được sử dụng là one-hot. Với mỗi điểm dữ liệu 𝑥𝑖 ta thêm một label 𝑦𝑖 = (𝑦𝑖1, . . . 𝑦𝑖𝐾).
Điểm 𝑥𝑖 sẽ thuộc cluster 𝑗 khi 𝑦𝑖𝑗 = 1, không thuộc thì bằng 0. Như vậy chỉ có đúng một phần tử của 𝑦𝑖

bằng 1, còn lại bằng 0, suy ra ràng buộc của 𝑦𝑖 = (𝑦𝑖1, 𝑦𝑖2, . . . , 𝑦𝑖𝐾) là 𝑦𝑖𝑗 ∈ {0, 1} và
𝐾∑︀
𝑗=1

𝑦𝑖𝑗 = 1.

Khi đó, ta mong muốn phân các điểm 𝑥𝑖 vào cluster 𝑚𝑘 để khoảng cách tới tâm 𝑚𝑘 là ngắn nhất, hay
‖𝑥𝑖 −𝑚𝑘‖2 → min. Thêm nữa, với cách kí hiệu 𝑦𝑖𝑗 như trên, biểu thức tương đương với

‖𝑥𝑖 −𝑚𝑘‖2 = 𝑦𝑖𝑘‖𝑥𝑖 −𝑚𝑘‖2 =

𝐾∑︁
𝑗=1

𝑦𝑖𝑗‖𝑥𝑖 −𝑚𝑗‖2

vì điểm 𝑥𝑖 sẽ thuộc cluster 𝑚𝑘 nào đó với 1 6 𝑘 6 𝐾.
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Sai số cho toàn bộ dữ liệu lúc này sẽ là

ℒ(𝑌 ,𝑀) =

𝑁∑︁
𝑖=1

𝐾∑︁
𝑗=1

𝑦𝑖𝑗‖𝑥𝑖 −𝑚𝑗‖2.

Ta cần tối ưu 𝑌 và 𝑀 . Việc tối ưu hai ma trận cùng lúc là rất khó thậm chí bất khả thi. Do đó chúng ta
có một cách tiếp cận khác là luân phiên cố định một bên và tối ưu bên còn lại. Từ đó công việc được chia
làm hai bước.

Bước 1. Cố định 𝑀 , tìm 𝑌 .

Giả sử ta đã biết các center 𝑚1, 𝑚2, ..., 𝑚𝐾 . Lúc này ta cần phân các điểm 𝑥𝑖 vào cluster gần nó nhất.
Dễ thấy rằng center gần nó nhất sẽ có khoảng cách Euclid ngắn nhất. Do đó ta tìm 𝑗 sao cho ‖𝑥𝑖 −𝑚𝑗‖2
đạt nhỏ nhất. Không cần thiết phải tính căn bậc hai để giảm độ phức tạp.

Bước 2. Cố định 𝑌 , tìm 𝑀 .

Khi đã biết 𝑌 tức là ta đã biết điểm nào được phân vào cluster nào. Khi đó ta cần tìm tâm cho từng cluster.
Gọi 𝑙(𝑚𝑗) là hàm tổng bình phương khoảng cách các điểm trong cluster tới tâm 𝑚𝑗 , nghĩa là

𝑙(𝑚𝑗) =

𝑁∑︁
𝑖=1

𝑦𝑖𝑗‖𝑥𝑖 −𝑚𝑗‖2.

Mục tiêu của chúng ta là tối ưu tâm 𝑚𝑗 . Do đó ta đạo hàm theo vector 𝑚𝑗 thu được

𝜕𝑙(𝑚𝑗)

𝜕𝑚𝑗
=

𝑁∑︁
𝑖=1

2 · 𝑦𝑖𝑗(𝑥𝑖 −𝑚𝑗).

Cho đạo hàm bằng 0 và biến đổi ta có

2

𝑁∑︁
𝑖=1

𝑦𝑖𝑗(𝑥𝑖 −𝑚𝑗) = 0

⇐⇒𝑚𝑗

𝑁∑︁
𝑖=1

𝑦𝑖𝑗 =

𝑁∑︁
𝑖=1

𝑦𝑖𝑗𝑥𝑖

⇐⇒𝑚𝑗 =

∑︀𝑁
𝑖=1 𝑦𝑖𝑗𝑥𝑖∑︀𝑁
𝑖=1 𝑦𝑖𝑗

.

Để ý rằng,
𝑁∑︀
𝑖=1

𝑦𝑖𝑗 là số lượng điểm trong cluster, và
𝑁∑︀
𝑖=1

𝑦𝑖𝑗𝑥𝑖 là tổng các điểm trong cluster. Như vậy 𝑚𝑗 là

trung bình cộng các điểm trong cluster 𝑗.

INFO-CIRCLE Algorithm 1 (Thuật toán K-Means clustering)

Input: Dữ liệu 𝑋 (có 𝑁 điểm dữ liệu) và số cluster 𝐾

Output: Các center 𝑀 và label 𝑦 cho mỗi điểm dữ liệu

1. Chọn 𝐾 điểm bất kì làm các cluster ban đầu.

2. Phân mỗi điểm dữ liệu vào cluster gần nó nhất (cố định 𝑀 , tìm 𝑌 ).

3. Nếu việc phân dữ liệu vào các cluster ở bước 2 không thay đổi so với trước đó thì dừng thuật toán.

4. Cập nhật center mới cho mỗi cluster bằng cách lấy trung bình cộng các điểm trong cluster (cố định
𝑌 , tìm 𝑀).

5. Quay lại bước 2.
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Gradient Descent

Trong nhiều trường hợp chúng ta thường không thể tìm nghiệm của phương trình đạo hàm để từ đó tìm các
cực trị địa phương. Một phương pháp hiệu quả là gradient descent.

Hàm một biến

Giả sử 𝑥* là local extremum (cực trị địa phương) của hàm số 𝑓(𝑥). Khi đó chúng ta xây dựng dãy số {𝑥𝑛}
hội tụ về 𝑥*. Ý tưởng thực hiện là dựa trên nhận xét, nếu 𝑥𝑛 nằm bên phải 𝑥* thì 𝑥𝑛+1 nằm giữa 𝑥* và 𝑥𝑛.
Ta đã biết nếu 𝑥* là một điểm cực trị thì 𝑓 ′(𝑥) > 0 với 𝑥 > 𝑥* (trường hợp cực tiểu), mà 𝑥𝑛 đi từ bên phải
sang bên trái (ngược chiều 𝑂𝑥 nên mang dấu âm). Từ đó chúng ta có công thức chung sau

𝑥𝑛+1 = 𝑥𝑛 − 𝜂𝑓 ′(𝑥𝑛).

Trong đó 𝜂 là một số dương nhỏ, gọi là learning rate (tốc độ học).

Ta chọn 𝑥0 là một điểm bất kì. Tuy nhiên việc chọn 𝑥0 cũng có thể ảnh hưởng đến tốc độ hội tụ.

Ví dụ với hàm số 𝑓(𝑥) = 𝑥2 + 5 sin𝑥. Ta có đạo hàm là 𝑓 ′(𝑥) = 2𝑥 + 5 cos𝑥. Việc giải phương trình đạo
hàm bằng 0 là điều không dễ dàng. Do đó gradient descent tỏ ra hiệu quả trong trường hợp này.

Chọn 𝜂 = 0, 1 và 𝑥0 = 5. Sau đó chọn 𝜂 = 0, 1 và 𝑥0 = −5. Ta thấy trường hợp sau tốn ít vòng lặp hơn do
𝑥0 = −5 gần điểm cực trị hơn (≈ −1.11).

Hàm nhiều biến

Lúc này đầu vào của hàm số là một vector 𝑥. Đặt ∇𝑓(𝑥) là đạo hàm của hàm 𝑓 theo vector 𝑥. Tương tự,
ta xây dựng dãy vector {𝑥𝑛} hội tụ về cực trị 𝑥*. Công thức lúc này là

𝑥𝑛+1 = 𝑥𝑛 − 𝜂 · ∇𝑓(𝑥𝑛).

Ta đã biết đạo hàm của hàm số theo vector cũng là vector cùng cỡ. Do đó giả sử 𝑓(𝑥) = 𝑓(𝑥1, 𝑥2, . . . , 𝑥𝑛)
thì đạo hàm của nó là

∇𝑓(𝑥) =
(︂
𝜕𝑓

𝜕𝑥1
,
𝜕𝑓

𝜕𝑥2
, . . . ,

𝜕𝑓

𝜕𝑥𝑛

)︂
.

Với ví dụ là bài toán Linear Regression, lúc này hàm mất mát là

ℒ =
1

2𝑁

𝑁∑︁
𝑖=1

‖𝑦𝑖 − 𝑥𝑖𝑤
𝑇 ‖2 =

1

2𝑁
‖𝑦 −𝑋𝑤𝑇 ‖2.

Đạo hàm của hàm mất mát là

∇ℒ =
1

𝑁
(𝑤𝑋𝑇 − 𝑦)𝑋.

Lúc này, với vector khởi đầu 𝑤0 chúng ta xây dựng dãy {𝑤𝑛} tới khi nhận được 𝑤𝑛/𝑑 < 𝜀, với 𝑑 là độ dài
vector 𝑤.

Perceptron Learning Algorithm

Một trong những nhiệm vụ quan trọng nhất của ML là phân loại (tiếng Anh - classification).

Perceptron là thuật toán phân loại cho trường hợp đơn giản nhất khi có hai lớp. Nếu ta có các điểm dữ liệu
cho trước trong không gian 𝑑 chiều, ta muốn tìm một siêu phẳng (hình học affine gọi là (𝑑− 1)-phẳng) chia
các điểm dữ liệu đó thành hai phần. Sau đó khi có một điểm dữ liệu mới ta chỉ cần bỏ nó vào bên này hoặc
bên kia của siêu phẳng.
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Trong dạng này, mỗi điểm dữ liệu được biểu diễn ở dạng cột của ma trận. Giả sử các điểm dữ liệu là 𝑥1,
𝑥2, ..., 𝑥𝑁 , với 𝑥𝑖 ∈ R𝑑, thì ma trận dữ liệu là

𝑋 =
(︀
𝑥⊤
1 𝑥⊤

2 · · · 𝑥⊤
𝑁

)︀
.

Ta gọi nhãn tương ứng với 𝑁 điểm dữ liệu trên là vector 𝑦 = (𝑦1, 𝑦2, . . . , 𝑦𝑁 ) với 𝑦𝑖 = 1 nếu 𝑥𝑖 thuộc class
xanh, và 𝑦𝑖 = −1 nếu 𝑥𝑖 thuộc class đỏ.

Một siêu phẳng có phương trình là

𝑓𝑤(𝑥) = 𝑤0 + 𝑤1𝑥1 + . . .+ 𝑤𝑑𝑥𝑑 = 𝑤 · 𝑥⊤.

Một điểm thuộc nửa không gian (tạm gọi là bên này) đối với siêu phẳng thì 𝑓𝑤(𝑥) < 0, nếu thuộc nửa bên
kia thì 𝑓𝑤(𝑥) > 0, nếu nằm trên phẳng thì bằng 0.

Gọi label(𝑥) là nhãn của điểm 𝑥. Khi đó điểm 𝑥 thuộc một trong hai bên của phẳng nên label(𝑥) =
sgn(𝑤 · 𝑥⊤) với sgn là hàm dấu. Ta quy ước sgn(0) = 1.

Khi một điểm bị phân loại sai class thì ta nói điểm đó bị misclassified. Ý tưởng của thuật toán là làm
giảm thiểu số lượng điểm bị misclassified qua nhiều lần lặp. Đặt

𝐽1(𝑤) =
∑︁

𝑥𝑖∈ℳ
(−𝑦𝑖 · sgn(𝑤 ·𝑤⊤

𝑖 )),

trong đóℳ là tập các điểm bị misclassified (tập này sẽ thay đổi theo 𝑤).

Nếu 𝑥𝑖 bị misclassified thì 𝑦𝑖 và sgn(𝑤 · 𝑥⊤
𝑖 ) ngược dấu nhau. Nói cách khác, −𝑦𝑖 · sgn(𝑤 · 𝑥⊤

𝑖 ) = 1. Từ đó
𝐽1(𝑤) là hàm đếm số lượng điểm bị misclassified. Ta thấy rằng 𝐽1(𝑤) > 0 nên ta cần tối ưu để hàm này
đạt giá trị nhỏ nhất bằng 0. Khi đó không điểm nào bị misclassified.

Tuy nhiên có một vấn đề. Hàm 𝐽1(𝑤) là hàm rời rạc (hàm sgn) nên rất khó tối ưu vì không thể tính đạo
hàm. Do đó chúng ta cần một cách tiếp cận khác, một hàm mất mát khác tốt hơn.

Nếu ta bỏ đi hàm sgn thì có hàm

𝐽(𝑤) =
∑︁

𝑥𝑖∈ℳ
(−𝑦𝑖 ·𝑤 · 𝑥⊤).

Nhận xét. Một điểm bị misclassified nằm càng xa biên giới (siêu phẳng) thì giá trị 𝑤 · 𝑥⊤
𝑖 càng lớn, tức là

hàm 𝐽 đi ra xa so với giá trị nhỏ nhất. Hàm 𝐽 cũng đạt min ở 0 nên ta cũng có thể dùng hàm này để loại
bỏ các điểm bị misclassified.

Lúc này hàm 𝐽(𝑥) khả vi nên ta có thể dùng GD hoặc SGD để tìm nghiệm cho bài toán.

Nếu xét tại một điểm thì

𝐽(𝑤,𝑥𝑖, 𝑦𝑖) = −𝑦𝑖 ·𝑤 · 𝑥⊤
𝑖 ⇒

𝜕𝐽

𝜕𝑤
= −𝑦𝑖𝑥𝑖.

Khi đó quy tắc để cập nhật là 𝑤 = 𝑤+ 𝜂 · 𝑦𝑖 ·𝑥𝑖 với 𝜂 là learning rate (thường chọn bằng 1). Nói cách khác
ta đang xây dựng dãy {𝑤𝑛} hội tụ lại nghiệm bài toán với công thức 𝑤𝑖+1 = 𝑤𝑖 + 𝜂 · 𝑦𝑖 · 𝑥𝑖.

Thuật toán Perceptron Learning Algorithm (PLA) có thể được mô tả như sau:

1. Chọn ngẫu nhiên vector 𝑤 với 𝑤𝑖 xấp xỉ 0.

2. Duyệt ngẫu nhiên qua các 𝑥𝑖:

• nếu 𝑥𝑖 được phân lớp đúng, tức sgn(𝑤 · 𝑥⊤
𝑖 ) = 𝑦𝑖 thì ta không cần làm gì;

• nếu 𝑥𝑖 bị misclassified, ta cập nhật 𝑤 theo công thức 𝑤 = 𝑤 + 𝜂 · 𝑦𝑖 · 𝑥.

3. Kiểm tra xem có bao nhiêu điểm bị misclassified. Nếu không còn điểm nào thì ta dừng thuật toán,
ngược lại thì quay lại bước 2.
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2.6 Đại số tuyến tính

2.6.1 Ma trận
Trong các bài viết của về đại số tuyến tính:

1. Vector sẽ được kí hiệu bởi chữ thường in đậm, ví dụ 𝑣, 𝑥.

2. Ma trận sẽ được kí hiệu bởi chữ hoa in đậm, ví dụ 𝐴, 𝐵.

3. Các đại lượng vô hướng (số) được kí hiệu bởi chữ thường không in đậm, ví dụ 𝑥1, 𝑁 , 𝑡.

Bảng thuật ngữ và kí hiệu

Kí hiệu Ý nghĩa
𝐴⊤ Ma trận chuyển vị (transpose) của ma trận 𝐴
𝐴−1 Ma trận nghịch đảo (inverse) của ma trận 𝐴
rank 𝐴 Hạng (rank) của ma trận 𝐴
det𝐴 Định thức (determinant) ma trận 𝐴
𝑥 · 𝑦 Tích vô hướng hai vector 𝑥 và 𝑦
dim𝒱 Số chiều (dimension) không gian vector 𝒱
‖𝑥‖ Chuẩn Euclid (Euclidean norm) vector 𝑥

Định thức ma trận

INFO-CIRCLE Definition 1.55 (Nghịch thế)

Cho tập hợp 𝐴 = {1, 2, · · · , 𝑛} và xét hoán vị 𝜎 trên 𝐴.

Ta gọi hai phần tử 𝑖 và 𝑗 tạo thành nghịch thế (hay inversion) nếu 𝑖 < 𝑗 và 𝜎(𝑖) > 𝜎(𝑗).

Đặt 𝜎 =

(︂
1 2 . . . 𝑛
𝑘1 𝑘2 · · · 𝑘𝑛

)︂
là một hoán vị của 𝐴. Ta kí hiệu 𝑃 (𝜎) là số lượng nghịch thế của 𝜎 và đặt

(−1)𝑃 (𝜎) = sign 𝜎.

INFO-CIRCLE Example 1.26

Với 𝑛 = 4, 𝐴 = {1, 2, 3, 4}.

Xét hoán vị 𝜎 =

(︂
1 2 3 4
4 2 1 3

)︂
.

Ta nhận thấy các cặp nghịch thế (1, 2), (1, 3), (1, 4), (2, 3) gồm bốn cặp nghịch thế. Vậy 𝑃 (𝜎) = 4 và
sign 𝜎 = (−1)4 = 1.

INFO-CIRCLE Definition 1.56 (Định thức)

Khi đó định thức của ma trận

𝐴 =

⎛⎜⎜⎝
𝑎11 𝑎12 · · · 𝑎1𝑛
𝑎21 𝑎22 · · · 𝑎2𝑛
· · · · · · · · · · · ·
𝑎𝑛1 𝑎𝑛2 · · · 𝑎𝑛𝑛

⎞⎟⎟⎠
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được định nghĩa là:

det(𝐴) =
∑︁

(𝑖1,𝑖2,··· ,𝑖𝑛)

𝑎1,𝑖1 · 𝑎2,𝑖2 · 𝑎𝑛,𝑖𝑛 · sign𝜎

với mọi hoán vị 𝜎 =

(︂
1 2 . . . 𝑛
𝑖1 𝑖2 · · · 𝑖𝑛

)︂
của tập {1, 2, . . . , 𝑛}. Như vậy có 𝑛! phần tử cho tổng trên.

INFO-CIRCLE Example 1.27

Tính định thức ma trận 𝐴 =

⎛⎝1 2 3
4 5 6
7 8 9

⎞⎠.

Xét hoán vị 𝜎1 =

(︂
1 2 3
1 2 3

)︂
. Khi đó 𝑃 (𝜎1) = 0,

𝑎11 · 𝑎22 · 𝑎33 · (−1)0 = 1 · 5 · 9 · 1 = 45.

Xét hoán vị 𝜎2 =

(︂
1 2 3
1 3 2

)︂
. Khi đó 𝑃 (𝜎2) = 1,

𝑎11 · 𝑎23 · 𝑎32 · (−1)1 = 1 · 6 · 8 · (−1) = −48.

Xét hoán vị 𝜎3 =

(︂
1 2 3
2 1 3

)︂
. Khi đó 𝑃 (𝜎3) = 1,

𝑎12 · 𝑎21 · 𝑎33 · (−1)1 = 2 · 4 · 9 · (−1) = −72.

Xét hoán vị 𝜎4 =

(︂
1 2 3
2 3 1

)︂
. Khi đó 𝑃 (𝜎4) = 2,

𝑎12 · 𝑎23 · 𝑎31 · (−1)2 = 2 · 6 · 7 · 1 = 84.

Xét hoán vị 𝜎5 =

(︂
1 2 3
3 1 2

)︂
. Khi đó 𝑃 (𝜎5) = 2,

𝑎13 · 𝑎21 · 𝑎32 · (−1)2 = 3 · 4 · 8 · 1 = 96.

Xét hoán vị 𝜎6 =

(︂
1 2 3
3 2 1

)︂
. Khi đó 𝑃 (𝜎6) = 3,

𝑎13 · 𝑎22 · 𝑎31 · (−1)3 = 3 · 5 · 7 · (−1) = −105.

Như vậy

det(𝐴) = 45− 48− 72 + 84 + 96− 105 = 0.

Định thức của ma trận còn được định nghĩa theo đệ quy như sau.

Với ma trận 1× 1 là 𝐴 =
(︀
𝑎11
)︀
thì det(𝐴) = 𝑎11.
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Với ma trận 2× 2 là 𝐴 =

(︂
𝑎11 𝑎12
𝑎21 𝑎22

)︂
thì det(𝐴) = 𝑎11𝑎22 − 𝑎21𝑎12.

Với ma trận 𝑛 × 𝑛, gọi 𝑀𝑖𝑗 là ma trận có được từ ma trận 𝐴 khi bỏ đi hàng 𝑖 và cột 𝑗 của ma trận 𝐴 và
kí hiệu 𝐴𝑖𝑗 = (−1)𝑖+𝑗 det(𝑀𝑖𝑗).

INFO-CIRCLE Theorem 1.16 (Định lý Laplace)

Định lý Laplace cho phép ta khai triển định thức của ma trận cấp 𝑛 thành tổng các ma trận cấp 𝑛− 1.

Khai triển theo cột 𝑗:

det(𝐴) =

𝑛∑︁
𝑖=1

𝑎𝑖𝑗𝐴𝑖𝑗 = 𝑎1𝑗𝐴1𝑗 + 𝑎2𝑗𝐴2𝑗 + · · ·+ 𝑎𝑛𝑗𝐴𝑛𝑗 , 𝑗 = 1, 𝑛.

Khai triển theo hàng 𝑖:

det(𝐴) =

𝑛∑︁
𝑗=1

𝑎𝑖𝑗𝐴𝑖𝑗 = 𝑎𝑖1𝐴𝑖1 + 𝑎𝑖2𝐴𝑖2 + · · ·+ 𝑎𝑖𝑛𝐴𝑖𝑛, 𝑖 = 1, 𝑛.

Ma trận nghịch đảo

INFO-CIRCLE Definition 1.57 (Ma trận nghịch đảo)

Ma trận 𝐴−1 được gọi là ma trận nghịch đảo của ma trận vuông 𝐴 nếu

𝐴−1 ·𝐴 = 𝐴 ·𝐴−1 = 𝐼,

trong đó 𝐼 là ma trận đơn vị cùng kích thước với 𝐴.

𝐴−1 =
1

det(𝐴)
[(𝐴𝑖𝑗)𝑛]

⊤ =
1

det(𝐴)

⎛⎜⎜⎝
𝐴11 𝐴21 · · · 𝐴𝑛1

𝐴12 𝐴22 · · · 𝐴𝑛2

· · · · · · · · · · · ·
𝐴1𝑛 𝐴2𝑛 · · · 𝐴𝑛𝑛

⎞⎟⎟⎠ ,

trong đó, 𝐴𝑖𝑗 cũng được định nghĩa tương tự như khi tính định thức bằng khai triển theo dòng hoặc
cột. Gọi 𝑀𝑖𝑗 là ma trận có được từ ma trận 𝐴 khi bỏ đi hàng 𝑖 và cột 𝑗 của ma trận 𝐴 và kí hiệu
𝐴𝑖𝑗 = (−1)𝑖+𝑗 det(𝑀𝑖𝑗).

Như vậy, điều kiện cần và đủ để một ma trận có nghịch đảo là định thức khác 0.

Hạng của ma trận

INFO-CIRCLE Definition 1.58 (Hạng của ma trận)

Cho ma trận 𝐴𝑚×𝑛. Hạng của ma trận là cấp của ma trận con lớn nhất có định thức khác 0.

Nghĩa là, một ma trận vuông mà là ma trận con (lấy một phần của ma trận ban đầu) kích thước 𝑟 × 𝑟 mà
có định thức khác 0 và 𝑟 lớn nhất, thì hạng của ma trận khi đó là 𝑟.
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INFO-CIRCLE Remark 1.14

Ma trận con kích thước 𝑟 × 𝑟 là ma trận con của ma trận kích thước 𝑚× 𝑛 nên 𝑟 6 min(𝑚,𝑛).

INFO-CIRCLE Example 1.28

Ma trận 𝐴 =

⎛⎝1 2 3
2 4 6
1 2 4

⎞⎠ có định thức det(𝐴) = 0.

Nhưng ma trận con của 𝐴 là 𝐵 =

(︂
2 3
2 4

)︂
(lấy dòng 1 và 3, lấy cột 2 và 3) có định thức det(𝐵) = 2 ̸= 0,

do đó

𝑟 = rank (𝐴) = 2,

với rank (𝐴) nghĩa là hạng của 𝐴.

2.6.2 Toán tử tuyến tính

INFO-CIRCLE Definition 2.18 (Ánh xạ tuyến tính)

Toán tử tuyến tính (hay linear operator, линейный оператор) là một ánh xạ

𝐴 : R𝑛 → R𝑚

thỏa hai điều kiện:

1. Với mọi 𝑢,𝑣 ∈ R𝑛 thì 𝐴(𝑢) +𝐴(𝑣) = 𝐴(𝑢+ 𝑣).

2. Với mọi 𝛼 ∈ R và 𝑢 ∈ R𝑛 thì 𝐴(𝛼𝑢) = 𝛼𝐴(𝑢).

Nếu 𝐴 là một ma trận cỡ 𝑚 × 𝑛 thì đây là một ánh xạ tuyến tính được biểu diễn bởi phép nhân ma trận
với vector 𝐴 · 𝑥 = 𝑦.

Ở đây 𝑥 ∈ R𝑛 và 𝑦 ∈ R𝑚 là các vector cột.

INFO-CIRCLE Definition 2.19 (Hạt nhân)

Hạt nhân (hay kernel, ядро) của ánh xạ tuyến tính 𝐴 là tập hợp nghiệm của hệ thuần nhất và được
kí hiệu là ker(𝐴). Nói cách khác

ker(𝐴) = {𝑥 ∈ R𝑛 : 𝐴 · 𝑥 = 0}.

INFO-CIRCLE Definition 2.20 (Ảnh)

Ảnh (hay image, образ) của ánh xạ tuyến tính 𝐴 là tập hợp tất cả giá trị có thể của phép nhân ma
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trận và được kí hiệu là im(𝐴). Nói cách khác

im(𝐴) = {𝐴 · 𝑥 : 𝑥 ∈ R𝑛}.

INFO-CIRCLE Property 2.1

Ánh xạ tuyến tính 𝐴R𝑛 → R𝑚 có tính chất:

1. dim(ker𝐴) + dim(im𝐴) = 𝑛.

2.6.3 Trị riêng và vector riêng
Trị riêng và vector riêng

INFO-CIRCLE Definition (Trị riêng và vector riêng)

Xét toán tử tuyến tính được biểu diễn bởi ma trận 𝐴. Khi đó vector 𝑣 khác không được gọi là vector
riêng (hay eigenvector) của ma trận nếu tồn tại phần tử 𝜆 sao cho

𝐴𝑣 = 𝜆𝑣.

Giá trị 𝜆 khi đó gọi là trị riêng (hay eigenvalue) tương ứng với vector riêng 𝑣.

Chuyển vế đẳng thức trên ta có (𝐴 − 𝜆𝐼) · 𝑣 = 0. Ở đây 𝐼 là ma trận cùng cỡ với 𝐴 và có các phần tử ở
hàng 𝑖 và cột 𝑖 bằng 1 (ma trận đơn vị).

Như vậy, để phương trình có nghiệm khác không thì ma trận 𝐴− 𝜆𝐼 suy biến, hay det(𝐴− 𝜆𝐼) = 0.

Mỗi nghiệm 𝜆 của phương trình $det (bm{A} - lambda bm{I}) = 0$ là một trị riêng. Với mỗi trị riêng 𝜆 ta
tìm được các vector riêng 𝑣 tương ứng.

INFO-CIRCLE Property (Một số tính chất của trị riêng và vector riêng)

Giả sử đối với ma trận 𝐴 cỡ 𝑛× 𝑛 thì phương trình đặc trưng có đầy đủ 𝑛 nghiệm thực, ta có các tính
chất sau:

1. tr𝐴 = 𝜆1 + 𝜆2 + . . .+ 𝜆𝑛.

2. det𝐴 = 𝜆1 · 𝜆2 · · ·𝜆𝑛.

INFO-CIRCLE Property (Tính chất liên quan đến rank và trace)

1. tr(𝐴𝐵) = tr(𝐵𝐴).

2. rank(𝐴𝐵) 6 min(rank(𝐴), rank(𝐵)).
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Bài tập

Bài 1. Cho vector cột 𝑣 ∈ R𝑛. Đặt 𝐴 = 𝑣 · 𝑣⊤. Tìm spa𝐴.

Các cột của 𝐴 có dạng 𝑣 · 𝑣1, 𝑣 · 𝑣2, ..., 𝑣 · 𝑣𝑛. Như vậy các cột đều tỉ lệ với cột đầu nên rank𝐴 = 1.

Suy ra dimker𝐴 = 𝑛− 1 và do đó 𝜆 = 0 là nghiệm bậc 𝑛− 1 trong phương trình đặc trưng.

Như vậy phương trình đặc trưng còn một nghiệm 𝜆 ̸= 0.

Do

(𝑣 · 𝑣⊤)𝑥 = 𝜆𝑥⇔ 𝑣(𝑣⊤ · 𝑥) = 𝜆𝑥.

Đặt 𝑣⊤ · 𝑥 = 𝛼 thì 𝛼𝑣 = 𝜆𝑥. Suy ra 𝑥 = 𝑣 và do đó 𝛼 = 𝜆 = ‖𝑣‖2.

Vậy spa𝐴 = {‖𝑣‖2, 0, 0, . . . , 0}.

Bài 3. Cho ma trận 𝐴3×3. Biết rằng tr𝐴 = tr𝐴−1 = 0 và det𝐴 = 1. Chứng minh rằng 𝐴3 = 𝐼.

Phương trình đặc trưng có dạng 𝑃3(𝜆) = −𝜆3 + 𝑎2𝜆
2 + 𝑎1𝜆+ 𝑎0.

Theo tính chất trên thì 𝑎2 =
∑︀
𝜆 = tr𝐴 = 0.

Do 𝜆 là trị riêng nên 𝐴𝑥 = 𝜆𝑥. Do 𝐴 khả nghịch nên 1

𝜆
𝑥 = 𝐴−1𝑥.

Nghĩa là 1

𝜆
là trị riêng của ma trận 𝐴−1. Suy ra 1

𝜆1
+

1

𝜆2
+

1

𝜆3
= tr𝐴−1 = 0.

Từ đó suy ra 𝜆1𝜆2 + 𝜆2𝜆3 + 𝜆3𝜆1 = 0.

Cuối cùng det𝐴 = 𝜆1 · 𝜆2 · 𝜆3 = 1.

Vậy phương trình đặc trưng là 𝑃3(𝜆) = −𝜆3 + 1. Theo định lý Cayley-Hamilton thì 𝑃3(𝐴) = −𝐴3 + 𝐼 = 0,
hay 𝐴3 = 𝐼.

Bài 4. Cho ma trận 𝐴𝑛×𝑛, 𝐴𝑖𝑗 > 0. Giả sử ma trận có đủ 𝑛 trị riêng thực. Chứng minh rằng $lambda_1^k
+ lambda_2^k + ldots + lambda_n^k geqslant 0$ với mọi $k in mathbb{N}$.

Ta thấy rằng với 𝑘 = 1 thì 𝜆1 + . . .+ 𝜆𝑛 = tr(𝐴) > 0.

Vì 𝜆𝑖 là thỏa phương trình 𝐴𝑥 = 𝜆𝑖𝑥 nên nhân hai vế cho 𝐴 ta có 𝐴 ·𝐴𝑥 = 𝐴 · 𝜆𝑖𝑥. Tương đương với
𝐴2𝑥 = 𝜆𝑖(𝐴𝑥) = 𝜆2𝑖𝑥.

Nói cách khác, 𝜆2𝑖 là trị riêng của ma trận 𝐴2. Thực hiện tương tự ta có 𝜆𝑘𝑖 là trị riêng của ma trận 𝐴𝑘.

Do đó 𝜆𝑘1 + . . .+ 𝜆𝑘𝑛 = tr(𝐴𝑘) > 0.

Bài 5. Cho ma trận 𝐴 khả nghịch. 𝑋 là ma trận sao cho 𝐴𝑋 +𝑋𝐴 = 0. Chứng minh rằng tr 𝑋 = 0.

Nhân bên trái hai vế cho 𝐴−1 ta có 𝑋 +𝐴−1𝑋𝐴 = 0. Ta biết rằng 𝐴−1𝑋𝐴 là ma trận tương đương ma
trận 𝑋 nên tr(𝐴−1𝑋𝐴) = tr 𝑋.

Suy ra tr𝑋 + tr𝑋 = tr 0 = 0. Từ đây có tr 𝑋 = 0.
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2.6.4 Tổ hợp tuyến tính
Xét tập hợp các vector {𝑣1,𝑣2, . . . ,𝑣𝑑} trên R.

INFO-CIRCLE Definition 4.5 (Tổ hợp tuyến tính)

Với vector 𝑥 bất kì thuộc R, nếu tồn tại các số thực 𝛼1, 𝛼2, ..., 𝛼𝑑 thuộc R sao cho

𝑥 = 𝛼1𝑣1 + 𝛼2𝑣2 + . . .+ 𝛼𝑑𝑣𝑑

thì 𝑥 được gọi là tổ hợp tuyến tính (hay linear combination) của các vector 𝑣𝑖, 𝑖 = 1, 2, . . . , 𝑑.

Ta thấy rằng vector không 0 là tổ hợp tuyến tính của mọi tập các vector 𝑣𝑖 khi tất cả 𝛼𝑖 = 0.

Bây giờ ta xét tổ hợp tuyến tính

𝛼1𝑣1 + 𝛼2𝑣2 + . . .+ 𝛼𝑑𝑣𝑑 = 0.

INFO-CIRCLE Definition 4.6 (Độc lập tuyến tính)

Tập hợp các vector 𝑣1, 𝑣2, ..., 𝑣𝑑 được gọi là độc lập tuyến tính (hay linear independent) nếu chỉ
có duy nhất trường hợp

𝛼1 = 𝛼2 = . . . = 𝛼𝑑 = 0

thỏa tổ hợp tuyến tính trên.

INFO-CIRCLE Definition 4.7 (Phụ thuộc tuyến tính)

Tập các vector là phụ thuộc tuyến tính (hay linear dependent) nếu không độc lập tuyến tính. Nói
cách khác tồn tại ít nhất một phần tử 𝛼𝑖 ̸= 0.

2.6.5 Không gian vector
Không gian vector

Xét tập hợp các vector 𝒱 trên trường F.

Ta định nghĩa hai phép tính cộng và nhân trên các vector này.

1. Phép cộng là một ánh xạ 𝒱 × 𝒱 → 𝒱 sao cho với mọi 𝑥,𝑦 ∈ 𝒱 thì 𝑥+ 𝑦 ∈ 𝒱.

2. Phép nhân vô hướng là ánh xạ F× 𝒱 → 𝒱 sao cho với mọi 𝛼 ∈ F và 𝑥 ∈ 𝒱 thì 𝛼𝑥 ∈ 𝒱.

Nói cách khác, phép cộng hai vector và phép nhân vô hướng một số với vector cho kết quả vẫn nằm trong
không gian vector đó.

Đồng thời, phép cộng và phép nhân vô hướng phải thỏa mãn các tính chất sau

1. Tính giao hoán với phép cộng: với mọi 𝑥,𝑦 ∈ 𝒱, 𝑥+ 𝑦 = 𝑦 + 𝑥.

2. Tính kết hợp với phép cộng: với mọi 𝑥,𝑦, 𝑧 ∈ 𝒱, 𝑥+ (𝑦 + 𝑧) = (𝑥+ 𝑦) + 𝑧.

3. Phần tử đơn vị của phép cộng: tồn tại vector không 0 ∈ 𝒱 sao cho với mọi 𝑥 ∈ 𝒱, 0+𝑥 = 𝑥+ 0 = 𝑥.
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4. Phần tử đối của phép cộng: với mọi 𝑥 ∈ 𝒱, tồn tại phần tử 𝑥′ ∈ 𝒱 sao cho 𝑥+ 𝑥′ = 𝑥+ 𝑥′ = 0.

5. Phần tử đơn vị của phép nhân vô hướng: tồn tại phần tử 1𝐹 ∈ F sao cho với mọi 𝑥 ∈ 𝒱 thì 1𝐹 ·𝑥 = 𝑥.

6. Tính kết hợp của phép nhân vô hướng: với mọi 𝛼, 𝛽 ∈ F, với mọi 𝑥 ∈ 𝒱 thì 𝛼(𝛽𝑥) = (𝛼𝛽)𝑥.

7. Tính phân phối giữa phép cộng và nhân: với mọi 𝛼 ∈ F, với mọi 𝑥,𝑦 ∈ 𝒱 thì 𝛼(𝑥+ 𝑦) = 𝛼𝑥+ 𝛼𝑦.

8. Tính phân phối giữa phép nhân vô hướng: với mọi 𝛼, 𝛽 ∈ F, với mọi 𝑥 ∈ 𝒱 thì (𝛼+ 𝛽)𝑥 = 𝛼𝑥+ 𝛽𝑥.

Ta thấy rằng không gian vector ở chương trình phổ thông là không gian vector xác định trên trường F = R.

Khi đó 𝒱 = R𝑛. Trong chương này sẽ làm việc với không gian vector thực R.

Cơ sở và số chiều của không gian vector

Nếu trong không gian vector 𝒱 tồn tại các vector độc lập tuyến tính 𝑣1, 𝑣2, ..., 𝑣𝑑 mà tất cả các vector trong
𝒱 có thể biểu diễn dưới dạng tổ hợp tuyến tính của các vector 𝑣𝑖 trên, thì tập hợp các vector

{𝑣1,𝑣2, . . . ,𝑣𝑑}

được gọi là cơ sở (hay basis, базис) của không gian vector 𝒱.

Khi đó

𝑥 =

𝑑∑︁
𝑖=1

𝛼𝑖𝑣𝑖 với mọi 𝑥 ∈ 𝒱.

Số lượng phần tử của tập hợp các vector đó (ở đây là 𝑑) gọi là số chiều (hay dimension) của không gian
vector 𝒱. Ta kí hiệu dim𝒱 = 𝑑.

Ta còn kí hiệu

𝒱 = span{𝑣1,𝑣2, . . . ,𝑣𝑑}

và nói là không gian vector 𝒱 được span (hay được sinh) bởi các vector 𝑣𝑖.

Ta thấy rằng có thể có nhiều cơ sở cho cùng một không gian vector.

INFO-CIRCLE Theorem

Mọi cơ sở của không gian vector 𝒱 đều có số phần tử bằng dim𝒱.

Giả sử ta có 𝑣1, 𝑣2, ..., 𝑣𝑑 là một cơ sở của không gian vector R𝑛. Khi đó nếu hệ vector 𝑤1, 𝑤2, ..., 𝑤𝑑 cũng
là một hệ cơ sở khi và chỉ khi tồn tại ma trận khả nghịch 𝐴 sao cho 𝑊 = 𝐴 · 𝑉 . Ở đây 𝑊 là ma trận với
các hàng là các vector 𝑤𝑖. Tương tự 𝑉 là ma trận với các hàng là các vector 𝑣𝑖.

INFO-CIRCLE Chứng minh

Ta viết các vector 𝑣𝑖 dưới dạng R𝑛.

𝑣1 = (𝑣11, 𝑣12, . . . , 𝑣1𝑛),

𝑣2 = (𝑣21, 𝑣22, . . . , 𝑣2𝑛),

. . . = (. . . , . . . , . . . , . . .),

𝑣𝑑 = (𝑣𝑑1, 𝑣𝑑2, . . . , 𝑣𝑑𝑛).
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Tương tự là các vector 𝑤𝑖.

𝑤1 = (𝑤11, 𝑤12, . . . , 𝑤1𝑛),

𝑤2 = (𝑤21, 𝑤22, . . . , 𝑤2𝑛),

. . . = (. . . , . . . , . . . , . . .),

𝑤𝑑 = (𝑤𝑑1, 𝑤𝑑2, . . . , 𝑤𝑑𝑛).

Do 𝑣𝑖 là một cơ sở của R𝑛, mọi vector trong R𝑛 được biểu diễn dưới dạng tổ hợp tuyến tính của các 𝑣𝑖.

Khi đó ta viết các 𝑤𝑖 dưới dạng tổ hợp tuyến tính của 𝑣𝑖.

𝑤1 = 𝛼11𝑣1 + 𝛼12𝑣2 + . . .+ 𝛼1𝑑𝑣𝑑

𝑤2 = 𝛼21𝑣1 + 𝛼22𝑣2 + . . .+ 𝛼2𝑑𝑣𝑑

. . . = . . .

𝑤𝑑 = 𝛼𝑑1𝑣1 + 𝛼𝑑2𝑣2 + . . .+ 𝛼𝑑𝑑𝑣𝑑.

Điều này tương đương với⎛⎜⎜⎝
𝑤11 𝑤12 . . . 𝑤1𝑛

𝑤21 𝑤22 . . . 𝑤2𝑛

. . . . . . . . . . . .
𝑤𝑑1 𝑤𝑑2 . . . 𝑤𝑑𝑛

⎞⎟⎟⎠ =

⎛⎜⎜⎝
𝛼11 𝛼12 . . . 𝛼1𝑑

𝛼21 𝛼22 . . . 𝛼2𝑑

. . . . . . . . . . . .
𝛼𝑑1 𝛼𝑑2 . . . 𝛼𝑑𝑑

⎞⎟⎟⎠×
⎛⎜⎜⎝
𝑣11 𝑣12 . . . 𝑣1𝑛
𝑣21 𝑣22 . . . 𝑣2𝑛
. . . . . . . . . . . .
𝑣𝑑1 𝑣𝑑2 . . . 𝑣𝑑𝑛

⎞⎟⎟⎠
Nếu 𝑤𝑖 cũng là cơ sở của 𝒱, thì các vector 𝑣𝑖 cũng phải biểu diễn được dưới dạng tổ hợp tuyến tính của
𝑤𝑖.

Nói cách khác, ma trận (𝛼𝑖𝑗) khả nghịch và ta có điều phải chứng minh.

Không gian vector con

Cho không gian vector 𝒱 ⊂ R𝑛 với phép cộng hai vector và phép nhân vô hướng. Một tập con 𝐿 của 𝒱 được
gọi là không gian vector con nếu:

1. Với mọi 𝑥, 𝑦 thuộc 𝐿, 𝑥+ 𝑦 ∈ 𝐿.

2. Với mọi 𝛼 ∈ R, với mọi 𝑥 ∈ 𝐿, 𝛼𝑥 ∈ 𝐿.

Nói cách khác, phép cộng và phép nhân vô hướng đóng (hay closure) trên không gian vector con.

INFO-CIRCLE Remark

Trên R𝑛, hệ phương trình tuyến tính thuần nhất có thể sinh ra một không gian vector con của R𝑛.

INFO-CIRCLE Example

Xét hệ phương trình tuyến tính sau:

𝑥1 + 3𝑥2 + 5𝑥3 + 7𝑥4 = 0
2𝑥1 + 4𝑥3 + 2𝑥4 = 0
3𝑥1 + 2𝑥2 + 8𝑥3 + 7𝑥4 = 0
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Biến đổi ma trận ⎛⎝1 3 5 7
2 0 4 2
3 2 8 7

⎞⎠ ∼
⎛⎝1 3 5 7
0 −6 −6 −12
0 −7 −7 −14

⎞⎠ ∼
⎛⎝1 3 5 7
0 1 1 2
0 0 0 0

⎞⎠ .

Như vậy hệ tương đương với

𝑥1 + 3𝑥2 + 5𝑥3 + 7𝑥4 = 0, 𝑥2 + 𝑥3 + 2𝑥4 = 0.

Ta chọn 𝑥3, 𝑥4 ∈ R tự do, khi đó 𝑥1 và 𝑥2 được biểu diễn theo 𝑥3 và 𝑥4

𝑥1 = −2𝑥3 − 𝑥4, 𝑥2 = −𝑥3 − 2𝑥4.

Mọi vector trong không gian tuyến tính khi đó có dạng

(𝑥1, 𝑥2, 𝑥3, 𝑥4) = (−2𝑥3 − 𝑥4,−𝑥3 − 2𝑥4, 𝑥3, 𝑥4)

= 𝑥3 · (−2,−1, 1, 0) + 𝑥4 · (−1,−2, 0, 1)

Ở đây ta thấy 𝑥3, 𝑥4 nhận giá trị tùy ý trong R, và mọi vector trong không gian nghiệm là tổ hợp tuyến
tính của hai vector (−2,−1, 1, 0) và (−1,−2, 0, 1). Suy ra hai vector này là cơ sở của không gian nghiệm,
và dim𝒱 = 2.

2.6.6 Không gian Euclide
Trên không gian vector 𝒱 chúng ta bổ sung thêm một phép toán là tích vô hướng (dot product, tích chấm)
của hai vector.

Giả sử với hai vector 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) và 𝑦 = (𝑦1, 𝑦2, . . . , 𝑦𝑛). Khi đó tích vô hướng của 𝑥 và 𝑦 là

𝑥 · 𝑦 = 𝑥1𝑦1 + 𝑥2𝑦2 + . . .+ 𝑥𝑛𝑦𝑛.

Một số sách kí hiệu tích vô hướng của hai vector 𝑥 và 𝑦 là ⟨𝑥,𝑦⟩. Trong phần này này mình sẽ dùng kí hiệu
𝑥 · 𝑦 như trên.

Không gian vector có phép toán tích vô hướng được gọi là không gian Euclide. Khi 𝑥 = 𝑦 thì căn bậc hai
của kết quả tích vô hướng được gọi là chuẩn Euclide (hay Euclidean norm) và được kí hiệu

‖𝑥‖ =
√
𝑥 · 𝑥 =

√︁
𝑥21 + 𝑥22 + . . .+ 𝑥2𝑛.

Như vậy ta có thể viết $lVert bm{x} rVert^2 = bm{x}^2$.

INFO-CIRCLE Theorem 6.2 (Bất đẳng thức Cauchy-Schwarz)

Với hai vector 𝑥 và 𝑦 bất kì ta luôn có

‖𝑥‖ · ‖𝑦‖ > |𝑥 · 𝑦|,

nghĩa là tích độ dài của hai vector bất kì trong cùng không gian Euclide lớn hơn hoặc bằng tích vô hướng
giữa chúng. Dấu bằng xảy ra khi và chỉ khi 𝑥1

𝑦1
=
𝑥2
𝑦2

= . . . =
𝑥𝑛
𝑦𝑛

. Nói cách khác là hai vector cùng
phương.
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INFO-CIRCLE Chứng minh

Với mọi số thực 𝑡, ta luôn có

0 6 ‖𝑥− 𝑡𝑦‖2 = 𝑥2 − 2𝑡𝑥 · 𝑦 + 𝑡2𝑦2 = ‖𝑥‖2 − 2𝑡𝑥 · 𝑦 + 𝑡2‖𝑦‖2.

Nếu xem biểu thức trên là đa thức bậc hai theo 𝑡, để đa thức lớn hơn hoặc bằng 0 với mọi 𝑡 ∈ R thì ta
phải có Δ′ 6 0 và ‖𝑦‖2 > 0 (luôn đúng). Ta có

Δ′ = (𝑥 · 𝑦)2 − ‖𝑥‖2 · ‖𝑦‖2 6 0,

tương đương với |𝑥 · 𝑦| 6 ‖𝑥‖ · ‖𝑦‖ (điều phải chứng minh).

Hệ cơ sở trực giao

Cho không gian Euclide 𝒱 và một cơ sở của nó là 𝑣1, 𝑣2, ..., 𝑣𝑑. Thuật toán trực giao Gram-Schmidt là
thuật toán biến đổi cơ sở trên thành một cơ sở mới, trong đó các vector đều trực giao nhau.

INFO-CIRCLE Algorithm 6.1 (Thuật toán trực giao Gram-Schmidt)

Input: 𝑣1, ..., 𝑣𝑑 trong R𝑛.

Output: 𝑢1, ..., 𝑢𝑑 trong R𝑛 mà 𝑢𝑖 · 𝑢𝑗 = 0 với mọi 𝑖 ̸= 𝑗.

1. 𝑢1 ← 𝑣1

2. for 𝑖 = 2 to 𝑑

1. 𝑤 = 𝑣𝑖

2. for 𝑗 = 𝑖− 1 to 1

1. 𝜇𝑖,𝑗 = (𝑣𝑖 · 𝑢𝑗)/(𝑢𝑖 · 𝑢𝑗)

2. 𝑤 ← 𝑤 − 𝜇𝑖,𝑗𝑢𝑗

3. 𝑢𝑖 ← 𝑤

3. Trả về cơ sở trực giao 𝑢1, ..., 𝑢𝑑

Nói cách khác, với 𝑢1 = 𝑣1, với mỗi 𝑖 = 2, 3, . . . , 𝑑 ta tính vector 𝑢𝑖 với công thức

𝑢𝑖 = 𝑣𝑖 −
𝑖−1∑︁
𝑗=1

𝜇𝑖,𝑗𝑢𝑗 .

Ở đây 𝜇𝑖,𝑗 =
𝑣𝑖 · 𝑢𝑗

𝑢𝑖 · 𝑢𝑗
là hệ số trước 𝑢𝑗 .

INFO-CIRCLE Example 6.8

Xét cơ sở 𝑣1 = (2,−2, 4), 𝑣2 = (1,−1, 0) và 𝑣3 = (5,−3, 3) của R3.

Đặt 𝑢1 = 𝑣1 = (2,−2, 4).

Ta có

𝜇2,1 =
𝑣2 · 𝑢1

𝑢1 · 𝑢1
=

1 · 2 + (−1) · (−2) + 0 · 4
22 + (−2)2 + 42

=
4

24
=

1

6
.
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Suy ra

𝑢2 = 𝑣2 − 𝜇2,1𝑢1 = (1,−1, 0)− 1

6
· (2,−2, 4) =

(︂
2

3
,
−2
3
,
−2
3

)︂
.

Tương tự

𝜇3,1 =
𝑣3 · 𝑢1

𝑢1 · 𝑢1
=

5 · 2 + (−3) · (−2) + 3 · 4
22 + (−2)2 + 42

=
28

24
=

7

6
.

Tiếp theo

𝜇3,2 =
𝑣3 · 𝑢2

𝑢2 · 𝑢2
=

5 · 2
3
+ (−3) · −2

3
+ 3 · −2

3(︂
2

3

)︂2

+

(︂
−2
3

)︂2

+

(︂
−2
3

)︂2 =
5

2
.

⇒ 𝑢3 =𝑣3 − 𝜇3,1𝑢1 − 𝜇3,2𝑢2

=(5,−3, 3)− 7

6
· (2,−2, 4)− 5

2
·
(︂
2

3
,
−2
3
,
−2
3

)︂
=(1, 1, 0).

Ta có thể kiếm chứng rằng

𝑢1 · 𝑢2 = 2 · 2
3
+ (−2) · −2

3
+ 4 · −2

3
= 0.

Tương tự với 𝑢1 · 𝑢3 = 0 và 𝑢2 · 𝑢3 = 0. Thêm nữa các vector này cũng độc lập tuyến tính nên cũng là
một hệ cơ sở của R3.

Như vậy các vector 𝑢1, 𝑢2, 𝑢3 là một cơ sở trực giao của R3.

INFO-CIRCLE Remark 6.7

Cơ sở trực giao cho phép ta tính độ dài của tất cả các vector khác trong không gian vector dễ dàng hơn.

Thật vậy, giả sử 𝑢1, 𝑢2, ..., 𝑢𝑑 là các vector trong cơ sở trực giao. Mọi vector 𝑥 trong không gian vector
đều có dạng

𝑥 = 𝛼1𝑢1 + 𝛼2𝑢2 + . . .+ 𝛼𝑑𝑢𝑑.

Khi đó

‖𝑥‖2 = 𝑥2 = (𝛼1𝑢1 + 𝛼2𝑢2 + . . .+ 𝛼𝑑𝑢𝑑)
2 =

𝑑∑︁
𝑖=1

𝛼2
𝑖𝑢

2
𝑖 + 2

∑︁
𝑖 ̸=𝑗

𝑢𝑖𝑢𝑗 .

Do các vector trong cơ sở đều trực giao với nhau nên 𝑢𝑖 · 𝑢𝑗 = 0 với 𝑖 ̸= 𝑗, 1 6 𝑖, 𝑗 6 𝑑. Từ đó ta có được

‖𝑥‖2 =

𝑑∑︁
𝑖=1

𝛼2
𝑖𝑢

2
𝑖 =

𝑑∑︁
𝑖=1

𝛼2
𝑖 ‖𝑢𝑖‖2,

hay

‖𝑥‖ =
√︁
𝛼2
1𝑢

2
1 + . . .+ 𝛼2

𝑑𝑢
2
𝑑.
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Kết quả rất đơn giản, độ dài của các vector bất kì là căn bậc hai của tổ hợp độ dài các vector trong cơ sở
và hệ số tương ứng.

Chứng minh thuật toán Gram-Schmidt

Cho không gian vector 𝒱 với cơ sở là các vector 𝑣1, ..., 𝑣𝑑. Thuật toán Gram-Schmidt biến đổi và cho kết
quả là cơ sở mới 𝑢1, ..., 𝑢𝑑 sao cho các vector trong cơ sở mới này trực giao nhau đôi một.

Đặt 𝑢1 = 𝑣1.

Bước 1. Ta chứng minh với mọi 𝑘 > 2 thì 𝑢𝑘 · 𝑢1 = 0.

Ta có

𝑢2 = 𝑣1 − 𝜇2,1𝑢1 = 𝑣2 −
𝑣2 · 𝑢1

𝑢1 · 𝑢1
· 𝑢1.

Suy ra

𝑢2 · 𝑢1 = 𝑣2 · 𝑢1 −
𝑣2 · 𝑢1

𝑢1 · 𝑢1
· (𝑢1 · 𝑢1)

= 𝑣2 · 𝑢1 − 𝑣2 · 𝑢1 = 0.

Như vậy với 𝑘 = 2 thì đẳng thức đúng. Giả sử đẳng thức 𝑢𝑘 · 𝑢1 = 0 đúng tới 𝑘 > 2. Xét 𝑘 + 1 ta có

𝑢𝑘+1 = 𝑣𝑘+1 −
𝑘∑︁

𝑗=1

𝜇𝑘+1,𝑗𝑢𝑗 ,

suy ra

𝑢𝑘+1 · 𝑢1 = 𝑣𝑘+1 · 𝑢1 −
𝑘∑︁

𝑗=1

𝑣𝑘+1 · 𝑢𝑗

𝑢𝑗 · 𝑢𝑗
· (𝑢𝑗 · 𝑢1).

Ta thấy rằng với 𝑗 = 2, . . . , 𝑘 thì 𝑢𝑗 ·𝑢1 = 0 theo giả thiết quy nạp. Như vậy chỉ còn lại 𝑗 = 1 và kết quả là

𝑢𝑘+1 · 𝑢1 = 𝑣𝑘+1 · 𝑢1 −
𝑣𝑘+1 · 𝑢1

𝑢1 · 𝑢1
· (𝑢1 · 𝑢1) = 0.

Bước 2. Ta chứng minh với mọi 𝑘 > 3 thì 𝑢𝑘 · 𝑢2 = 0.

Tương tự ta sử dụng quy nạp. Ta có

𝑢3 = 𝑣3 − 𝜇3,2𝑢2 − 𝜇3,1𝑢1,

suy ra

𝑢3 · 𝑢2 = 𝑣3 · 𝑢2 − 𝜇3,2𝑢2 · 𝑢2 − 𝜇3,1 · 𝑢1 · 𝑢2.

Ta đã chứng minh được 𝑢2 · 𝑢1 = 0. Như vậy kết quả sẽ là

𝑢3 · 𝑢2 = 𝑣3 · 𝑢2 −
𝑣3 · 𝑢2

𝑢2 · 𝑢2
· (·𝑢2 · 𝑢2) = 0.

Với giả thiết quy nạp 𝑢𝑘 · 𝑢2 = 0 đúng tới 𝑘 > 3, ta xét 𝑘 + 1. Khi đó

𝑢𝑘+1 = 𝑣𝑘+1 −
𝑘∑︁

𝑗=1

𝜇𝑘+1,𝑗𝑢𝑗 ,
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suy ra

𝑢𝑘+1 · 𝑢2 = 𝑣𝑘+1 · 𝑢2 −
𝑘∑︁

𝑗=1

𝜇𝑘+1,𝑗𝑢𝑗 · 𝑢2.

Theo giả thiết quy nạp thì mọi 𝑗 > 3 đều cho kết quả 𝑢𝑗 · 𝑢2 = 0, thêm nữa là 𝑢1 · 𝑢2 = 0 do chứng minh
trên. Như vậy trong tổng chỉ còn lại 𝑗 = 2 và kết quả sẽ là

𝑢𝑘+1 · 𝑢2 = 𝑣𝑘+1 · 𝑢2 −
𝑣𝑘+1 · 𝑢2

𝑢2 · 𝑢2
· (𝑢2 · 𝑢2) = 0.

Từ đây có thể thấy, sử dụng phương pháp quy nạp ta có thể chứng minh được rằng với mỗi số 𝑛 > 2, thì
mọi 𝑘 > 𝑛+ 1 ta đều có 𝑢𝑘 · 𝑢𝑛 = 0, hay nói cách khác là khi thuật toán tính 𝑢𝑘 thì nó sẽ trực giao với tất
cả 𝑢1, 𝑢2, ..., 𝑢𝑘−1.

2.6.7 Dạng toàn phương
Giới thiệu dạng toàn phương

INFO-CIRCLE Definition 7.1 (Dạng toàn phương)

Dạng toàn phương (hay quadratic form, квадратная форма) là đa thức bậc hai trên trường 𝐾
với 𝑛 biến 𝑥1, 𝑥2, ..., 𝑥𝑛, nghĩa là

𝑓(𝑥1, 𝑥2, . . . , 𝑥𝑛) =

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝑎𝑖𝑗𝑥𝑖𝑥𝑗

=
𝑛∑︁

𝑖=1

𝑎𝑖𝑖𝑥
2
𝑖 + 2

∑︁
16𝑖<𝑗6𝑛

𝑎𝑖𝑗𝑥𝑖𝑥𝑗 .

Ở đây, 𝑎𝑖𝑗 được gọi là hệ số (hay coefficient, коэффициент) với 1 6 𝑖, 𝑗 6 𝑛, và 𝑎𝑖𝑗 = 𝑎𝑗𝑖 với mọi
𝑖 ̸= 𝑗.

INFO-CIRCLE Example 7.1

Đa thức 𝑥21 + 𝑥22 + 3𝑥2𝑥3 − 𝑥23 là dạng toàn phương với ba biến.

Đa thức 𝑥21 − 𝑥22 + 3𝑥1 + 2𝑥2 là đa thức bậc hai nhưng không phải dạng toàn phương vì có phần tuyến
tính 3𝑥1 + 2𝑥2.

Câu hỏi nhỏ cho bạn đọc. Với đa thức bậc hai 𝑛 biến bất kì
𝑛∑︁

𝑖=1

𝑛∑︁
𝑗=1

𝑎𝑖𝑗𝑥𝑖𝑥𝑗 +

𝑛∑︁
𝑖=1

𝑏𝑖𝑥𝑖 + 𝑐

thì điều kiện nào của hệ số cho phép chúng ta biến đổi về dạng toàn phương? Ví dụ, với đa thức

𝑥21 − 𝑥22 + 3𝑥1 + 2𝑥2 +
5

4
= 𝑥21 + 2 · 𝑥1 ·

3

2
+

9

4
− 𝑥22 + 2𝑥2 − 1

=

(︂
𝑥1 +

3

2

)︂2

− (𝑥2 − 1)2,

nếu đặt 𝑦1 = 𝑥1 +
3
2 và 𝑦2 = 𝑥2 − 1 thì ta có 𝑦21 − 𝑦22 là dạng toàn phương ứng với các biến 𝑦1, 𝑦2.
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INFO-CIRCLE Definition 7.2 (Dạng toàn phương chính tắc)

Dạng toàn phương được gọi là chính tắc (hay canonical) khi các hệ số 𝑎𝑖𝑗 = 0 với mọi 𝑖 ̸= 𝑗.

INFO-CIRCLE Example 7.2

Đa thức 𝑥21 + 𝑥22 + 3𝑥2𝑥3 − 𝑥23 không là dạng toàn phương chính tắc vì có đơn thức 𝑥2𝑥3.

Đa thức 𝑥21 − 𝑥22 + 4𝑥23 là dạng toàn phương chính tắc.

Nếu đặt các biến của dạng toàn phương thành vector cột

𝑥 =

⎛⎜⎜⎜⎝
𝑥1
𝑥2
...
𝑥𝑛

⎞⎟⎟⎟⎠
thì dạng toàn phương có thể được viết dưới dạng phép nhân ma trận

𝑓(𝑥1, 𝑥2, . . . , 𝑥𝑛) = 𝑥⊤𝐴𝑥,

trong đó 𝐴 là ma trận đối xứng và 𝑥⊤ là chuyển vị của vector 𝑥.

Cụ thể hơn, dạng ma trận tương ứng với dạng toàn phương

𝑓(𝑥1, 𝑥2, . . . , 𝑥𝑛) =

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝑎𝑖𝑗𝑥𝑖𝑥𝑗

=

𝑛∑︁
𝑖=1

𝑎𝑖𝑖𝑥
2
𝑖 + 2

∑︁
𝑖 ̸=𝑗

𝑎𝑖𝑗𝑥𝑖𝑥𝑗

ở định nghĩa là

𝑓(𝑥1, 𝑥2, . . . , 𝑥𝑛) = (𝑥1, 𝑥2, . . . , 𝑥𝑛)

⎛⎜⎜⎜⎝
𝑎11 𝑎12 · · · 𝑎1𝑛
𝑎21 𝑎22 · · · 𝑎2𝑛
...

...
. . .

...
𝑎𝑛1 𝑎𝑛2 · · · 𝑎𝑛𝑛

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
𝑥1
𝑥2
...
𝑥𝑛

⎞⎟⎟⎟⎠ ,

với 𝑎𝑖𝑗 = 𝑎𝑗𝑖 và điều này giải thích hệ số 2 trong dạng toàn phương

𝑎𝑖𝑗𝑥𝑖𝑥𝑗 + 𝑎𝑗𝑖𝑥𝑖𝑥𝑗 = 2𝑎𝑖𝑗𝑥𝑖𝑥𝑗 .

Khi dạng toàn phương là chính tắc thì 𝑎𝑖𝑗 = 0 với mọi 𝑖 ̸= 𝑗 nên 𝐴 là ma trận đường chéo chính.

Hiện tại chúng ta sẽ khảo sát dạng toàn phương với hệ số thực, tức 𝑎𝑖𝑗 ∈ R.

Bài toán quan trọng của dạng toàn phương là làm thế nào để biến đổi dạng toàn phương tổng quát về dạng
chính tắc. Để giải quyết vấn đề này ta sử dụng phương pháp chéo hóa hoặc phương pháp Lagrange.

Sơ lược về liên hợp Hermitian

Với số phức 𝑧 = 𝑎+ 𝑏𝑖 với :math`a, b in mathbb{R}` và 𝑖 là đơn vị ảo, 𝑖2 = −1, ta kí hiệu 𝑧 là liên hợp của
𝑧, nghĩa là 𝑧 = 𝑎− 𝑏𝑖.
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Ngoài ra ta cũng kí hiệu |𝑧| là module của số phức 𝑧. Nếu 𝑧 = 𝑎+ 𝑏𝑖 thì |𝑧| =
√
𝑎2 + 𝑏2. Dễ thấy 𝑧 · 𝑧 = |𝑧|2.

Với ma trận 𝐴 = (𝑎𝑖𝑗)𝑛×𝑚, ma trận chuyển vị liên hợp (hay conjugate transpose) là ma trận 𝐵 =
(𝑏𝑖𝑗)𝑚×𝑛 được định nghĩa bởi

𝑏𝑖𝑗 = 𝑎𝑗𝑖.

Như vậy, để thu được ma trận chuyển vị liên hợp, đầu tiên ta chuyển vị ma trận 𝐴 (tính 𝐴⊤) và lấy liên
hợp từng phần tử.

Ma trận chuyển vị liên hợp của ma trận 𝐴 được kí hiệu là 𝐴*.

Ví dụ, xét ma trận

𝐴 =

(︂
2 3 + 4𝑖 7
6 5 8𝑖

)︂
⇒ 𝐴* =

⎛⎝ 2 6
3− 4𝑖 5

7 −8𝑖

⎞⎠ .

INFO-CIRCLE Property 7.1 (Tính chất của ma trận chuyển vị liên hợp)

1. Nếu 𝐴 và 𝐵 là hai ma trận cùng cỡ thì (𝐴+𝐵)
*
= 𝐴* +𝐵*.

2. Với mọi ma trận 𝐴 cỡ 𝑛×𝑚 và với mọi ma trận 𝐵 cỡ 𝑚× 𝑝 thì (𝐴𝐵)
*
= 𝐵*𝐴*.

3. Với mọi ma trận 𝐴 thì (𝐴*)
*
= 𝐴.

4. Nếu 𝑣 ∈ C𝑛×1 là vector cột độ dài 𝑛 thì tích vô hướng 𝑣*𝑣 là số thực.

Các tính chất 1-3 có thể dễ dàng chứng minh tương tự như đối với ma trận chuyển vị, và tính chất 4 suy ra
từ tính chất của module số phức bên trên.

Phương pháp trực giao

Ta sử dụng tính chất sau của ma trận đối xứng.

INFO-CIRCLE Property 7.2 (Số lượng trị riêng của ma trận đối xứng)

Ma trận đối xứng kích thước 𝑛× 𝑛 trên R có đúng 𝑛 trị riêng thực.

INFO-CIRCLE Chứng minh

Theo định lí cơ bản của đại số thì mọi đa thức bậc 𝑛 trên R có đầy đủ 𝑛 nghiệm trên C. Do đó nếu gọi
𝜆 là trị riêng của ma trận vuống đối xứng 𝐴 thì ta cần chứng minh 𝜆 = 𝜆, tức 𝜆 là số thực.

Vì 𝜆 là trị riêng của ma trận 𝐴 cỡ 𝑛× 𝑛 nên tồn tại vector 𝑣 ∈ C𝑛×1 khác không sao cho
𝐴𝑣 = 𝜆𝑣

⇒ 𝑣*𝐴𝑣 = 𝜆𝑣*𝑣,

với 𝑣* là chuyển vị liên hợp của vector 𝑣.

Lúc này, lấy chuyển vị liên hợp hai vế và sử dụng tính chất 3 của tích các ma trận ta có
𝑣*𝐴𝑣 = 𝜆𝑣*𝑣

⇒ (𝑣*𝐴𝑣)
*

= (𝜆𝑣*𝑣)
*

⇒ 𝑣* (𝐴*) (𝑣*)
*

= 𝜆𝑣*𝑣

⇒ 𝑣* (𝐴*)𝑣 = 𝜆𝑣*𝑣.
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Vì 𝐴 là ma trận đối xứng thực nên 𝐴* = 𝐴, do đó

𝑣* (𝐴*)𝑣 = 𝑣*𝐴𝑣 ⇒ 𝜆𝑣*𝑣 = 𝜆𝑣*𝑣,

và theo tính chất 4 ở trên, do 𝑣 là vector khác không nên 𝑣*𝑣 ̸= 0, suy ra 𝜆 = 𝜆. Như vậy 𝜆 là số thực.

Lúc này, với dạng toàn phương cho bởi 𝑥⊤𝐴𝑥 và 𝐴 là ma trận đối xứng thì ma trận 𝐴 có đầy đủ 𝑛 trị riêng
thực và có thể chéo hóa thành 𝐴 = 𝑃 ·𝐷 · 𝑃−1, trong đó

• 𝐷 là ma trận chéo với các phần tử trên đường chéo chính là các trị riêng;

• 𝑃 là ma trận với các cột là các vector riêng ứng với các trị riêng (theo thứ tự) trong ma trận 𝐷.

Tiếp theo ta cần hai tính chất của các vector riêng của ma trận đối xứng thực:

1. Hai vector riêng ứng với hai trị riêng khác nhau luôn trực giao với nhau.

2. Hai vector riêng ứng với cùng trị riêng có thể được chọn sao cho trực giao với nhau.

Đối với tính chất 2, hai vector riêng cùng trị riêng sinh ra một không gian vector với cơ sở là hai vector riêng
đó. Từ đây áp dụng phương pháp trực giao hóa Gram-Schmidt ta có thể xây dựng hai vector mới trực giao
với nhau từ hai vector riêng ban đầu. Sau đây ta sẽ chứng minh tính chất 1.

INFO-CIRCLE Chứng minh

Giả sử 𝜆1 và 𝜆2 là hai trị riêng khác nhau của ma trận đối xứng thực 𝐴, tương ứng là hai vector riêng
𝑣1 và 𝑣2.

Vì 𝐴 là ma trận đối xứng thực nên 𝐴 = 𝐴⊤ và ta có

𝐴𝑣1 = 𝜆1𝑣1 ⇒ 𝑣⊤
1 𝐴

⊤ = 𝑣⊤
1 𝐴 = 𝜆1𝑣

⊤
1 ,

𝐴𝑣2 = 𝜆2𝑣2 ⇒ 𝑣⊤
2 𝐴

⊤ = 𝑣⊤
2 𝐴 = 𝜆2𝑣

⊤
2 .

Bây giờ xét 𝑣⊤
1 𝐴

⊤𝑣2 thì với 𝐴

𝑣⊤
1 𝐴𝑣2 =

(︀
𝑣⊤
1 𝐴
)︀
𝑣2 = 𝜆1𝑣

⊤
1 𝑣2,

𝑣⊤
1 𝐴𝑣2 = 𝑣⊤

1 (𝐴𝑣2) = 𝑣⊤
1 (𝜆2𝑣2).

Như vậy

𝜆1𝑣
⊤
1 𝑣2 = 𝑣⊤

1 (𝜆2𝑣2) = 𝜆2𝑣
⊤
1 𝑣2 ⇒ (𝜆1 − 𝜆2)𝑣⊤

1 𝑣2 = 0,

mà 𝜆1 ̸= 𝜆2 nên 𝑣⊤
1 𝑣2 = 0. Kết luận: 𝑣1 và 𝑣2 trực giao.

Khi ta chuẩn hóa các vector riêng thì ta thu được các vector riêng trực chuẩn nhau đôi một từ hai tính chất
trên. Khi đó ta có thể chứng minh được tính chất của ma trận 𝑃 là 𝑃⊤𝑃 = 𝐼, hay 𝑃−1 = 𝑃⊤.

Vì 𝐴 là ma trận đối xứng nên

𝐴⊤ = 𝐴 = 𝑃 ·𝐷 · 𝑃−1 = 𝑃 ·𝐷 · 𝑃⊤ ⇒ (𝑃⊤)⊤ ·𝐷⊤ · 𝑃⊤ = 𝐴,

mà 𝐷 là ma trận đường chéo chính nên 𝐷⊤ = 𝐷 và ta thu được

𝑃 ·𝐷 · 𝑃⊤ = 𝐴.
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Khi đó dạng toàn phương trở thành

𝑓(𝑥1, 𝑥2, . . . , 𝑥𝑛) = 𝑥⊤𝐴𝑥 = 𝑥⊤𝑃 ·𝐷 · 𝑃⊤𝑥 = (𝑃⊤𝑥)⊤ ·𝐷 · (𝑃⊤𝑥).

Đặt 𝑦 = 𝑃⊤𝑥 thì ta được dạng toàn phương mới theo các biến 𝑦1, 𝑦2, ..., 𝑦𝑛

𝑓(𝑦1, 𝑦2, . . . , 𝑦𝑛) = 𝑦⊤ ·𝐷 · 𝑦,

và do 𝐷 là ma trận đường chéo nên đây là dạng toàn phương chính tắc.

Chúng ta hãy thử một ví dụ nhỏ.

INFO-CIRCLE Example 7.3

Chuyển đa thức 3𝑥2 + 8𝑥𝑦 − 3𝑦2 thành dạng toàn phương chính tắc.

Dạng toàn phương trên tương đương phép nhân ma trận(︀
𝑥 𝑦

)︀
·
(︂
3 4
4 −3

)︂(︂
𝑥
𝑦

)︂
.

Đầu tiên ta tính các trị riêng của ma trận 𝐴 =

(︂
3 4
4 −3

)︂
.

Ta có

𝐴− 𝜆𝐼 =

(︂
3− 𝜆 4
4 −3− 𝜆

)︂
nên

𝑓(𝜆) = 𝜆2 − 25 = 0⇒ 𝜆 = ±5.

Khi 𝜆 = 5 thì

𝐴− 5𝐼 =

(︂
−2 4
4 −8

)︂
∼
(︂
1 −2
0 0

)︂
,

do đó 𝑥1 − 2𝑥2 = 0, tương đương 𝑥1 = 2𝑥2. Khi đó mọi vector (𝑥1, 𝑥2) có dạng

(𝑥1, 𝑥2) = (2𝑥2, 𝑥2) = 𝑥2(2, 1), 𝑥2 ∈ R,

nên vector riêng ứng với trị riêng 𝜆 = 5 là (2, 1) và ta chuẩn hóa thành (2/
√
5, 1/
√
5).

Khi 𝜆 = −5 thì

𝐴− (−5)𝐼 =

(︂
8 4
4 2

)︂
∼
(︂
2 1
0 0

)︂
,

do đó 2𝑥1 + 𝑥2 = 0, tương đương 𝑥2 = −2𝑥1. Khi đó mọi vector (𝑥1, 𝑥2) có dạng

(𝑥1, 𝑥2) = (𝑥1,−2𝑥1) = 𝑥1(1,−2), 𝑥1 ∈ R,

nên vector riêng ứng với trị riêng 𝜆 = −5 là (1,−2) và ta chuẩn hóa thành (1/
√
5,−2/

√
5).

Như vậy ma trận 𝐴 được chéo hóa thành

𝐴 = 𝑃𝐷𝑃−1, 𝐷 =

(︂
5 0
0 −5

)︂
, 𝑃 =

(︂
2/
√
5 −1/

√
5

1/
√
5 2/

√
5

)︂
.

Cuối cùng, để chuyển đa thức về dạng toàn phương chính tắc ta đổi biến(︂
𝑢
𝑣

)︂
= 𝑃⊤

(︂
𝑥
𝑦

)︂
=

(︂
2/
√
5 1/

√
5

−1/
√
5 2/

√
5

)︂(︂
𝑥
𝑦

)︂
=

(︂
2𝑥/
√
5 + 𝑦/

√
5

−𝑥/
√
5 + 2𝑦/

√
5

)︂
thì ta có dạng toàn phương chính tắc 5𝑢2 − 5𝑣2.
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Để kiểm tra ví dụ trên ta biểu diễn (𝑥, 𝑦) theo (𝑢, 𝑣) với lưu ý 𝑃⊤ = 𝑃−1(︂
𝑢
𝑣

)︂
= 𝑃−1

(︂
𝑥
𝑦

)︂
⇒
(︂
𝑥
𝑦

)︂
= 𝑃

(︂
𝑢
𝑣

)︂
=

(︂
2𝑢/
√
5− 𝑣/

√
5

𝑢/
√
5 + 2𝑣/

√
5

)︂
.

Ta thay vào đa thức ban đầu

3𝑥21 + 8𝑥1𝑥2 − 3𝑥22 = 3 ·
(︂
2𝑢− 𝑣√

5

)︂2

+ 8 · 2𝑢− 𝑣√
5
· 𝑢+ 2𝑣√

5
− 3 ·

(︂
𝑢+ 2𝑣√

5

)︂2

= 3 · 4𝑢
2 − 4𝑢𝑣 + 𝑣2

5
+ 8 · 2𝑢

2 + 3𝑢𝑣 − 2𝑣2

5
− 3 · 𝑢

2 + 4𝑢𝑣 + 4𝑣2

5

=
25𝑢2 − 25𝑣2

5
= 5𝑢2 − 5𝑣2.

INFO-CIRCLE Ghi chú

Nhược điểm của phương pháp trực giao là phải tìm tất cả nghiệm của phương trình đặc trưng. Trong
trường hợp tổng quát điều này không dễ thực hiện, thậm chí bất khả thi trong trường hợp tổng quát với
kích thước lớn vì không tồn tại công thức nghiệm tổng quát cho phương trình bậc 5 trở lên. Do đó chúng
ta sẽ tìm hiểu phương pháp thứ hai là phương pháp Lagrange.

Phương pháp Lagrange

Ý tưởng chính của phương pháp Lagrange dựa trên khai triển bình phương

(𝑧1 + 𝑧2 + · · ·+ 𝑧𝑛)
2 =

𝑛∑︁
𝑖=1

𝑧2𝑖 + 2
∑︁
𝑖 ̸=𝑗

𝑧𝑖𝑧𝑗 .

Khi đó ta cố gắng đưa dạng toàn phương

𝑓(𝑥1, 𝑥2, . . . , 𝑥𝑛) = 𝑏1𝑦
2
1 + 𝑓1(𝑥2, 𝑥3, . . . , 𝑥𝑛)

với 𝑦1 là một tổ hợp của các biến 𝑥1, 𝑥2, ..., 𝑥𝑛.

Giả sử ta có dạng toàn phương

𝑓(𝑥1, 𝑥2, . . . , 𝑥𝑛) =

𝑛∑︁
𝑖=1

𝑎𝑖𝑖𝑥
2
𝑖 + 2

∑︁
𝑖̸=𝑗

𝑎𝑖𝑗𝑥𝑖𝑥𝑗 .

Không mất tính tổng quát, giả sử 𝑎11 ̸= 0 và xét biến 𝑥1 (nếu bằng 0 thì ta chuyển sang xét 𝑎22 với biến
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𝑥2, vân vân). Khi đó ta biến đổi

𝑓(𝑥1, 𝑥2, . . . , 𝑥𝑛) = 𝑎11𝑥
2
1 + 2

𝑛∑︁
𝑗=2

𝑎1𝑗𝑥1𝑥𝑗 +

𝑛∑︁
𝑖=2

𝑎𝑖𝑖𝑥
2
𝑖 +

∑︁
26𝑖<𝑗6𝑛

𝑎𝑖𝑗𝑥𝑖𝑥𝑗

= 𝑎11

⎛⎝𝑥21 + 2𝑥1

𝑛∑︁
𝑗=2

𝑎1𝑗
𝑎11

𝑥𝑗

⎞⎠+

𝑛∑︁
𝑖=2

𝑎𝑖𝑖𝑥
2
𝑖 +

∑︁
26𝑖<𝑗6𝑛

𝑎𝑖𝑗𝑥𝑖𝑥𝑗

= 𝑎11

⎛⎜⎝𝑥21 + 2𝑥1

𝑛∑︁
𝑗=2

𝑎1𝑗
𝑎11

𝑥𝑗 +

⎛⎝ 𝑛∑︁
𝑗=2

𝑎1𝑗
𝑎11

𝑥𝑗

⎞⎠2

−

⎛⎝ 𝑛∑︁
𝑗=2

𝑎1𝑗
𝑎11

𝑥𝑗

⎞⎠2
⎞⎟⎠

+

𝑛∑︁
𝑖=2

𝑎𝑖𝑖𝑥
2
𝑖 +

∑︁
26𝑖<𝑗6𝑛

𝑎𝑖𝑗𝑥𝑖𝑥𝑗

= 𝑎11

⎛⎝𝑥1 + 𝑛∑︁
𝑗=2

𝑎1𝑗
𝑎11

𝑥𝑗

⎞⎠2

+

𝑛∑︁
𝑖=2

𝑎𝑖𝑖𝑥
2
𝑖 − 𝑎11

⎛⎝ 𝑛∑︁
𝑗=2

𝑎1𝑗
𝑎11

𝑥𝑗

⎞⎠2

+
∑︁

26𝑖<𝑗6𝑛

𝑎𝑖𝑗𝑥𝑖𝑥𝑗 .

Lúc này, thực hiện đổi biến

𝑦1 = 𝑥1 +

𝑛∑︁
𝑗=2

𝑎1𝑗
𝑎11

𝑥𝑗

và đặt

𝑓1(𝑥2, 𝑥3, . . . , 𝑥𝑛) =

𝑛∑︁
𝑖=2

𝑎𝑖𝑖𝑥
2
𝑖 − 𝑎11

⎛⎝ 𝑛∑︁
𝑗=2

𝑎1𝑗
𝑎11

𝑥𝑗

⎞⎠2

+
∑︁

26𝑖<𝑗6𝑛

𝑎𝑖𝑗𝑥𝑖𝑥𝑗

thì ta thu được dạng toàn phương mới

𝑎11𝑦
2
1 + 𝑓1(𝑥2, 𝑥3, . . . , 𝑥𝑛)

không còn các đơn thức dạng 𝑥1𝑥𝑗 .

Tiếp tục thực hiện như vậy cho từng biến và ta thu được dạng toàn phương chính tắc.

Mình sẽ thử nghiệm với ví dụ bên trên: 3𝑥2 + 8𝑥𝑦 − 3𝑦2.

Mình biến đổi

3𝑥2 + 8𝑥𝑦 − 3𝑦2 = 3

(︂
𝑥2 +

8

3
𝑥𝑦

)︂
− 3𝑦2

= 3

(︂
𝑥2 + 2 · 𝑥 · 4𝑦

3
+

16𝑦2

9
− 16𝑦2

9

)︂
− 3𝑦2

= 3

(︂
𝑥+

4𝑦

3

)︂2

− 16𝑦2

3
− 3𝑦2

= 3

(︂
𝑥+

4𝑦

3

)︂2

− 25𝑦2

3
.

Thực hiện đổi biến 𝑢 = 𝑥+ 4𝑦/3 thì ta có dạng toàn phương chính tắc

3𝑢2 − 25

3
𝑦2

theo hai biến 𝑢 và 𝑦.
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INFO-CIRCLE Remark 7.1

1. Dạng toàn phương không là duy nhất tùy vào phương pháp biến đổi. Hơn nữa, ở ví dụ trên, nếu
ta lấy 𝑦 làm mốc thay vì 𝑥 thì ta có dạng toàn phương

−7

3
𝑥2 − 3𝑣2, với 𝑣 = 4𝑥/3− 𝑦.

2. Phương pháp Lagrange khắc phục được nhược điểm của phương pháp trực giao vì không phải tìm
nghiệm đa thức bậc cao mà chỉ cần rút gọn từng biến đến khi các đơn thức 𝑥𝑖𝑥𝑗 với 𝑖 ̸= 𝑗 không
còn nữa.

3. Phương pháp Lagrange có nhược điểm khi số biến lớn vì việc khai triển tổng bậc hai ra để thu gọn
hệ số với 𝑛 − 1 biến còn lại rất phức tạp. Tuy nhiên điều này có thể được khắc phục khi cài đặt
trên máy tính.

2.6.8 Không gian Hilbert
Không gian metric

Cho tập hợp 𝐸 khác rỗng và 𝑑 là ánh xạ 𝐸 × 𝐸 → R thỏa mãn

1. 𝑑(𝑥, 𝑦) > 0 với mọi 𝑥, 𝑦 ∈ 𝐸 (tính phân biệt dương).

2. 𝑑(𝑥, 𝑦) = 0 khi và chỉ khi 𝑥 = 𝑦.

3. 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) với mọi 𝑥, 𝑦 ∈ 𝐸 (tính đối xứng).

4. 𝑑(𝑥, 𝑧) 6 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧) với mọi 𝑥, 𝑦, 𝑧 ∈ 𝐸 (bất đẳng thức tam giác).

Khi đó 𝑑 được gọi là khoảng cách hay metric trên 𝐸, còn (𝐸, 𝑑) được gọi là không gian metric.

Sau đây là một số không gian metric thông dụng trên 𝐸 = R.

Cho 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) và 𝑦 = (𝑦1, 𝑦2, . . . , 𝑦𝑛) là các vector trên R𝑛.

INFO-CIRCLE Example

Metric xác định bởi tổng khoảng cách giữa từng tọa độ

𝑑(𝑥,𝑦) =

𝑛∑︁
𝑖=1

|𝑥𝑖 − 𝑦𝑖|.

INFO-CIRCLE Example

Metric Euclid là khoảng cách Euclid quen thuộc

𝑑(𝑥,𝑦) =

⎯⎸⎸⎷ 𝑛∑︁
𝑖=1

(𝑥𝑖 − 𝑦𝑖)2.

Tổng quát hơn với số mũ bất kì

𝑑(𝑥,𝑦) =

[︃
𝑛∑︁

𝑖=1

(𝑥𝑖 − 𝑦𝑖)𝑝
]︃1/𝑝

.
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INFO-CIRCLE Example

Metric xác định bởi

𝑑(𝑥,𝑦) = max
16𝑖61

|𝑥𝑖 − 𝑦𝑖|.

INFO-CIRCLE Example

Metric rời rạc

𝑑(𝑥,𝑦) =

{︃
0,𝑥 = 𝑦

1,𝑥 ̸= 𝑦

INFO-CIRCLE Example

Metric

𝑑(𝑥,𝑦) =

{︃
0, 𝑥𝑖 = 𝑦𝑖

|𝑥𝑖 − 𝑦𝑖|, 𝑥𝑖 ̸= 𝑦𝑖
với mọi 𝑖 > 2.

Tiếp theo ta có một số không gian metric trên tập các hàm số.

INFO-CIRCLE Example (Metric trên không gian hàm số từ tập 𝐴 bất kì vào không gian metric (𝑋, 𝑑))

Với 𝑓, 𝑔 : 𝐴→ (𝑋, 𝑑) xác định

𝑑(𝑓, 𝑔) = sup
𝑥∈𝐴

𝑑(𝑓(𝑥), 𝑔(𝑥)).

INFO-CIRCLE Example (Metric trên không gian các hàm liên tục trên [𝑎, 𝑏] vào R)

Với 𝑓, 𝑔 : [𝑎, 𝑏]→ R liên tục, xác định

𝑑(𝑓, 𝑔) =

𝑏∫︁
𝑎

|𝑓(𝑥)− 𝑔(𝑥)| 𝑑𝑥.

Không gian Hilbert

Không gian Hilbert là không gian vector 𝐻 trên trường R hoặc C đồng thời trang bị tích vô hướng ⟨·, ·, ⟩
thỏa các điều kiện sau:

1. 𝐻 là không gian vector tuyến tính (phép cộng và phép nhân vô hướng).

2. Tích trong (hay inner product, tích vô hướng) là ánh xạ 𝐻 ×𝐻 → R hoặc C thỏa

• tuyến tính theo biến đầu

⟨𝑎𝑥+ 𝑏𝑦, 𝑧⟩ = 𝑎⟨𝑥, 𝑧⟩+ 𝑏⟨𝑦, 𝑧⟩,
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• đối xứng liên hợp

⟨𝑥,𝑦⟩ = 𝑦,𝑥,

• xác định dương

⟨𝑥,𝑥⟩ > 0 và ⟨𝑥,𝑥⟩ = 0⇔ 𝑥 = 0.

3. Độ dài và chuẩn: chuẩn (hay norm) của vector 𝑥 là ‖𝑥‖ = ⟨𝑥,𝑥⟩.

4. Đầy đủ: 𝐻 là không gian metric đầy đủ dưới chuẩn ‖𝑥 − 𝑦‖, nghĩa là giới hạn của mọi dãy Cauchy
trong 𝐻 cũng là phần tử trong 𝐻.

INFO-CIRCLE Remark

Nếu các điều kiện 1, 2, 3 thỏa còn 4 không thỏa thì 𝐻 được gọi là không gian tích trong.

INFO-CIRCLE Remark

Không gian Hilbert là trường hợp riêng của không gian Banach (chỉ yêu cầu về chuẩn mà có thể không
có tích trong).

2.7 Lý thuyết số
Toán học là vua của các môn khoa học, và số học là nữ hoàng.

---Carl Friedrich Gauss
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Hình 2.46: Carl Friedrich Gauss (1777-1855)

2.7.1 Phép chia Euclid. Thuật toán Euclid
Phép chia Euclid

Đây là nền tảng, cơ sở của số học. Từ khi biết tới phép chia hai số nguyên, ta có thể tìm thương và số
dư. Nói theo toán học, nếu ta có hai số nguyên dương 𝑎 và 𝑏 thì tồn tại cặp số 𝑞, 𝑟 sao cho 𝑎 = 𝑞𝑏+ 𝑟 với
0 6 𝑟 < 𝑏.

Khi đó, 𝑎 gọi là số bị chia, 𝑏 gọi là số chia, 𝑞 là thương (q trong quotient) và 𝑟 là số dư (r trong remainder).

Đặc biệt, sự tồn tại của cặp số 𝑞 và 𝑟 là duy nhất. Thật vậy, nếu ta giả sử tồn tại hai cặp số (𝑞1, 𝑟1) và
(𝑞2, 𝑟2) đều thỏa đẳng thức trên, nghĩa là

𝑎 = 𝑞1𝑏+ 𝑟1, 𝑎 = 𝑞2𝑏+ 𝑟2.

Trừ hai đẳng thức vế theo vế ta có

(𝑞1 − 𝑞2)𝑏+ (𝑟1 − 𝑟2) = 0,

tương đương (𝑟2 − 𝑟1) = (𝑞1 − 𝑞2)𝑏, mà 0 6 𝑟1, 𝑟2 < 𝑏 nên −𝑏 < 𝑟2 − 𝑟1 < 𝑏.

Như vậy chỉ có thể xảy ra trường hợp 𝑟2 − 𝑟1 = 0 (vì giá trị tuyệt đối của vế phải là bội của 𝑏 nên sẽ lớn
hơn 𝑏, còn vế trái lại có giá trị tuyệt đối nhỏ hơn 𝑏) hay 𝑟2 = 𝑟1, kéo theo 𝑞1 = 𝑞2.
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Thuật toán Euclid

Dựa trên phép chia Euclid, ta có một thuật toán hiệu quả để tìm ước chung lớn nhất giữa hai số 𝑎 và 𝑏.

Kí hiệu gcd(𝑎, 𝑏) là ước chung lớn nhất của 𝑎 và 𝑏. Chúng ta thực hiện đệ quy như sau:

gcd(𝑎, 𝑏) =

{︃
𝑎, nếu 𝑏 = 0

gcd(𝑏, 𝑎 mod 𝑏), nếu 𝑏 ̸= 0.

Điểm quan trọng ở thuật toán Euclid là thuật toán chắc chắn sẽ dừng sau một số hữu hạn bước, và kết quả
sẽ là ước chung lớn nhất của hai số 𝑎 và 𝑏.

INFO-CIRCLE Chứng minh

Đặt 𝑟0 = 𝑎 và 𝑟1 = 𝑏. Theo phép chia Euclid tồn tại các số 𝑞0 và 𝑟2 sao cho 𝑟0 = 𝑟1𝑞0+𝑟2 với 0 6 𝑟2 < 𝑟1.

Trong thuật toán Euclid, ở bước thứ 𝑖 (𝑖 = 1, 2, . . .) vì đã biết 𝑟𝑖 và 𝑟𝑖+1 nên ta tìm được thương 𝑞𝑖 và
số dư 𝑟𝑖+2 trong phép chia 𝑟𝑖 cho 𝑟𝑖+1.

𝑟0 = 𝑟1𝑞0 + 𝑟2

𝑟1 = 𝑟2𝑞1 + 𝑟3

𝑟2 = 𝑟3𝑞2 + 𝑟4

. . . = . . .

𝑟𝑖 = 𝑟𝑖+1𝑞𝑖 + 𝑟𝑖+2

. . . = . . .

𝑟𝑘 = 𝑟𝑘+1𝑞𝑘 + 0

Ở mỗi bước, 𝑟𝑖+2 luôn nhỏ hơn 𝑟𝑖+1. Do đó cuối cùng sẽ bằng 0, và khi đó ta có ước chung lớn nhất là
𝑟𝑘+1 như trên.

INFO-CIRCLE Example 1.29

Tìm ước chung lớn nhất của 784 và 74.

𝑟𝑖 = 𝑟𝑖+1 · 𝑞𝑖 + 𝑟𝑖+2

784 = 74 · 10 + 44
74 = 44 · 1 + 30
44 = 30 · 1 + 14
30 = 14 · 2 + 2

14 = 2 · 7 + 0

Vậy gcd(784, 74) = 2.

Thuật toán Euclid mở rộng

INFO-CIRCLE Definition 1.59 (Phương trình Diophantus)

Cho trước các số nguyên 𝑎, 𝑏 và 𝑐. Phương trình Diophantus là phương trình có dạng

𝑎𝑥+ 𝑏𝑦 = 𝑐
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với 𝑥, 𝑦 là các số nguyên.

INFO-CIRCLE Example 1.30

Giải phương trình 5𝑥+ 3𝑦 = 1.

Ta có

𝑦 =
1− 5𝑥

3
=

1− 2𝑥− 3𝑥

3
=

1− 2𝑥

3
− 𝑥.

Như vậy nếu 𝑦 ∈ Z thì 1− 2𝑥

3
∈ Z, nghĩa là 1− 2𝑥 chia hết cho 3. Vậy 1− 2𝑥 = 3𝑘 với 𝑘 ∈ Z.

Tiếp tục, 1− 2𝑥 = 3𝑘, suy ra

𝑥 =
1− 3𝑘

2
=

1− 𝑘 − 2𝑘

2
=

1− 𝑘
2
− 𝑘.

Do 𝑥 nguyên nên tương tự 1− 𝑘
2

cũng nguyên, hay 1− 𝑘 = 2𝑡, tương đương với 𝑘 = 1− 2𝑡.

Thay ngược lại ta có

𝑥 =
1− 3𝑘

2
=

1− 3(1− 2𝑡)

2
= −1 + 3𝑡.

Tiếp tục thay vào để tìm 𝑦 thì

𝑦 =
1− 5𝑥

3
=

1− 5(−1 + 3𝑡)

3
= 2− 5𝑡.

Như vậy nghiệm của phương trình là tất cả các nghiệm (𝑥, 𝑦) mà 𝑥 = −1 + 3𝑡, 𝑦 = 2− 5𝑡 với 𝑡 ∈ Z.

Ở đây chúng ta đã thực hiện phép chia có dư liên tiếp để tìm nghiệm. Nói cách khác ta đã thực hiện thuật
toán Euclid ở bên trên để làm giảm độ phức tạp ở mỗi bước giải.

Tổng quát ta có thuật toán Euclid mở rộng để tìm ước chung lớn nhất gcd(𝑎, 𝑏) của hai số 𝑎, 𝑏, và một
nghiệm của phương trình 𝑎𝑥+ 𝑏𝑦 = gcd(𝑎, 𝑏).

Ở ví dụ trên, ta đã tìm được một nghiệm của phương trình 5𝑥 + 3𝑦 = 1 là (−1, 2) khi 𝑡 = 0. Khi đó ta có
thể suy ra tất cả nghiệm (họ nghiệm) của phương trình có dạng (−1 + 3𝑡, 2− 5𝑡) với 𝑡 ∈ Z.

INFO-CIRCLE Algorithm 1.1 (Thuật toán Euclid mở rộng)

Input: 𝑎, 𝑏 ∈ Z

Output: gcd(𝑎, 𝑏), 𝑥, 𝑦

1. 𝑟0 ← 𝑎, 𝑟1 ← 𝑏, 𝑟2 ← 0

2. 𝑥0 ← 1, 𝑥1 ← 0, 𝑥2 ← 0

3. 𝑦0 ← 0, 𝑦1 ← 1, 𝑦2 ← 0

4. While 𝑟1 ̸= 0

1. 𝑞 ← 𝑟0 div 𝑟1
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2. 𝑟2 ← 𝑟0 − 𝑞 * 𝑟1, 𝑟0 ← 𝑟1, 𝑟1 ← 𝑟2

3. 𝑥2 ← 𝑥0 − 𝑞 * 𝑥1, 𝑥0 ← 𝑥1, 𝑥1 ← 𝑥2

4. 𝑦2 ← 𝑦0 − 𝑞 * 𝑦1, 𝑦0 ← 𝑦1, 𝑦1 ← 𝑦2

5. EndWhile

6. Return 𝑟0, 𝑥0, 𝑦0

Ở thuật toán trên, 𝑟0, 𝑟1 và 𝑟2 hoạt động như thuật toán Euclid chuẩn.

Ở mỗi bước, 𝑞 là thương của phép chia 𝑟0 cho 𝑟1, và ta sử dụng 𝑞 đó để tính 𝑥0 và 𝑦0 mới. Kết quả cuối
cùng (𝑟0, 𝑥0, 𝑦0) lần lượt là ước chung lớn nhất 𝑟0, và hai số 𝑥0, 𝑦0 thỏa mãn 𝑎𝑥0 + 𝑦𝑏0 = 𝑟0.

Tại sao chúng ta lại có (𝑥0, 𝑥1) = (1, 0) và (𝑦0, 𝑦1) = (0, 1)? Thêm nữa, làm sao biết thuật toán hoạt động
đúng?

Mục đích của chúng ta là tìm các số (𝑥, 𝑦) sao cho 𝑎𝑥+ 𝑏𝑦 = gcd(𝑎, 𝑏). Khi đó, dựa trên thuật toán Euclid
cơ bản ở trên, ta xây dựng dãy số {𝑥𝑛} và {𝑦𝑛} sao cho ở mọi bước thứ 𝑛 ta đều có

𝑎𝑥𝑛 + 𝑏𝑦𝑛 = 𝑟𝑛. (2.6)

Từ thuật toán Euclid, với 𝑟𝑖 và 𝑟𝑖+1 ở bước thứ 𝑖 ta thực hiện phép chia Euclid 𝑟𝑖 = 𝑟𝑖+1𝑞𝑖 + 𝑟𝑖+2 để tìm 𝑞𝑖
và 𝑟𝑖+2. Từ 𝑞𝑖 ở mỗi bước ta tính

𝑥𝑖+2 = 𝑥𝑖 − 𝑥𝑖+1𝑞𝑖, 𝑦𝑖+2 = 𝑦𝑖 − 𝑦𝑖+1𝑞𝑖.

Chuyển vế hai phương trình trên ta có

𝑥𝑖 = 𝑥𝑖+1𝑞𝑖 + 𝑥𝑖+2, 𝑦𝑖 = 𝑦𝑖+1𝑞𝑖 + 𝑦𝑖+2.

Nếu thay hai phương trình vừa rồi vào (2.6) ta được

𝑎(𝑥𝑖+1𝑞𝑖 + 𝑥𝑖+2) + 𝑏(𝑦𝑖+1𝑞𝑖 + 𝑦𝑖+2) = 𝑟𝑖,

tương đương với

(𝑎𝑥𝑖+1 + 𝑏𝑦𝑖+1) · 𝑞𝑖 + (𝑎𝑥𝑖+2 + 𝑏𝑥𝑖+2) = 𝑟𝑖.

Do

𝑎𝑥𝑖+1 + 𝑏𝑦𝑖+1 = 𝑟𝑖+1, 𝑎𝑥𝑖+2 + 𝑏𝑦𝑖+2 = 𝑟𝑖+2,

nên 𝑟𝑖+1𝑞𝑖 + 𝑟𝑖+2 = 𝑟𝑖, đúng với thuật toán Euclid chuẩn ban đầu. Như vậy thuật toán mở rộng hoạt động
đúng.

Bây giờ ta cần chọn (𝑥0, 𝑥1) và (𝑦0, 𝑦1) vì chúng ta đã đặt 𝑟0 = 𝑎 và 𝑟1 = 𝑏.

Ở bước thứ 0, vì

𝑟0 = 𝑎 = 𝑎𝑥0 + 𝑏𝑦0,

và ở bước thứ 1,

𝑟1 = 𝑏 = 𝑎𝑥1 + 𝑏𝑦1.

Dễ thấy ở bước 0 ta chọn 𝑥0 = 1 và 𝑥1 = 0, còn ở bước 1 ta chọn 𝑦0 = 0 và 𝑦1 = 1 là được.
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INFO-CIRCLE Example 1.31

Tìm một nghiệm nguyên của phương trình 784𝑥+ 74𝑦 = 2.

𝑟𝑖 = 𝑟𝑖+1 · 𝑞𝑖 + 𝑟𝑖+2 𝑥𝑖+2 = 𝑥𝑖 − 𝑥𝑖+1 · 𝑞𝑖 𝑦𝑖+2 = 𝑦𝑖 − 𝑦𝑖+1 · 𝑞𝑖
784 = 74 · 10 + 44 1 = 1 − 0 · 10 −10 = 0 − 1 · 10
74 = 44 · 1 + 30 −1 = 0 − 1 · 1 11 = 1 − (−10) · 1
44 = 30 · 1 + 14 2 = 1 − (−1) · 1 −21 = −10 − 11 · 1
30 = 14 · 2 + 2 −5 = (−1) − 2 · 2 53 = 11 − (−21) · 2
14 = 2 · 7 + 0

Các bạn có thể thấy ước chung lớn nhất là số màu cam. Do đó các số 𝑥𝑖+2 và 𝑦𝑖+2 cũng chính là điểm
dừng và mình không cần tính toán thêm.

Như vậy một nghiệm của phương trình 784𝑥+ 74𝑦 = 2 là (−5, 53).

Chúng ta cũng có một cách trình bày khác để giải phương trình nghiệm nguyên trên là sử dụng biến đổi
tương đương của ma trận.

Ví dụ, để tìm một nghiệm nguyên (𝑥, 𝑦) của phương trình 𝑎𝑥+ 𝑏𝑦 = 𝑐 với 𝑎, 𝑏, 𝑐 là các số cho trước, chúng
ta viết ma trận (︂

1 0 𝑎
0 1 𝑏

)︂
và biến đổi tương đương về dạng (︂

* * 𝑐
* * 0

)︂
Khi đó hai số ở hàng trên sẽ là nghiệm cần tìm.

INFO-CIRCLE Example 1.32

Sử dụng bài toán ở trên làm ví dụ: tìm một nghiệm nguyên của phương trình 784𝑥+ 74𝑦 = 2.(︂
1 0 784
0 1 74

)︂
∼
(︂

1 −10 44
0 1 74

)︂
∼
(︂

1 −10 44
−1 11 30

)︂
∼
(︂

2 −21 14
−1 11 30

)︂
∼
(︂

2 −21 14
−5 53 2

)︂
∼
(︂

37 −392 0
−5 53 2

)︂

Về bản chất thì hai cách trình bày là giống nhau.

Bài tập sưu tầm

Câu 1 (đề kiểm tra, ITMO). Tính

gcd(61610 + 1, 61671 − 1).

Mình thay 61 bởi biến 𝑥 và thực hiện phép chia đa thức theo thuật toán Euclid.

Đầu tiên, xét phép chia 𝑥671 − 1 cho 𝑥610 + 1. Kết quả phép chia là

𝑥671 − 1 = (𝑥610 + 1) · 𝑥61 − 𝑥61 − 1.
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Tiếp theo, xét phép chia 𝑥610 + 1 cho −𝑥61 − 1. Kết quả là

𝑥610 + 1 = (−𝑥61 − 1) · (−𝑥549 + 𝑥488 − · · ·+ 1) + 2.

Như vậy, ước chung lớn nhất của hai đa thức là 2.

Câu 2 (đề kiểm tra, ITMO). Chứng minh rằng với mọi 𝑎, 𝑏, 𝑐 ∈ N thì

[𝑎, 𝑏, 𝑐] =
𝑎 · 𝑏 · 𝑐 · (𝑎, 𝑏, 𝑐)

(𝑎, 𝑏) · (𝑎, 𝑐) · (𝑏, 𝑐)
,

trong đó

• [𝑎, 𝑏, 𝑐] là bội chung nhỏ nhất của ba số 𝑎, 𝑏, 𝑐

• (𝑎, 𝑏, 𝑐) là ước chung lớn nhất của ba số 𝑎, 𝑏, 𝑐

• (𝑎, 𝑏) là ước chung lớn nhất của hai số 𝑎, 𝑏.

Chưa làm ra.

Câu 3 (đề kiểm tra, ITMO). Tìm ít nhất một nghiệm nguyên của phương trình

311𝑥− 28𝑦 = 2.

Sử dụng thuật toán Euclid:(︂
1 0 311
0 1 −28

)︂
(1)→(1)+11·(2)∼

(︂
1 11 3
0 1 −28

)︂
(2)→(2)+10·(1)∼

(︂
1 11 3
10 111 2

)︂
(1)→(1)−(2)∼

(︂
−9 −100 1
10 111 2

)︂
(2)→(2)−2·(1)∼

(︂
−9 −100 1
28 311 0

)︂
Như vậy mình có (−9,−100) là một nghiệm của phương trình

311𝑥− 28𝑦 = 1.

Từ đó suy ra một nghiệm của phương trình

311𝑥− 28𝑦 = 2

là (2 · (−9), 2 · (−100)) = (−18,−200).

2.7.2 Phương trình đồng dư tuyến tính
Cho 𝑛 là số nguyên dương và 𝑎, 𝑏 là các số nguyên dương nhỏ hơn 𝑛. Phương trình đồng dư tuyến tính
modulo 𝑛 có dạng

𝑎𝑥 ≡ 𝑏 (mod 𝑛) (2.7)

với 𝑥 là ẩn.

INFO-CIRCLE Remark 2.4

Đặt 𝑑 = gcd(𝑎, 𝑛). Khi đó, phương trình đồng dư có nghiệm khi và chỉ khi 𝑑 | 𝑏.

Nếu 𝑥0 là nghiệm thì phương trình có đúng 𝑑 nghiệm không đồng dư theo modulo 𝑛.
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Việc chứng minh điều kiện đủ của nhận xét trên cho ta điều kiện để phương trình có nghiệm, trong khi
chứng minh điều kiện cần sẽ cho ta cách tìm nghiệm đó.

Do 𝑑 = gcd(𝑎, 𝑛), khi đó tồn tại các số nguyên 𝑎1 và 𝑛1 sao cho 𝑎 = 𝑑𝑎1 và 𝑛 = 𝑑𝑛1.

Điều kiện đủ. Giả sử phương trình có nghiệm 𝑥0, khi đó phương trình tương đương với

𝑎𝑥0 − 𝑏 = 𝑘𝑛⇐⇒ 𝑑𝑎1𝑥0 − 𝑏 = 𝑘𝑛 = 𝑘𝑑𝑛1, 𝑘 ∈ Z.

Như vậy ta có

𝑑 | (𝑑𝑎1𝑥0 − 𝑘𝑑𝑛1 = 𝑏),

hay 𝑑 | 𝑏.

Điều kiện cần. Nếu ta có 𝑑 | 𝑏 thì ta suy ra

𝑎𝑥 ≡ 𝑏 (mod 𝑛) =⇒ 𝑎

𝑑
𝑥 ≡ 𝑏

𝑑
(mod 𝑛

𝑑
).

Đặt 𝑏1 = 𝑏/𝑑. Vì 𝑑 = gcd(𝑎, 𝑛) nên gcd(𝑎1, 𝑛1) = 1, Theo bổ đề Bezout thì tồn tại các số 𝑢, 𝑣 ∈ Z sao cho

𝑎1𝑢+ 𝑛1𝑣 = 1 =⇒ 𝑑𝑎1𝑢+ 𝑑𝑛1𝑣 = 𝑑⇐⇒ 𝑎𝑢+ 𝑛𝑣 = 𝑑.

Nhân hai vế đẳng thức cuối với 𝑏1 ta có

𝑎𝑏1𝑢+ 𝑛𝑏1𝑣 = 𝑑𝑏1 = 𝑏 =⇒ 𝑎(𝑏1𝑢) ≡ 𝑏 (mod 𝑛).

Như vậy 𝑥0 = 𝑏1𝑢 là một nghiệm của phương trình đồng dư 𝑎𝑥 ≡ 𝑏 (mod 𝑛).

Tiếp theo chúng ta chứng minh phương trình có 𝑑 nghiệm không đồng dư modulo 𝑛. Giả sử 𝑥1 là một
nghiệm khác 𝑥0. Khi đó

𝑎(𝑥1 − 𝑥0) ≡ 0 (mod 𝑛) =⇒ 𝑛 | 𝑎(𝑥1 − 𝑥0).

Do 𝑑 = gcd(𝑎, 𝑛) nên ta suy ra 𝑛1 | 𝑎1(𝑥1 − 𝑥0), và do gcd(𝑎1, 𝑛1) = 1 từ trên nên ta tiếp tục suy ra
𝑛1 | (𝑥1 − 𝑥0). Như vậy tồn tại 𝑘 ∈ Z để 𝑥1 = 𝑥0 + 𝑘𝑛1, nghĩa là mọi nghiệm của phương trình đều có dạng
𝑥0 + 𝑘𝑛1 với 𝑘 ∈ Z.

Ngoài ra, theo thuật chia Euclid, với hai số nguyên 𝑘 và 𝑑 luôn tồn tại hai số nguyên 𝑞 và 𝑟 để 𝑘 = 𝑞𝑑 + 𝑟
với 0 6 𝑟 < 𝑑. Khi đó

𝑥1 = 𝑥0 + 𝑘𝑛1 = 𝑥0 + (𝑞𝑑+ 𝑟)𝑛1 = 𝑥0 + (𝑑𝑛1)𝑞 + 𝑟𝑛1 = 𝑥0 + 𝑟𝑛1 + 𝑛𝑞,

nói cách khác nghiệm 𝑥1 đồng dư theo dạng

𝑥1 ≡ 𝑥0 + 𝑟𝑛1 (mod 𝑛).

Vì 0 6 𝑟 < 𝑑 nên ta có họ các nghiệm không đồng dư của phương trình ban đầu là

𝑥0 + 0 · 𝑛1, 𝑥0 + 1 · 𝑛1, . . . , 𝑥0 + (𝑑− 1) · 𝑛1.
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INFO-CIRCLE Example 2.7

Xét phương trình 9𝑥 ≡ 6 mod 12. Vì 3 = gcd(9, 12) và 3 | 6 nên phương trình có nghiệm.

Chia các vế của phương trình cho 3 ta được 3𝑥 ≡ 2 mod 4. Như vậy, dùng thuật toán Euclid mở rộng,
ta tính

𝑥0 ≡ 3−1 · 2 ≡ 3 · 2 ≡ 2 mod 4.

Các nghiệm của phương trình là

𝑥0 = 2 + 0 · 4 = 2, 𝑥1 = 2 + 1 · 4 = 6, 𝑥2 = 2 + 2 · 4 = 10.

2.7.3 Các hàm số học quan trọng
Hàm Euler

Đầu tiên chúng ta xem xét hệ thặng dư đầy đủ và hệ thặng dư thu gọn.

INFO-CIRCLE Definition 3.17 (Hệ thặng dư đầy đủ)

Hệ thặng dư đầy đủ của số nguyên dương 𝑛 là tập Z𝑛 = {0, 1, . . . , 𝑛− 1}.

Nói cách khác, hệ thặng dư đầy đủ của 𝑛 là các số dư có thể có khi chia một số bất kì cho 𝑛.

INFO-CIRCLE Definition 3.18 (Hệ thặng dư thu gọn)

Hệ thặng dư thu gọn của số nguyên dương 𝑛 là tập các số 𝑎 mà 1 6 𝑎 < 𝑛 và (𝑎, 𝑛) = 1.

Z×
𝑛 = {𝑎 : 1 6 𝑎 < 𝑛 và (𝑎, 𝑛) = 1}.

INFO-CIRCLE Definition 3.19 (Phi hàm Euler)

Cho số nguyên dương 𝑛. Số lượng các số dương nhỏ hơn 𝑛 và nguyên tố cùng nhau với 𝑛 được kí hiệu
bởi 𝜙(𝑛) và gọi là 𝜙 hàm Euler.

Nói cách khác, 𝜙 hàm Euler là số lượng phần tử trong tập Z×
𝑛 .

𝜙(𝑛) = |Z×
𝑛 |.

INFO-CIRCLE Remark 3.18

Nếu 𝑛 là số nguyên tố thì 𝜙(𝑛) = 𝑛− 1.

Hàm Euler có ý nghĩa quan trọng trong lý thuyết số, công cụ giúp chúng ta giải các vấn đề về số mũ trong
modulo.
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Tính chất hàm Euler

INFO-CIRCLE Remark 3.19

Với (𝑚,𝑛) = 1 thì 𝜙(𝑚𝑛) = 𝜙(𝑚)𝜙(𝑛).

INFO-CIRCLE Chứng minh

Ta viết các số từ 1 tới 𝑚𝑛 thành bảng như sau

1 𝑚+ 1 . . . (𝑛− 1)𝑚+ 1
2 𝑚+ 2 . . . (𝑛− 1)𝑚+ 2
. . . . . . . . . . . .
𝑚 𝑚+𝑚 . . . (𝑛− 1)𝑚+𝑚

1 𝑚+ 1 . . . (𝑛− 1)𝑚+ 1
2 𝑚+ 2 . . . (𝑛− 1)𝑚+ 2
. . . . . . . . . . . .
𝑚 𝑚+𝑚 . . . (𝑛− 1)𝑚+𝑚

Hàng 𝑟 gồm các phần tử dạng 𝑟𝑚+𝑘 với 0 6 𝑟 6 𝑛−1 và 1 6 𝑘 6 𝑚. Ta thấy rằng nếu (𝑟𝑚+𝑘,𝑚) = 1
thì (𝑘,𝑚) = 1.

Do đó trên mỗi hàng có 𝜙(𝑚) phần tử nguyên tố cùng nhau với 𝑚.

Tiếp theo, trên các hàng vừa tìm được, do (𝑚,𝑛) = 1 nên để (𝑟𝑚+ 𝑘, 𝑛) = 1 thì (𝑟, 𝑛) = 1, nghĩa là có
𝜙(𝑛) hàng như vậy.

Tổng kết lại, ta có 𝜙(𝑚)𝜙(𝑛) phần tử trong bảng nguyên tố cùng nhau với 𝑚𝑛. Do đó có điều phải
chứng minh.

Do tính chất này nên hàm Euler là hàm nhân tính.

INFO-CIRCLE Remark 3.20

Cho số nguyên dương 𝑛. Khi đó ∑︁
𝑑|𝑛

𝜙(𝑑) = 𝑛.

Để chứng minh tính chất trên ta cần công thức khai triển
𝑛∏︁

𝑖=1

(1 + 𝑥𝑖) =
∑︁

{𝑖1,...,𝑖𝑘}⊂𝐼

𝑥𝑖1 · · ·𝑥𝑖𝑘

với 𝐼 = {1, . . . , 𝑛}.

Khi 𝑛 = 2 ta có biểu thức đơn giản là

(1 + 𝑥)(1 + 𝑦) = 1 + 𝑥+ 𝑦 + 𝑥𝑦,
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hoặc với 𝑛 = 3 biến là

(1 + 𝑥)(1 + 𝑦)(1 + 𝑦) = 1 + 𝑥+ 𝑦 + 𝑧 + 𝑥𝑦 + 𝑦𝑧 + 𝑦𝑧 + 𝑥𝑦𝑧.

INFO-CIRCLE Chứng minh

Giả sử phân tích thừa số nguyên tố của 𝑛 là

𝑛 = 𝑝𝑒11 𝑝
𝑒2
2 . . . 𝑝𝑒𝑘𝑘 .

Khi đó mỗi ước 𝑑 của 𝑛 đều có dạng 𝑝𝑓11 𝑝
𝑓2
2 · · · 𝑝

𝑓𝑘
𝑘 với 0 6 𝑓𝑖 6 𝑒𝑖, 𝑖 = 1, 2, . . . , 𝑘.

Như vậy ∑︁
𝑑|𝑛

𝜙(𝑑) =
∑︁

06𝑓𝑖6𝑒𝑖

𝜙
(︁
𝑝𝑓11 𝑝

𝑓2
2 . . . 𝑝𝑓𝑘𝑘

)︁
= 𝜙

(︁
𝑝𝑓11

)︁
𝜙
(︁
𝑝𝑓22

)︁
. . . 𝜙

(︁
𝑝𝑓𝑘𝑘

)︁
Sử dụng công thức khai triển trên cho 𝑘 biến ở trên thì biểu thức tương đương với∑︁

06𝑓𝑖6𝑒𝑖

𝜙
(︁
𝑝𝑓11

)︁
𝜙
(︁
𝑝𝑓22

)︁
. . . 𝜙

(︁
𝑝𝑓𝑘𝑘

)︁
=(1 + 𝜙(𝑝1) + 𝜙(𝑝21) + . . .+ 𝜙(𝑝𝑒11 ))

×(1 + 𝜙(𝑝2) + 𝜙(𝑝22) + . . .+ 𝜙(𝑝𝑒22 ))

× . . .
×(1 + 𝜙(𝑝𝑘) + 𝜙(𝑝2𝑘) + . . .+ 𝜙(𝑝𝑒𝑘𝑘 )).

Ở đây ta rút gọn dễ dàng với 𝑖 = 1, 2, . . . , 𝑘:

1 + 𝜙(𝑝𝑖) + 𝜙(𝑝2𝑖 ) + . . .+ 𝜙(𝑝𝑒𝑖𝑖 )

=1 + 𝑝𝑖 − 1 + 𝑝2𝑖 − 𝑝𝑖 + . . .+ 𝑝𝑒𝑖𝑖 − 𝑝
𝑒𝑖−1
𝑖

=𝑝𝑒𝑖𝑖 .

Như vậy mỗi tổng 1 + 𝜙(𝑝𝑖) + · · · bằng chính 𝑝𝑒𝑖𝑖 . Nhân chúng lại với nhau ta có lại 𝑛.

Định lý Euler

INFO-CIRCLE Theorem 3.18 (Định lý Euler)

Cho số nguyên dương 𝑛. Với mọi số nguyên 𝑎 mà (𝑎, 𝑛) = 1 thì

𝑎𝜙(𝑛) ≡ 1 (mod 𝑛).

INFO-CIRCLE Chứng minh

Giả sử 𝑆 = {𝑎1, 𝑎2, . . . , 𝑎𝜙(𝑛)} là hệ thặng dư thu gọn của 𝑛. Ta sẽ chứng minh rằng nếu 𝑎 là số sao cho
(𝑎, 𝑛) = 1 thì tập hợp

{𝑎𝑎1 (mod 𝑛), 𝑎𝑎2 (mod 𝑛), . . . , 𝑎𝑎𝜙(𝑛) (mod 𝑛)}

là hoán vị của tập 𝑆.
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Thật vậy, giả sử 𝑎𝑎𝑖 ≡ 𝑎𝑎𝑗 (mod 𝑛) với 1 6 𝑖, 𝑗 6 𝜙(𝑛) và 𝑖 ̸= 𝑗.

Do (𝑎, 𝑛) = 1 nên tồn tại nghịch đảo 𝑎′ (mod 𝑛) của 𝑎. Nhân 𝑎′ cho hai vế ta còn 𝑎𝑖 ≡ 𝑎𝑗 (mod 𝑛).

Nói cách khác, nếu 𝑎𝑖 ̸≡ 𝑎𝑗 (mod 𝑛) thì 𝑎𝑎𝑖 ̸≡ 𝑎𝑎𝑗 (mod 𝑛), suy ra tập

{𝑎𝑎1, 𝑎𝑎2, . . . , 𝑎𝑎𝜙(𝑛)}

là hoán vị của 𝑆.

Ta nhân tất cả phần tử của 𝑆 thì sẽ bằng tích phần tử của tập trên

𝑎𝑎1 · 𝑎𝑎2 . . . 𝑎𝑎𝜙(𝑛) ≡ 𝑎1 · 𝑎2 . . . 𝑎𝜙(𝑛) (mod 𝑛).

Đặt 𝐼 = 𝑎1 · 𝑎2 · · · 𝑎𝜙(𝑛) thì phương trình trên tương đương với

𝑎𝜙(𝑛) · 𝐼 ≡ 𝐼 (mod 𝑛),

mà (𝐼, 𝑛) = 1 do là tích các số nguyên tố cùng nhau với 𝑛 nên rút gọn hai vế ta được

𝑎𝜙(𝑛) ≡ 1 (mod 𝑛).

Ta có điều phải chứng minh.

Định lý Fermat nhỏ

INFO-CIRCLE Theorem 3.19 (Định lý Fermat nhỏ)

Cho số nguyên tố 𝑝. Với mọi số nguyên 𝑎 thì

𝑎𝑝 ≡ 𝑎 (mod 𝑝).

Khi (𝑎, 𝑝) = 1 thì

𝑎𝑝−1 ≡ 1 (mod 𝑝).

INFO-CIRCLE Remark 3.21

Khi (𝑎, 𝑝) = 1 thì định lý Fermat là hệ quả trực tiếp từ định lý Euler.

Hàm Möbius

August Ferdinand Möbius là nhà toán học người Đức, đóng góp nổi tiếng của ông là dải Möbius. Tuy nhiên
ở đây chúng ta xem xét một hàm số học mang tên ông.

Hàm Möbius đóng vai trò quan trọng trong việc tính các đại lượng liên quan tới số học.
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Hàm Möbius

INFO-CIRCLE Definition 3.20 (Hàm Möbius)

Hàm Möbius của số nguyên dương 𝑛 được định nghĩa như sau:

𝜇(𝑛) =

⎧⎪⎨⎪⎩
1, nếu 𝑛 = 1

(−1)𝑘, nếu 𝑛 = 𝑝1𝑝2 . . . 𝑝𝑘 với 𝑝𝑖 là các số nguyên tố khác nhau
0, trong các trường hợp còn lại.

Điều này có nghĩa là, nếu 𝑛 là tích của các số nguyên tố bậc 1 thì 𝜇(𝑛) = (−1)𝑘 với 𝑘 là số lượng số nguyên
tố trong tích. Như vậy, nếu tồn tại số nguyên tố 𝑝 sao cho 𝑝2 | 𝑛 thì 𝜇(𝑛) = 0.

Tính chất hàm Möbius

INFO-CIRCLE Property 3.3

1. Nếu gcd(𝑛1, 𝑛2) = 1 thì 𝜇(𝑛1 · 𝑛2) = 𝜇(𝑛1) · 𝜇(𝑛2).

2.
∑︀
𝑑|𝑛

𝜇(𝑑) = 0 với 𝑛 = 𝑝1𝑝2 . . . 𝑝𝑘.

INFO-CIRCLE Chứng minh

Với tính chất 1, ta dễ thấy rằng do 𝑛1 và 𝑛2 nguyên tố cùng nhau nên trong cách phân tích thừa số
nguyên tố của chúng sẽ chứa các số nguyên tố khác nhau.

Khi đó 𝜇(𝑛1) và 𝜇(𝑛2) không bị phụ thuộc nhau và có thể tách thành phép nhân như trên.

Với tính chất 2, chúng ta lần lượt chọn 𝑑 là tổ hợp của 0, 1, 2, ..., 𝑘 số nguyên tố:

• nếu 𝑑 = 1 thì 𝜇(𝑑) = 1;

• nếu 𝑑 = 𝑝𝑖 thì 𝜇(𝑑) = (−1)1 = −1 với 𝑖 = 1, 𝑘;

• nếu 𝑑 = 𝑝𝑖𝑝𝑗 với 𝑖 ̸= 𝑗 thì 𝜇(𝑑) = (−1)2 = 1;

• tương tự như vậy, nếu 𝑑 là tích của 𝑡 số nguyên tố thì 𝜇(𝑑) = (−1)𝑡.

Ở mỗi trường hợp trên, do 𝑑 là tổ hợp của 𝑡 số nguyên tố (0 6 𝑡 6 𝑘) nên số cách chọn số nguyên tố 𝑝𝑖
ở mỗi trường hợp là 𝐶𝑡

𝑘. Ta cộng tất cả chúng lại∑︁
𝑑|𝑛

𝜇(𝑑) = 1− 𝐶1
𝑘 + 𝐶2

𝑘 − . . .+ (−1)𝑘𝐶𝑘
𝑘 = 0

theo nhị thức Newton. Từ đó ta có điều phải chứng minh.

Công thức nghịch đảo Möbius

Giả sử ta có hai hàm 𝑓 và 𝑔 từ N tới Z. Khi đó hai cách biểu diễn sau là tương đương.

𝑓(𝑛) =
∑︁
𝑑|𝑛

𝑔(𝑑)⇐⇒ 𝑔(𝑛) =
∑︁
𝑑|𝑛

𝑓(𝑑)𝜇
(︁𝑛
𝑑

)︁
.
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Nghĩa là nếu chúng ta có hai hàm số 𝑓 và 𝑔 thỏa phương trình đầu (biểu diễn 𝑓 theo 𝑔) thì chúng ta cũng
sẽ tìm được cách biểu diễn 𝑔 theo 𝑓 .

INFO-CIRCLE Chứng minh

Với 𝑑 | 𝑛, đặt 𝑑′ = 𝑛

𝑑
, suy ra 𝑑 =

𝑛

𝑑′
.

Như vậy 𝑓(𝑑) · 𝜇
(︁𝑛
𝑑

)︁
= 𝑓

(︁ 𝑛
𝑑′

)︁
· 𝜇(𝑑′).

Ta lấy tổng lại thì ∑︁
𝑑|𝑛

𝑓(𝑑) · 𝜇
(︁𝑛
𝑑

)︁
=
∑︁
𝑑|𝑛

𝑓
(︁ 𝑛
𝑑′

)︁
· 𝜇(𝑑′) =

∑︁
𝑑|𝑛

𝑓
(︁𝑛
𝑑

)︁
· 𝜇(𝑑).

Ở đây lưu ý rằng nếu 𝑑 là ước của 𝑛 thì 𝑑′ = 𝑛

𝑑
cũng là ước của 𝑛. Do đó ta hoàn toàn có thể thay thế

𝑑′ bởi 𝑑 trong tổng trên.

Vì 𝑓(𝑛) =
∑︁
𝑑|𝑛

𝑔(𝑑) nên

∑︁
𝑑|𝑛

𝑓
(︁𝑛
𝑑

)︁
· 𝜇(𝑑) =

∑︁
𝑑|𝑛

𝜇(𝑑)
∑︁
𝑑′|𝑛𝑑

𝑔(𝑑′). (2.8)

Dễ thấy rằng do 𝑑 | 𝑛 và 𝑑′ | 𝑛
𝑑

nên tồn tại 𝑘, 𝑙 sao cho 𝑘𝑑 = 𝑛 và 𝑙𝑑′ = 𝑛

𝑑
. Khi đó 𝑛 = 𝑙𝑑𝑑′ và 𝑘𝑑 = 𝑛,

suy ra 𝑑′ | 𝑛 và 𝑑 | 𝑛
𝑑′
.

Tương tự như trên, ta có thể thay thế 𝑑 bởi 𝑑′ và ngược lại, phương trình (2.8) tương đương:∑︁
𝑑′|𝑛

𝑔(𝑑′)
∑︁
𝑑| 𝑛

𝑑′

𝜇(𝑑),

mà
∑︀
𝑎|𝑝
𝜇(𝑎) = 0 nếu 𝑝 ̸= 1 và bằng 1 với 𝑝 = 1 (đã chứng minh ở trên) nên từ đây suy ra

∑︁
𝑑′|𝑛

𝑔(𝑑′)
∑︁
𝑑| 𝑛

𝑑′

𝜇(𝑑) =
∑︁
𝑑′|𝑛

𝑔(𝑑′) · 1 (khi 𝑛 = 𝑑′) = 𝑔(𝑛).

Tương tự ta cũng có công thức nghịch đảo Möbius đối với phép nhân

𝑓(𝑛) =
∏︁
𝑑|𝑛

𝑔(𝑑)⇐⇒ 𝑔(𝑛) =
∏︁
𝑑|𝑛

𝑓(𝑑)𝜇
(︀
𝑛
𝑑

)︀
.

Liên hệ với hàm Euler

Nếu ta chọn 𝑓(𝑛) = 𝑛 và 𝑔(𝑛) = 𝜙(𝑛) thì theo công thức nghịch đảo Möbius ta có

𝜙(𝑛) =
∑︁
𝑑|𝑛

𝑑 · 𝜇
(︁𝑛
𝑑

)︁
do ta đã biết

∑︀
𝑑|𝑛

𝜙(𝑑) = 𝑛.
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2.7.4 Thặng dư chính phương

INFO-CIRCLE Definition 4.8 (Số chính phương modulo 𝑝)

Xét số nguyên tố lẻ 𝑝. Số 𝑎 được gọi là số chính phương modulo 𝑝 nếu (𝑎,𝑚) = 1 và tồn tại số 𝑥 sao
cho 𝑥2 = 𝑎 (mod 𝑝).

Nói cách khác phương trình đồng dư 𝑥2 ≡ 𝑎 (mod 𝑝) có nghiệm.

Chúng ta sử dụng kí hiệu Legendre (Legendre symbol) để thể hiện một số 𝑎 có phải là số chính phương
modulo nguyên tố 𝑝 không.

INFO-CIRCLE Definition 4.9 (Legendre symbol)

Xét 𝑝 là số nguyên tố, 𝑎 là số nguyên không chia hết cho 𝑝. Khi đó kí hiệu Legendre được định nghĩa là(︂
𝑎

𝑝

)︂
=

{︃
1, nếu 𝑎 là số chính phương modulo 𝑝.
−1, nếu ngược lại.

Một trường hợp tổng quát hơn của kí hiệu Legendre là kí hiệu Jacobi áp dụng cho số nguyên dương bất kì.

INFO-CIRCLE Definition 4.10 (Jacobi symbol)

Xét 𝑛 là số nguyên dương, 𝑎 là số nguyên không chia hết cho 𝑛. Khi đó kí hiệu Jacobi được định nghĩa là

(︁𝑎
𝑛

)︁
=

{︃
1, nếu 𝑎 là số chính phương modulo 𝑛
−1, nếu ngược lại.

Bài tập sưu tầm

Câu 1 (đề kiểm tra, ITMO). Số 3 có là số chính phương modulo 323 không?

Vì 323 = 17 · 19, ta sử dụng tiêu chuẩn Euler cho từng modulo 17 và 19:(︂
3

17

)︂
= 3

17−1
2 ≡ −1 (mod 17),(︂

3

19

)︂
= 3

19−1
2 ≡ −1 (mod 19).

Như vậy 3 không là số chính phương trong modulo 17 và 19.

Kết luận: 3 không là số chính phương modulo 323.

2.7.5 Tích chập Dirichlet
Tích chập Dirichlet

Hàm số học (arithmetic function) là hàm xác định trên tập số tự nhiên và cho ảnh trong tập số phức.
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INFO-CIRCLE Definition (Tích chập Dirichlet)

Tích chập Dirichlet (hay Dirichlet convolution, свёртка Дирихле) của hai hàm số học 𝑓 và 𝑔 là
một hàm số học 𝑓 * 𝑔 được định nghĩa bởi

(𝑓 * 𝑔)(𝑛) =
∑︁
𝑑|𝑛

𝑓(𝑑) 𝑔
(︁𝑛
𝑑

)︁
=
∑︁
𝑎𝑏=𝑛

𝑓(𝑎) 𝑔(𝑏).

Ở đây ta lấy tổng chạy theo tất cả các ước dương 𝑑 của tham số 𝑛, hoặc tất cả cặp (𝑎, 𝑏) có tích bằng 𝑛.

Dễ thấy phép cộng hai hàm số học

(𝑓 + 𝑔)(𝑛) = 𝑓(𝑛) + 𝑔(𝑛)

tạo thành một nhóm với phần tử trung hòa là hàm không 0(𝑛) = 0 với mọi 𝑛. Ngoài ra ta định nghĩa thêm
hàm

𝛿(𝑛) =

{︃
1, nếu 𝑛 = 1,

0, nếu 𝑛 ̸= 1.

và hàm đồng nhất Id(𝑛) = 𝑛.

Khi đó, tích chập Dirichlet có các tính chất sau:

• tính kết hợp: (𝑓 * 𝑔) * ℎ = 𝑓 * (𝑔 * ℎ);

• tính giao hoán: 𝑓 * 𝑔 = 𝑔 * 𝑓 ;

• tính phân phối với phép cộng: 𝑓 * (𝑔 + ℎ) = 𝑓 * 𝑔 + 𝑓 * ℎ;

• phần tử đơn vị là 𝛿(𝑛) vì 𝑓 * 𝛿 = 𝛿 * 𝑓 = 𝑓 .

Như vậy, nếu gọi 𝐹 là tập hợp các hàm số học với phép cộng như trên và tích chập Dirichlet thì 𝐹 là một
miền nguyên. Với các điều kiện ở trên, 𝐹 là vành giao hoán với đơn vị, và khi 𝑓, 𝑔 ̸= 0 thì 𝑓 * 𝑔 ̸= 0 nên 𝐹
là miền nguyên. Lúc này 𝐹 còn được gọi là vành Dirichlet.

INFO-CIRCLE Definition (Hàm nhân tính)

Hàm số học 𝑓(𝑛) được gọi là hàm nhân tính (multiplicative) nếu 𝑓(1) = 1 và với mọi 𝑎 và 𝑏 nguyên tố
cùng nhau thì 𝑓(𝑎)𝑓(𝑏) = 𝑓(𝑎𝑏).

INFO-CIRCLE Definition (Hàm nhân tính hoàn toàn)

Nếu hàm số học 𝑓(𝑛) thỏa 𝑓(𝑎𝑏) = 𝑓(𝑎)𝑓(𝑏) với mọi 𝑎 và 𝑏 (không nhất thiết nguyên tố cùng nhau) thì
được gọi là hàm nhân tính hoàn toàn (completely multiplicative).

Mặc dù 𝐹 là vành giao hoán với đơn vị nhưng 𝐹 không phải là trường vì nghịch đảo của phép nhân không
nhất thiết tồn tại.

Hàm số học có nghịch đảo Dirichlet khi và chỉ khi 𝑓(1) ̸= 0. Các hàm như vậy tạo thành nhóm đơn vị của
vành 𝐹 .
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Ngoài ra, nghịch đảo Dirichlet của mỗi hàm số học 𝑓 là duy nhất và được xác định bởi công thức:

𝑓−1(1) =
1

𝑓(1)
,

𝑓−1(𝑛) =
−1
𝑓(1)

∑︁
𝑑|𝑛,𝑑 ̸=𝑛

𝑓
(︁𝑛
𝑑

)︁
· 𝑓−1(𝑑), với 𝑛 > 1.

INFO-CIRCLE Chứng minh

Đầu tiên ta chứng tỏ sự tồn tại của nghịch đảo 𝑓−1 bằng quy nạp.

Với 𝑛 = 1 thì (𝑓 * 𝑓−1)(1) = 𝑓(1) · 𝑓−1(1) = 1 = 𝛿(1). Như vậy bước cơ sở đúng.

Giả thiết quy nạp:

𝑓−1(𝑘) =
−1
𝑓(1)

∑︁
𝑑|𝑘,𝑑 ̸=𝑘

𝑓

(︂
𝑘

𝑑

)︂
· 𝑓−1(𝑑)

đúng với mọi 𝑘 < 𝑛. Khi đó, vì

(𝑓 * 𝑓−1)(𝑛) = 𝛿(𝑛) = 0, 𝑛 > 1,

nên

(𝑓 * 𝑓−1)(𝑛) = 𝑓(1) · 𝑓−1(𝑛) +
∑︁

𝑑|𝑛,𝑑̸=𝑛

𝑓
(︁𝑛
𝑑

)︁
· 𝑓−1(𝑑) = 0.

Chuyển vế và đổi dấu ta có công thức của 𝑓−1(𝑛) là

𝑓−1(𝑛) = − 1

𝑓(1)

∑︁
𝑑|𝑛,𝑑̸=𝑛

𝑓
(︁𝑛
𝑑

)︁
· 𝑓−1(𝑑).

Ở đây, 𝑓−1(𝑑) tồn tại theo giả thiết quy nạp (với mọi 𝑘 < 𝑛).

Tiếp theo ta chứng minh tính duy nhất của nghịch đảo Dirichlet. Giả sử ta có hai nghịch đảo 𝑔 và ℎ của
𝑓 , như vậy

𝑓 * 𝑔 = 𝑔 * 𝑓 = 𝛿, 𝑓 * ℎ = ℎ * 𝑓 = 𝛿.

Khi đó

𝑔 = 𝑔 * 𝛿 = 𝑔 * (𝑓 * ℎ) = (𝑔 * 𝑓) * ℎ = 𝛿 * ℎ = ℎ.

Như vậy 𝑔 = ℎ và nghịch đảo Dirichlet là duy nhất.

Một số lưu ý đối với nghịch đảo Dirichlet:

1. Tích chập Dirichlet của hai hàm nhân tính thì nhân tính, và mọi hàm nhân tính khác không đều có
nghịch đảo Dirichlet cũng nhân tính.

2. Tổng của hai hàm nhân tính không nhất thiết nhân tính nên tập các hàm nhân tính KHÔNG tạo
thành vành con của vành 𝐹 .
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Liên hệ giữa tích chập Dirichlet và hàm hằng

Ta định nghĩa hàm hằng 1(𝑛) = 1 với mọi 𝑛.

Khi đó tích chập Dirichlet của hàm Euler 𝜙(𝑛) và hàm hằng 1(𝑛) là hàm đồng nhất Id(𝑛) vì

(1 * 𝜙(𝑛)) =
∑︁
𝑑|𝑛

1 · 𝜙(𝑑) =
∑︁
𝑑|𝑛

𝜙(𝑑) = 𝑛 = Id(𝑛).

Đối với hàm Mobius 𝜇(𝑛), nghịch đảo Dirichlet của nó của hàm hằng 1(𝑛):

1 * 𝜇 = 𝛿.

Như vậy, nếu ta có hàm số học 𝑓 và 𝑔 thỏa 𝑔 = 𝑓 * 1 thì bằng tích chập với 𝜇 ta cũng có 𝑓 = 𝑔 * 𝜇. Việc
biểu diễn 𝑓 theo 𝑔 chính là công thức nghịch đảo Mobius.

2.7.6 Định lý số dư Trung Hoa
Định lý số dư Trung Hoa (Chinese Remainder Theorem - CRT) là một trong những định lý quan trọng nhất
của số học nói riêng và toán học nói chung.

Chứng minh định lý số dư Trung Hoa

Giả sử ta có hệ phương trình đồng dư

𝑥 ≡ 𝑥1 (mod 𝑚1)

𝑥 ≡ 𝑥2 (mod 𝑚2)

. . .

𝑥 ≡ 𝑥𝑘 (mod 𝑚𝑘).

Trong đó gcd(𝑚𝑖,𝑚𝑗) = 1 với mọi 𝑖 ̸= 𝑗, 1 6 𝑖, 𝑗 6 𝑘.

Khi đó định lý số dư Trung Hoa phát biểu rằng hệ phương trình đồng như này có nghiệm duy nhất trong
modulo 𝑀 = 𝑚1𝑚2 . . .𝑚𝑘.

INFO-CIRCLE Chứng minh

Chúng ta cần chứng minh sự tồn tại và tính duy nhất của nghiệm.

Để chứng minh sự tồn tại, ta xây dựng cách tính nghiệm bằng quy nạp.

Bước cơ sở. Với 𝑘 = 2, ta có 𝑥 ≡ 𝑥1 (mod 𝑚1) và 𝑥 ≡ 𝑥2 (mod 𝑚2).

Do gcd(𝑚1,𝑚2) = 1 nên tồn tại hai số nguyên 𝑛1, 𝑛2 sao cho 𝑚1𝑛1 +𝑚2𝑛2 = 1 (bổ đề Bézout).

Quan sát một chút, nếu ta modulo hai vế 𝑚1𝑛1 +𝑚2𝑛2 = 1 cho 𝑚1 thì sẽ có 𝑚2𝑛2 ≡ 1 (mod 𝑚1). Như
vậy

𝑥 ≡ 𝑥1 · 1 (mod 𝑚1)⇐⇒ 𝑥 ≡ 𝑥1 · (𝑚2𝑛2) (mod 𝑚1).

Tương tự, 𝑚1𝑛1 ≡ 1 (mod 𝑚2) nên

𝑥 ≡ 𝑥2 · 1 (mod 𝑚2)⇐⇒ 𝑥 ≡ 𝑥2 · (𝑚1𝑛1) (mod 𝑚2).

Từ đó ta có công thức nghiệm là

𝑥 ≡ 𝑥1𝑚2𝑛2 + 𝑥2𝑚1𝑛1 (mod 𝑚1𝑚2).
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Khi modulo cho 𝑚1 và 𝑚2 thì kết quả là hai phương trình đồng dư ban đầu.

Tiếp theo chúng ta sử dụng quy nạp để chứng minh với mọi 𝑘 > 2 thì nghiệm của hệ phương trình đồng
dư là

𝑥 ≡ 𝑥1𝑀1𝑁1 + 𝑥2𝑀2𝑁2 + . . .+ 𝑥𝑘𝑀𝑘𝑁𝑘 (mod 𝑀). (2.9)

Trong đó

• 𝑀 = 𝑚1 ·𝑚2 · · ·𝑚𝑘;

• 𝑀𝑖 =𝑀/𝑚𝑖;

• 𝑁𝑖 là nghịch đảo của 𝑀𝑖 trong modulo 𝑚𝑖.

Giả thiết quy nạp. Giả sử (2.9) đúng với 𝑘 > 2. Đặt 𝑀 = 𝑚1 · · ·𝑚𝑘 và

𝑋𝑘 = 𝑥1𝑀1𝑁1 + . . .+ 𝑥𝑘𝑀𝑘𝑁𝑘.

Với 𝑘 + 1 ta có

𝑥 ≡ 𝑋𝑘 (mod 𝑀), 𝑥 ≡ 𝑥𝑘+1 (mod 𝑚𝑘+1).

Tương tự với hai modulo ở bước cơ sở, do gcd(𝑚𝑘+1,𝑚𝑖) = 1 với mọi 1 6 𝑖 6 𝑘 nên

gcd(𝑚𝑘+1,𝑚1 · · ·𝑚𝑘) = gcd(𝑚𝑘+1,𝑀) = 1.

Khi đó tồn tại các số nguyên 𝛼 và 𝛽 sao cho 𝛼𝑀 + 𝛽𝑚𝑘+1 = 1.

Nghiệm của hệ hai phương trình đồng dư khi này là

𝑥 ≡ 𝑋𝑘𝛽𝑚𝑘+1 + 𝑥𝑘+1𝛼𝑀 (mod 𝑀 ·𝑚𝑘+1).

Đặt 𝑀 ′ = 𝑀 · 𝑚𝑘+1 = 𝑚1 · · ·𝑚𝑘 · 𝑚𝑘+1. Ở đây 𝑀 = 𝑀 ′/𝑚𝑘+1 chính là 𝑀 ′
𝑘+1 trong cách xây dựng

nghiệm ở trên.

Từ đó 𝛼 chính là 𝑁 ′
𝑘+1.

Ta có

𝑋𝑘𝛽𝑚𝑘+1 = (𝑥1𝑀1𝑁1 + . . .+ 𝑥𝑘𝑀𝑘𝑁𝑘)𝛽𝑚𝑘+1.

Để ý rằng

𝑀𝑖 =𝑀/𝑚𝑖 =𝑀 ′/(𝑚𝑖 ·𝑚𝑘+1),

nên suy ra

𝑀𝑖 ·𝑚𝑘+1 =𝑀 ′/𝑚𝑖 =𝑀 ′
𝑖 .

Tiếp theo, do 𝛽𝑚𝑘+1 ≡ 1 (mod 𝑀) và 𝑀 = 𝑚1 · · ·𝑚𝑘 nên 𝛽𝑚𝑘+1 ≡ 1 (mod 𝑚𝑖) với 1 6 𝑖 6 𝑘.

Ở trên ta có 𝑁𝑖𝑀𝑖 ≡ 1 (mod 𝑚𝑖) nên suy ra 𝛽𝑚𝑘+1 · 𝑁𝑖𝑀𝑖 ≡ 1 (mod 𝑚𝑖), tương đương với (𝛽𝑁𝑖) ·
(𝑀𝑖𝑚𝑘+1) ≡ 1 (mod 𝑚𝑖).

Ta đã chứng minh ở trước 𝑀𝑖𝑚𝑘+1 =𝑀 ′/𝑚𝑖 =𝑀 ′
𝑖 nên 𝛽𝑁𝑖 = 𝑁 ′

𝑖 . Tới đây thì ta đã hoàn thành chứng
minh do

𝑋𝑘 · 𝛽 ·𝑚𝑘+1 + 𝑥𝑘+1 · 𝛼 ·𝑀
=(𝑥1𝑀1𝑁1 + . . .+ 𝑥𝑘𝑀𝑘𝑁𝑘) · 𝛽 ·𝑚𝑘+1 + 𝑥𝑘+1 ·𝑁 ′

𝑘+1 ·𝑀 ′
𝑘+1

=𝑥1 · (𝛽𝑁1) · (𝑀1𝑚𝑘+1) + . . .+ 𝑥𝑘 · (𝛽𝑁𝑘) · (𝑀𝑘𝑚𝑘+1)

+ 𝑥𝑘+1 ·𝑁 ′
𝑘+1 ·𝑀 ′

𝑘+1

=𝑥1𝑁
′
1𝑀

′
1 + . . . 𝑥𝑘𝑁

′
𝑘𝑀

′
𝑘 + 𝑥𝑘+1𝑁

′
𝑘+1𝑀

′
𝑘+1.
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Để chứng minh sự duy nhất của nghiệm, giả sử 𝑦 là một nghiệm khác 𝑥 của hệ phương trình đồng dư
(modulu 𝑀). Khi đó 𝑦 ≡ 𝑥𝑖 ≡ 𝑥 (mod 𝑚𝑖). Như vậy 𝑦 = 𝑥+ 𝑡𝑖𝑚𝑖, hay nói cách khác 𝑦 khác 𝑥 một bội
của 𝑚𝑖. Do đó trong modulo 𝑚𝑖 chỉ có thể có trường hợp 𝑦 ≡ 𝑥 nên nghiệm tìm được ở modulo tổng là
duy nhất.

INFO-CIRCLE Example 6.9

Tìm nghiệm của hệ phương trình đồng dư sau

𝑥 ≡ 1 (mod 3)

𝑥 ≡ 4 (mod 7).

Ta có gcd(3, 7) = 1 và 3 · 5 + 7 · (−2) = 1. Do đó nghiệm của hệ phương trình có dạng

𝑥 ≡ 1 · 7 · (−2) + 4 · 3 · 5 = 4 (mod 21).

Ta kiểm tra 4 ≡ 1 (mod 3) và 4 ≡ 4 (mod 7) thỏa mãn hệ phương trình đồng dư.

Bài tập sưu tầm

Câu 1 (đề kiểm tra, ITMO). Giải hệ đồng dư{︃
𝑥 ≡ 11 (mod 56)

𝑥 ≡ 25 (mod 77).

Do gcd(56, 77) = 7 nên đầu tiên cần tách mỗi phương trình thành các module nguyên tố cùng nhau.

𝑥 ≡ 11 (mod 56)⇒

{︃
𝑥 ≡ 11 ≡ 3 (mod 8)

𝑥 ≡ 11 ≡ 4 (mod 7).

𝑥 ≡ 25 (mod 77)⇒

{︃
𝑥 ≡ 25 ≡ 4 (mod 7)

𝑥 ≡ 25 ≡ 3 (mod 11).

Sử dụng định lý số dư Trung Hoa cho hệ ⎧⎪⎨⎪⎩
𝑥 ≡ 3 (mod 8)

𝑥 ≡ 4 (mod 7)

𝑥 ≡ 3 (mod 11)

giải ra nghiệm 𝑥 ≡ 179 (mod 616).

Câu 2 (đề kiểm tra, ITMO). Tìm hai chữ số cuối của số

31817683732657328.

Tìm hai chữ số cuối cũng có nghĩa là tính đồng dư trong modulo 100.

Thay vì tính trong modulo 100, chúng ta tính trong modulo 4 và 25 rồi dùng định lý số dư Trung Hoa để
gom nghiệm lại.

Đặt 𝐴 = 31817683732657328.

Vì 318 ≡ 0 (mod 2) nên 3182 ≡ 0 (mod 22). Nói cách khác 𝐴 ≡ 0 (mod 4).
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Vì gcd(318, 25) = 1 nên 318𝜙(25) ≡ 1 (mod 25). Do 𝜙(25) = 20 nên suy ra

31817683732657320 ≡ 1 (mod 25).

Như vậy chỉ cần tính 3188 (mod 25) nữa. Vì 318 ≡ 18 (mod 25), ta tính

182 = 1 (mod 25)⇒ 188 ≡ 1 (mod 25).

Như vậy 3188 ≡ 1 (mod 25). Ta có hệ đồng dư{︃
𝐴 ≡ 0 (mod 4)

𝐴 ≡ 1 (mod 25)

Như vậy 𝐴 ≡ 76 (mod 100). Vậy hai chữ số cuối là 76.

Câu 3 (đề kiểm tra, ITMO). Tìm tất cả nghiệm của phương trình

𝑥2 ≡ 1 (mod 5929).

Vì 5929 = 72 · 112 nên ta giải trên hai modulo 72 và 112.

Trên modulo 72, vì chỉ có ±1 thỏa 𝑥2 (mod 7) nên cũng chỉ có ±1 thỏa 𝑥2 ≡ 1 (mod 72).

Tương tự, trên modulo 112, vì chỉ có ±1 thỏa 𝑥2 (mod 11) nên cũng chỉ có ±1 thỏa 𝑥2 ≡ 1 (mod 112).

Ta tính (72)−1 ≡ 42 (mod 112) và (112)−1 ≡ 32 (mod 72).

Khi đó nghiệm của phương trình

𝑥2 ≡ 1 (mod 5929)

cũng là nghiệm của hệ {︃
𝑥 ≡ ±1 (mod 72)

𝑥 ≡ ±1 (mod 112).

Như vậy có 4 nghiệm là

𝑥 ≡ ±1 · 72 · 42± 1 · 32 · 112 ≡ 1, 4115, 1814, 5928 (mod 5929).

2.7.7 Bài tập số học sưu tầm
Câu 1 (đề kiểm tra, ITMO). Chứng minh (không dùng quy nạp) rằng với mọi 𝑛 ∈ N thì

5 · 23𝑛−2 + 33𝑛−1
... 19.

Theo định lý Fermat nhỏ thì 218 ≡ 1 (mod 19), hay (23)6 ≡ 1 (mod 19). Tương tự 318 ≡ 1 (mod 19). Do
đó mình sẽ xét các dạng của 𝑛 là 6𝑘, 6𝑘 + 1, ..., 6𝑘 + 5.

Trường hợp 1. 𝑛 = 6𝑘. Khi đó

23𝑛−2 = 23·6𝑘−2 ≡ 2−2 = 5 (mod 19)

33𝑛−1 = 33·6𝑘−1 ≡ 3−1 = 13 (mod 19)

⇒ 5 · 23𝑛−2 + 33𝑛−1 ≡ 5 · 5 + 13 ≡ 0 (mod 19).

Trường hợp 2. 𝑛 = 6𝑘 + 1. Khi đó

23𝑛−2 = 23·6𝑘+1 ≡ 2 (mod 19)

33𝑛−1 = 33·6𝑘+2 ≡ 32 = 9 (mod 19)

⇒ 5 · 23𝑛−2 + 33𝑛−1 ≡ 5 · 2 + 9 ≡ 0 (mod 19).
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Trường hợp 3. 𝑛 = 6𝑘 + 2. Khi đó

23𝑛−2 = 23·6𝑘+4 ≡ 24 = 16 (mod 19)

33𝑛−1 = 33·6𝑘+5 ≡ 35 = 15 (mod 19)

⇒ 5 · 23𝑛−2 + 33𝑛−1 ≡ 5 · 16 + 15 ≡ 0 (mod 19).

Trường hợp 4. 𝑛 = 6𝑘 + 3. Khi đó

23𝑛−2 = 23·6𝑘+7 ≡ 27 = 14 (mod 19)

33𝑛−1 = 33·6𝑘+8 ≡ 38 = 6 (mod 19)

⇒ 5 · 23𝑛−2 + 33𝑛−1 ≡ 5 · 14 + 6 ≡ 0 (mod 19).

Trường hợp 5. 𝑛 = 6𝑘 + 4. Khi đó

23𝑛−2 = 23·6𝑘+10 ≡ 210 = 17 (mod 19)

33𝑛−1 = 33·6𝑘+11 ≡ 311 = 10 (mod 19)

⇒ 5 · 23𝑛−2 + 33𝑛−1 ≡ 5 · 17 + 10 ≡ 0 (mod 19).

Trường hợp 6. 𝑛 = 6𝑘 + 5. Khi đó

23𝑛−2 = 23·6𝑘+13 ≡ 213 = 3 (mod 19)

33𝑛−1 = 33·6𝑘+14 ≡ 314 = 4 (mod 19)

⇒ 5 · 23𝑛−2 + 33𝑛−1 ≡ 5 · 3 + 4 ≡ 0 (mod 19).

Câu 2 (đề kiểm tra, ITMO). Tính

1! + 2! + . . .+ 2023! + 2024! mod 10.

Trong các giai thừa từ 5! trở đi luôn có 5 và 2 do đó luôn chia hết cho 10. Vì vậy chỉ cần tính

1! + 2! + 3! + 4! = 1 + 2 + 6 + 24 ≡ 3 mod 10.

Câu 3 (đề kiểm tra, ITMO). Chứng minh số 15420 + 13931 là hợp số.

Vì

15420 ≡ (−1)20 ≡ 1 (mod 5) và 13931 ≡ (−1)31 ≡ −1 (mod 5)

nên số đã cho chia hết cho 5 và do đó là hợp số.

Câu 4 (đề kiểm tra, ITMO). Chứng minh số 3151 + 27 là hợp số.

Dễ thấy 31 là số lẻ nên lũy thừa của nó cũng là số lẻ. Tổng hai số lẻ là số chẵn nên số đã cho chia hết cho
2 và do đó là hợp số.

Câu 5 (đề kiểm tra, ITMO). Chứng minh với mọi 𝑛 ∈ N thì 𝑛8 + 4 là hợp số.

Ta có

𝑛8 + 4 = 𝑛8 + 4𝑛4 + 4− 4𝑛4 = (𝑛4 + 2)− (2𝑛2)2 = (𝑛4 + 2− 2𝑛2)(𝑛4 + 2 + 2𝑛2).

Hai biểu thức trong ngoặc luôn lớn hơn 1 nên suy ra 𝑛8 + 4 là hợp số.

Câu 6 (đề kiểm tra, ITMO). Tìm tất cả số nguyên tố 𝑝 sao cho 3𝑝+ 20 và 4𝑝+ 1 là số nguyên tố.

Chưa làm ra.

Câu 7 (đề kiểm tra, ITMO). Tìm tất cả số nguyên tố 𝑝 sao cho 2𝑝2 + 5𝑝− 2 cũng là số nguyên tố.
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Chưa làm ra.

Câu 8 (đề kiểm tra, ITMO). Chứng minh rằng không tồn tại đa thức 𝑃 với hệ số nguyên sao cho 𝑃 (40) = 30
và 𝑃 (19) = 24.

Đặt

𝑃 (𝑥) = 𝑎𝑛𝑥
𝑛 + 𝑎𝑛−1𝑥

𝑛−1 + . . .+ 𝑎1𝑥+ 𝑎0.

Khi đó

𝑃 (40) = 𝑎𝑛 · 40𝑛 + 𝑎𝑛−1 · 40𝑛−1 + . . .+ 𝑎1 · 40 + 𝑎0,

và

𝑃 (19) = 𝑎𝑛 · 19𝑛 + 𝑎𝑛−1 · 19𝑛−1 + . . .+ 𝑎1 · 19 + 𝑎0.

Vì 40𝑘 − 19𝑘 = (40− 19) · (. . .) nên 40𝑘 − 19𝑘 chia hết cho 40− 19 = 21 với mọi 𝑘.

Nói cách khác 𝑃 (40)−𝑃 (19) chia hết cho 21, nhưng 30− 24 = 6 không chia hết 21. Do đó không tồn tại đa
thức 𝑃 thỏa mãn đề bài.

Câu 9 (đề kiểm tra, ITMO). Tìm tập tất cả số 𝑥 ∈ Z sao cho 533𝑥 ≡ 1 (mod 17).

Vì 533 ≡ 6 (mod 17) nên ta chỉ cần giải phương trình 6𝑥 ≡ 1 (mod 17) là đủ.

Sử dụng thuật toán Euclid mở rộng có thể tính được 6−1 = 3 (mod 17), suy ra nghiệm là

𝑥 ≡ 3 (mod 17),

nghĩa là 𝑥 = 3 + 17𝑘 với 𝑘 ∈ Z.

Câu 10 (đề kiểm tra, ITMO). Tìm số dư của 454225 khi chia cho 16.

Do 454 chia hết cho 2 nên 4544 chia hết cho 16.

Suy ra 454225 chia hết cho 16.

2.8 Toán rời rạc

2.8.1 Quan hệ hai ngôi
Quan hệ hai ngôi

INFO-CIRCLE Definition (Quan hệ hai ngôi)

Xét hai tập hợp 𝐴 và 𝐵. Ta gọi ℛ là một quan hệ hai ngôi trên 𝐴 và 𝐵 nếu ℛ ⊂ 𝐴×𝐵, trong đó 𝐴×𝐵
là tích Descartes của hai tập hợp.

Nếu phần tử (𝑎, 𝑏) ∈ ℛ với 𝑎 ∈ 𝐴 và 𝑏 ∈ 𝐵 thì ta nói 𝑎 có quan hệ với 𝑏 và kí hiệu 𝑎ℛ𝑏.

Khi 𝐴 ≡ 𝐵 thì ta nói ℛ là quan hệ hai ngôi trên 𝐴. Đây cũng là yếu tố quan trọng cho các khái niệm về
sau.
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INFO-CIRCLE Example

Xét hai tập hợp 𝐴 = {1, 2, 3, 4} và 𝐵 = {𝑎, 𝑏, 𝑐}. Khi đó tích Descartes

𝐴×𝐵 = {(1, 𝑎), (1, 𝑏), (1, 𝑐), (2, 𝑎), (2, 𝑏), (2, 𝑐),
(3, 𝑎), (3, 𝑏), (3, 𝑐), (4, 𝑎), (4, 𝑏), (4, 𝑐)}

Giả sử ℛ = {(1, 𝑎), (3, 𝑏), (4, 𝑐)}.

Khi đó 1 quan hệ với 𝑎 do (1, 𝑎) ∈ ℛ, hay 1𝑅𝑎.

Tuy nhiên 1 không có quan hệ với 𝑏 do (1, 𝑏) ̸∈ ℛ.

Sau đây ta định nghĩa các loại quan hệ hai ngôi.

INFO-CIRCLE Definition

Cho 𝑅 là quan hệ hai ngôi trên tập 𝐴. Ta nói:

1. ℛ phản xạ (hay reflexive) nếu với mọi 𝑥 ∈ 𝐴 thì (𝑥, 𝑥) ∈ ℛ.

2. ℛ đối xứng (hay symmetric) nếu (𝑥, 𝑦) ∈ ℛ thì (𝑦, 𝑥) ∈ ℛ.

3. ℛ phản xứng (hay antisymmetric) nếu (𝑥, 𝑦) ∈ ℛ thì (𝑦, 𝑥) ̸∈ ℛ. Nói cách khác nếu (𝑥, 𝑦) ∈ ℛ
và (𝑦, 𝑥) ∈ ℛ thì 𝑥 = 𝑦.

4. ℛ bắc cầu (hay transitive) nếu (𝑥, 𝑦) ∈ ℛ và (𝑦, 𝑧) ∈ ℛ thì (𝑥, 𝑧) ∈ ℛ.

Quan hệ tương đương

Quan hệ tương đương giúp ta chia (phân hoạch) một tập hợp rời rạc thành các tập con mà chỉ cần một phần
tử đại diện cho tập con đó là đủ để tính toán.

INFO-CIRCLE Definition (Quan hệ tương đương)

Cho ℛ là quan hệ trên tập 𝐴. Khi đó ℛ được gọi là quan hệ tương đương (hay equivalence relation,
отношение эквивалентности) nếu ℛ phản xạ, đối xứng và bắc cầu.

Ta có thể kí hiệu 𝑥ℛ𝑦, với ℛ là quan hệ tương đương, là 𝑥 ∼ 𝑦 hoặc 𝑥 ̃︀ℛ𝑦.
Tiếp theo ta định nghĩa lớp tương đương chứa phần tử 𝑥 và tập thương.

INFO-CIRCLE Definition (Lớp tương đương)

Cho ℛ là quan hệ tương đương trên tập 𝐴. Khi đó với 𝑥 ∈ 𝐴, ta định nghĩa lớp tương đương chứa phần
tử 𝑥 là tập các phần tử của 𝐴 có quan hệ với 𝑥:

𝑥̄ = {𝑦 ∈ 𝐴, 𝑦ℛ𝑥}.

INFO-CIRCLE Definition (Tập thương)
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Tập hợp các lớp tương đương như trên tạo thành tập thương.

𝐴/ℛ = {𝑥̄, 𝑥 ∈ 𝐴}.

INFO-CIRCLE Example

Xét số nguyên dương 𝑛. Với số nguyên 𝑥 và 𝑦, ta nói 𝑥 có quan hệ với 𝑦 nếu 𝑛 | (𝑥−𝑦), hay 𝑥 ≡ 𝑦 mod 𝑛.
Ta kí hiệu quan hệ này là 𝑛Z.

Quan hệ trên là quan hệ tương đương vì

1. 𝑛 | 0 = 𝑥− 𝑥 với mọi 𝑥 ∈ Z nên có tính phản xạ.

2. 𝑛 | (𝑥− 𝑦) suy ra 𝑛 | −(𝑥− 𝑦) = 𝑦 − 𝑥 với mọi 𝑥, 𝑦 ∈ Z nên có tính đối xứng.

3. 𝑛 | (𝑥− 𝑦) và 𝑛 | (𝑦 − 𝑧) suy ra 𝑛 | (𝑥− 𝑦 + 𝑦 − 𝑧) = (𝑥− 𝑧) nên có tính bắc cầu.

Từ đó ta có thể phân tập Z thành các lớp tương đương

0 = {. . . ,−2𝑛,−𝑛, 0, 𝑛, 2𝑛, . . .},
1 = {. . . ,−2𝑛+ 1,−𝑛+ 1, 1, 𝑛+ 1, 2𝑛+ 1, . . .},
...

𝑛− 1 = {. . . ,−𝑛− 1,−1, 𝑛− 1, 2𝑛− 1, 3𝑛− 1, . . .}.

Tập thương của chúng ta là

Z/𝑛Z = {0, 1, . . . , 𝑛− 1}.

Quan hệ thứ tự

INFO-CIRCLE Definition (Quan hệ thứ tự)

Cho quan hệ ℛ trên tập 𝐴. Ta nói ℛ là quan hệ thứ tự (hay order relation, отношение порядка)
nếu ℛ phản xạ, phản xứng và bắc cầu.

INFO-CIRCLE Definition

Cho tập hợp 𝐴 và quan hệ ℛ trên 𝐴 là quan hệ thứ tự. Nếu 𝑥ℛ𝑦 thì ta kí hiệu 𝑥 ≺ 𝑦. Khi đó (𝐴,≺)
được gọi là tập có thứ tự (hay ordered set).

Tiếp theo là một số định nghĩa quan trọng về tập hợp có thứ tự.

INFO-CIRCLE Definition

Với (𝐴,≺) và 𝑥, 𝑦 ∈ 𝐴.

1. Nếu 𝑥 ≺ 𝑦, ta nói 𝑦 là trội của 𝑥, hay là 𝑥 được trội bởi 𝑦.

2. 𝑦 là trội trực tiếp của 𝑥 nếu không tồn tại 𝑧 sao cho 𝑥 ≺ 𝑧 và 𝑧 ≺ 𝑦.
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INFO-CIRCLE Definition

Xét (𝐴,≺).

1. 𝑥 và 𝑦 thuộc 𝐴 được gọi là so sánh được nếu 𝑥 ≺ 𝑦 hoặc 𝑦 ≺ 𝑥.

2. Nếu với mọi 𝑥, 𝑦 ∈ 𝐴, 𝑥 và 𝑦 so sánh được thì (𝐴,≺) được gọi là quan hệ thứ tự toàn phần.
Ngược lại thì gọi là quan hệ thứ tự bán phần.

Để biểu diễn sự so sánh trong một tập hợp, ta sử dụng biểu đồ Hasse.

INFO-CIRCLE Definition

Biểu đồ Hasse của (𝐴,≺) với 𝐴 là tập hữu hạn bao gồm

1. Tập điểm - mỗi điểm biểu diễn một phần tử của 𝐴.

2. Tập cung - vẽ một cung từ 𝑥 tới 𝑦 nếu 𝑦 là trội trực tiếp của 𝑥.

INFO-CIRCLE Example

Xét tập 𝑈12 = {1, 2, 3, 4, 6, 12} với quan hệ 𝑥ℛ𝑦 được định nghĩa bởi 𝑥 là ước của 𝑦.

Theo đó, biểu đồ Hasse của quan hệ trên là Hình 2.47.

1 2

3

4

6 12

Hình 2.47: Biểu đồ Hasse của 𝑈12

INFO-CIRCLE Definition

Xét quan hệ thứ tự (𝐴,≺).

1. Phần tử 𝑀 ∈ 𝐴 được gọi là

1. Tối đại nếu 𝑀 ≺ 𝑥 thì 𝑥 =𝑀 .

2. Cực đại (hay lớn nhất) nếu với mọi 𝑥 ∈ 𝐴 thì 𝑥 ≺𝑀 .

2. Phần tử 𝑚 ∈ 𝐴 được gọi là

1. Tối tiểu nếu 𝑥 ≺ 𝑚 thì 𝑥 = 𝑚.

2. Cực tiểu (hay nhỏ nhất) nếu với mọi 𝑥 ∈ 𝐴 thì 𝑚 ≺ 𝑥.

INFO-CIRCLE Remark

1. Phần tử cực đại nếu có là duy nhất. Tương tự cho cực tiểu.
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2. Nếu 𝑛 là phần tử tối đại duy nhất thì nó cũng là cực đại. Tương tự cho tối tiểu.

Trong ví dụ 𝑈12 ở trên thì 1 là tối tiểu và cũng là cực tiểu, và 12 là tối đại và cũng là cực đại.

2.8.2 Phân hoạch
Số Stirling

Số Stirling loại 1

Xét tập các hoán vị trên tập hữu hạn 𝑛 phần tử.

Số hoán vị chứa 𝑘 chu trình độc lập là số Stirling loại 1, kí hiệu là 𝒮(𝑘)𝑛 .

Các bước khởi đầu là

• 𝒮(0)0 = 1 (có đúng một cách chia tập 0 phần tử vào 0 chu trình);

• 𝒮(0)𝑛 = 𝒮(𝑛)0 = 0 (không có cách nào chia tập 𝑛 phần tử vào 0 chu trình và chia tập 0 phần tử vào 𝑛
chu trình).

Công thức đệ quy của số Stirling là:

𝒮(𝑘)𝑛+1 = 𝑛 · 𝒮(𝑘)𝑛 + 𝒮(𝑘−1)
𝑛 .

INFO-CIRCLE Chứng minh

Giả sử tập có 𝑛+ 1 phần tử là 𝐴 = {1, 2, . . . , 𝑛, 𝑛+ 1}.

Khi đó để phân hoạch 𝑛+ 1 phần tử này vào 𝑘 chu trình độc lập thì có hai trường hợp:

1. Đầu tiên xếp các phần tử 1, 2, ..., 𝑛 vào 𝑘 chu trình độc lập thì có 𝒮(𝑘)𝑛 cách chọn. Tiếp theo ta
cho phần tử 𝑛+ 1 vào một vị trí bất kì trong 𝑘 chu trình trên thì có 𝑛 cách chọn. Vậy trường hợp
này là 𝑛 · 𝒮(𝑘)𝑛 .

2. Ta phân 𝑛 phần tử 1, 2, ..., 𝑛 vào 𝑘− 1 chu trình độc lập và phần tử 𝑛+ 1 sẽ vào chu trình thứ 𝑘.
Trường hợp này có 𝒮(𝑘−1)

𝑛 · 1 cách chọn.

Như vậy tổng số cách phân 𝑛+1 phần tử vào 𝑘 chu trình độc lập là hợp của hai trường hợp trên. Ta có
điều phải chứng minh.

INFO-CIRCLE Example 12

Có bao nhiêu hoán vị của 𝒮5 chứa đúng ba chu trình độc lập?

Ta có các trường hợp sau:

1. Hoán vị có dạng (1)(2)(3, 4, 5). Ta chọn hai phần tử làm hai chu trình độc lập, có 𝐶2
5 = 10 cách

chọn. Tiếp theo chọn ba phần tử cho chu trình cuối, có 2! cách chọn. Vậy trường hợp này có
10 · 2 = 20 cách chọn.

2. Hoán vị có dạng (1)(2, 3)(4, 5). Ta chọn một phần tử làm chu trình độc lập có 𝐶1
5 = 5 cách chọn.

Tiếp theo chọn hai phần tử cho chu trình tiếp theo trong 4 phần tử còn lại, có 𝐶2
4 = 6 cách chọn.

Hai phần tử còn lại là 𝐶2
2 = 1 cách chọn. Lưu ý là hai chu trình độc lập có thể đổi chỗ cho nhau

nên cần chia thêm 2! nữa, ví dụ (1, 2)(3, 4) hoàn toàn giống với (3, 4)(1, 2). Số cách chọn cho trường
hợp này là 5 · 6/2 = 15 cách chọn.
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Như vậy số hoán vị của 𝒮5 chứa đúng ba chu trình độc lập là 20 + 15 = 35.

Ta so sánh kết quả với số Stirling. Ta cần tìm 𝒮(3)5 .

Ta có:

𝒮(3)5 =4 · 𝒮(3)4 + 𝒮(2)4

=4 ·
(︁
3 · 𝒮(3)3 + 𝒮(2)3

)︁
+ 3 · 𝒮(2)3 + 𝒮(1)3

=4 ·
(︁
3 · 1 + 2 · 𝒮(2)2 + 𝒮(1)2

)︁
+ 3 ·

(︁
2 · 𝒮(2)2 + 𝒮(1)2

)︁
+ 2 · 𝒮(1)2 + 𝒮(0)2

=4 ·
(︁
3 + 2 · 1 + 1 · 𝒮(1)1 + 𝒮(0)1

)︁
+ 3 ·

(︁
2 · 1 + 𝒮(1)1 + 𝒮(0)1

)︁
+ 𝒮(1)1 + 𝒮(0)1 + 0

=4 · (3 + 2 + 1) + 3 · (2 + 1 + 0) + 2 · 1 + 0 + 0 = 35.

Kết quả số Stirling khớp với việc giải bằng tổ hợp và không đòi hỏi các suy luận phức tạp.

INFO-CIRCLE Remark 7

Số Stirling loại 1 cho phép tính số lượng phân hoạch theo đệ quy thay vì giải các bài toán tổ hợp phức
tạp. Điều này hiệu quả khi các số 𝑛 và 𝑘 trở nên lớn.

INFO-CIRCLE Property 1 (Tính chất của số Stirling loại 1)

𝑛∑︁
𝑘=1

𝒮(𝑘)𝑛 = 𝑛!.

Công thức này chỉ số hoán vị có thể có của một tập 𝑛 phần tử.

Số Stirling loại 2

Số Stirling loại 2 thể hiện số cách phân bổ 𝑛 phần tử vào 𝑘 tập hợp rời nhau, kí hiệu là 𝑠(𝑛, 𝑘).

Công thức đệ quy của số Stirling loại 2 là:

𝑠(𝑛+ 1, 𝑘) = 𝑘 · 𝑠(𝑛, 𝑘) + 𝑠(𝑛, 𝑘 − 1).

INFO-CIRCLE Chứng minh

Cách chứng minh khá tương tự số Stirling loại 1. Tuy nhiên ở đây việc phân một phần tử vào một tập
hợp không xét tới thứ tự, điều này khác với chu trình cần xem xét thứ tự. Như vậy ta vẫn có hai trường
hợp

1. Phân các phần tử 1, 2, ..., 𝑛 vào 𝑘 tập hợp. Sau đó phần tử 𝑛 + 1 sẽ được phân vào một trong 𝑘
tập đó nên có 𝑘 cách chọn.

2. Phân các phần tử 1, 2, ..., 𝑛 vào 𝑘 − 1 tập hợp và phần tử 𝑛+ 1 vào tập hợp thứ 𝑘 + 1.

Từ đây ta có công thức số Stirling loại 2.

234 Chapter 2. Toán khó quá người ơi



Math Book

Các bước cơ sở cho số Stirling loại 2 cũng tương tự loại 1:

• 𝑠(𝑛, 𝑛) = 1;

• 𝑠(𝑛, 0) = 𝑠(0, 𝑛) = 0.

2.8.3 Biến đổi Fourier rời rạc
Phần này mình dịch từ [12].

Giới thiệu

Cho số 𝑡 ∈ N và 𝑛 = 2𝑡.

Gọi 𝑅 là vành với đơn vị 1. Vành 𝑅 chứa phần tử 2−1 là nghịch đảo của phần tử 2. Hơn nữa vành 𝑅 cũng
chứa phần tử 𝜁2𝑛 là một nghiệm cố định nào đó của phương trình 𝑥𝑛 + 1 = 0. Đặt 𝜁𝑛 = 𝜁22𝑛.

INFO-CIRCLE Example 13

Trên C thì 𝜁2𝑛 = 𝑒𝜋𝑖/𝑛 là một nghiệm của phương trình 𝑥𝑛 + 1 = 0. Khi đó 𝜁𝑛 = 𝜁22𝑛 = 𝑒2𝜋𝑖/𝑛.

INFO-CIRCLE Lemma 1

Phần tử 𝜁2𝑛 sinh ra một nhóm vòng (cyclic group) với order 2𝑛 trong nhóm nhân của vành 𝑅.

INFO-CIRCLE Chứng minh

Do 𝜁2𝑛 là nghiệm của phương trình 𝑥𝑛 + 1 = 0 nên 𝜁𝑛2𝑛 = −1, hay 𝜁2𝑡2𝑛 = −1. Từ đó suy ra
(︁
𝜁2

𝑡

2𝑛

)︁2
= 1

nên order của phần tử 𝜁2𝑛 là 2𝑡+1 = 2𝑛.

Giả sử (𝑓0, . . . , 𝑓𝑛−1) ∈ 𝑅𝑛 là vector bất kì. Khi đó:

Biến đổi Fourier loại 1 của vector trên là vector 𝑛 chiều (𝑓0, . . . , 𝑓𝑛−1) thuộc 𝑅𝑛 xác định bởi:

𝑓𝑖 =

𝑛−1∑︁
𝑗=0

𝜁𝑖𝑗𝑛 𝑓𝑗 , 𝑖 = 0, 1, . . . , 𝑛− 1.

Biến đổi Fourier loại 2 của vector trên là vector 𝑛 chiều (𝑓1, 𝑓3, . . . , 𝑓2𝑛−1) thuộc 𝑅𝑛 xác định bởi:

𝑓𝑖 =

𝑛−1∑︁
𝑗=0

𝜁𝑖𝑗2𝑛𝑓𝑗 , 𝑖 = 1, 3, . . . , 2𝑛− 1.

INFO-CIRCLE Example 14

Mình lấy ví dụ với vector (𝑓0, 𝑓1, 𝑓2) = (1, 2, 3) thuộc C3.

Chọn nghiệm 𝜁2𝑛 = 𝑒𝜋𝑖/3 của phương trình 𝑥3 + 1 = 0. Khi đó 𝜁𝑛 = 𝜁22𝑛 = 𝑒2𝜋𝑖/3.
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Biến đổi Fourier loại 1 lúc này là:

𝑓0 =
(︁
𝑒2𝜋𝑖/3

)︁0·0
· 1 +

(︁
𝑒2𝜋𝑖/3

)︁0·1
· 2 +

(︁
𝑒2𝜋𝑖/3

)︁0·2
· 3

= 1 + 2 + 3 = 6.

𝑓1 =
(︁
𝑒2𝜋𝑖/3

)︁1·0
· 1 +

(︁
𝑒2𝜋𝑖/3

)︁1·1
· 2 +

(︁
𝑒2𝜋𝑖/3

)︁1·2
· 3

= 1 + 2 · 𝑒2𝜋𝑖/3 + 3 · 3 · 𝑒4𝜋𝑖/3

𝑓2 =
(︁
𝑒2𝜋𝑖/3

)︁2·0
· 1 +

(︁
𝑒2𝜋𝑖/3

)︁2·1
· 2 +

(︁
𝑒2𝜋𝑖/3

)︁2·2
· 3

= 1 + 2 · 𝑒4𝜋𝑖/3 + 3 · 𝑒2𝜋𝑖/3.

Chú ý rằng 𝑒2𝜋𝑖 = 1 nên biểu thức cuối của 𝑓2 rút gọn còn 𝑒2𝜋𝑖/3 (8 ≡ 2 mod 3).

Tiếp theo ta biểu diễn 𝑒4𝜋𝑖/3 theo 𝑒2𝜋𝑖/3 như sau. Ta xét

𝑒2𝑧𝑖 = cos 2𝑧 + 𝑖 sin 2𝑧
= 2 cos2 𝑧 − 1 + 2𝑖 sin 𝑧 cos 𝑧
= 2 cos 𝑧(cos 𝑧 + 𝑖 sin 𝑧)− 1

= 2 cos 𝑧 · 𝑒𝑧𝑖 − 1.

Thay 𝑧 = 2𝜋/3 vào kết quả trên ta được

𝑒4𝜋𝑖/3 = 2 cos 2𝜋
3
· 𝑒2𝜋𝑖/3 − 1 = −𝑒2𝜋𝑖/3 − 1.

Như vậy kết quả của biến đổi Fourier rời rạc bên trên là

(𝑓0, 𝑓1, 𝑓2) = (6,−𝑒2𝜋𝑖/3 − 2, 𝑒2𝜋𝑖/3 − 1).

Ở ví dụ trên chúng ta tính biến đổi Fourier cho vector có độ dài không phải lũy thừa của 2. Sau đây chúng
ta sẽ xem xét một ví dụ với vector có độ dài là lũy thừa của 2 và ở phần sau sẽ tối ưu tính toán với biến đổi
Fourier nhanh.

INFO-CIRCLE Example 15

Mình lấy ví dụ với vector (𝑓0, 𝑓1, 𝑓2, 𝑓3) = (1, 2, 3, 4) thuộc C4.

Chọn nghiệm 𝜁2𝑛 = 𝑒𝑖𝜋/4 của phương trình 𝑥4 + 1 = 0. Khi đó 𝜁𝑛 = 𝜁22𝑛 = 𝑒𝑖𝜋/2 = 𝑖.

Biến đổi Fourier loại 1 lúc này là:

𝑓0 = 1 · 1 + 2 · 1 + 3 · 1 + 4 · 1 = 10,

𝑓1 = 1 · 1 + 2 · 𝑖+ 3 · (−1) + 4 · (−𝑖) = −2− 2𝑖,

𝑓2 = 1 · 1 + 2 · (−1) + 3 · 1 + 4 · (−1) = −2,

𝑓3 = 1 · 1 + 2 · (−𝑖) + 3 · (−1) + 4 · 𝑖 = −2 + 2𝑖.

Đối với vector độ dài 𝑛 = 22 thì 𝑡 = 2, chúng ta cần 𝑛− 1 phép cộng và 𝑛 phép nhân với lũy thừa của 𝜁𝑛 để
tính mỗi 𝑓𝑖, với 𝑖 = 0, 1, 2, 3. Tổng quát, ta cần tất cả (𝑛+ 𝑛− 1) · 𝑛 phép tính cộng và nhân với lũy thừa
của 𝜁𝑛. Độ phức tạp để tính biến đổi Fourier rời rạc là 𝑂(𝑛2).
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INFO-CIRCLE Remark 8

Các phần tử 𝑓𝑖 là giá trị của đa thức 𝐹 (𝑥) =
𝑛−1∑︀
𝑗=0

𝑓𝑗𝑥
𝑗 ∈ 𝑅[𝑥] tại điểm 𝑥 = 𝜁𝑖𝑛, các phần tử 𝑓𝑖 là giá trị

của đa thức 𝐹 (𝑥) tại 𝑥 = 𝜁𝑖2𝑛 khi 𝑖 lẻ.

INFO-CIRCLE Lemma 2

Ta có biểu diễn ngược như sau:

𝑓𝑖 = 𝑛−1
𝑛−1∑︁
𝑗=0

𝑓𝑗𝜁
−𝑖𝑗
𝑛 , (2.10)

𝑓𝑖 = 𝑛−1
∑︁

16𝑗62𝑛−1
𝑗 lẻ

𝑓𝑗𝜁
−𝑖𝑗
2𝑛 ,

(2.11)

với 𝑛−1 = (2−1)𝑡 ∈ 𝑅.
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INFO-CIRCLE Chứng minh

Đặt 𝑘 ∈ Z. Khi đó 𝜁−𝑘
2𝑛 = 𝜁2𝑛𝑟−𝑘

2𝑛 với 𝑟 ∈ Z, 2𝑛𝑟 − 𝑘 > 0.

Ngoài ra, vì order của phần tử 𝜁𝑛 trong phép nhân là 𝑛 nên ta có:
𝑛−1∑︁
𝑗=0

𝜁𝑙𝑗𝑛 = 𝑛 khi 𝑙 ≡ 0 (mod 𝑛), (2.12)

𝑛−1∑︁
𝑗=0

𝜁𝑙𝑗𝑛 = 0 khi 𝑙 ̸≡ 0 (mod 𝑛). (2.13)

Phương trình (2.10) thỏa mãn vì:

𝑛−1∑︁
𝑗=0

𝑓𝑗𝜁
−𝑖𝑗
𝑛 =

𝑛−1∑︁
𝑗=0

𝑛−1∑︁
𝑘=0

𝑓𝑘𝜁
𝑗𝑘
𝑛 𝜁−𝑖𝑗

𝑛 =

𝑛−1∑︁
𝑘=0

𝑓𝑘

𝑛−1∑︁
𝑗=0

𝜁(𝑘−𝑖)𝑗
𝑛 = 𝑛𝑓𝑖

theo (2.12) và (2.13), cụ thể là khi 𝑘 − 𝑖 ≡ 0 mod 𝑛.

Đẳng thức (2.11) có được từ

∑︁
16𝑗62𝑛−1

𝑗 lẻ

𝑓𝑗𝜁
−𝑖𝑗
2𝑛 =

𝑛−1∑︁
𝑘=0

𝑓2𝑘+1𝜁
−𝑖(2𝑘+1)
2𝑛

=

𝑛−1∑︁
𝑘=0

𝑛−1∑︁
𝑙=0

𝑓𝑙𝜁
𝑙(2𝑘+1)
2𝑛 𝜁

−𝑖(2𝑘+1)
2𝑛

=

𝑛−1∑︁
𝑙=0

𝑓𝑙𝜁
𝑙−𝑖
2𝑛

𝑛−1∑︁
𝑘=0

𝜁(𝑙−𝑖)𝑘
𝑛 .

Từ (2.12) và (2.13) suy ra được đẳng thức (2.11), cũng là khi 𝑙 − 𝑖 ≡ 0 mod 𝑛.

Việc tính toán biến đổi Fourier rời rạc bằng (2.10) và (2.11) cần 𝑂(𝑛2) phép tính cộng và nhân trong vành 𝑅.
Phần sau sẽ trình bày phương pháp tính biến đổi Fourier rời rạc với độ phức tạp 𝑂(𝑛 log𝑛). Phương pháp này
được gọi là biến đổi Fourier nhanh (hay Fast Fourier Transform, FFT, быстрое преобразование
Фурье).

Biến đổi Fourier nhanh

INFO-CIRCLE Theorem 6

Biến đổi Fourier rời rạc (𝑓0, . . . , 𝑓𝑛−1) có thể được tính bằng:

• 𝑛𝑡 phép cộng trong vành 𝑅;

• 𝑛𝑡 phép nhân với lũy thừa của 𝜁𝑛 trong vành 𝑅.

Biến đổi Fourier rời rạc (𝑓1, . . . , 𝑓2𝑛−1) có thể được tính bằng:

• 𝑛𝑡 phép cộng trong vành 𝑅;

• 𝑛𝑡 phép nhân với lũy thừa của 𝜁2𝑛 trong vành 𝑅.

Nếu có (𝑓𝑖) và (𝑓𝑖) thì có thể tính được vector (𝑓0, . . . , 𝑓𝑛−1) bằng:
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• 𝑛𝑡 phép cộng trong vành 𝑅;

• 𝑛𝑡 phép nhân với lũy thừa của 𝜁2𝑛 trong vành 𝑅;

• 𝑛 phép nhân với 𝑛−1 ∈ 𝑅.

INFO-CIRCLE Chứng minh

Đặt

𝐹 (𝑥) =

𝑛−1∑︁
𝑗=0

𝑓𝑖𝑥
𝑖 =

∑︁
06𝑗6𝑛−1

𝑗 chẵn

𝑓𝑗𝑥
𝑗 +

∑︁
06𝑗6𝑛−1

𝑗 lẻ

𝑓𝑗𝑥
𝑗

= 𝐹0(𝑥
2) + 𝑥𝐹1(𝑥

2),

với deg𝐹0(𝑥), deg𝐹1(𝑥) <
𝑛

2
= 2𝑡−1.

Khi đó

𝐹 (𝜁𝑖𝑛) = 𝐹0(𝜁
2𝑖
𝑛 ) + 𝜁𝑖𝑛𝐹1(𝜁

2𝑖
𝑛 ), (2.14)

với 𝑖 = 0, . . . , 𝑛− 1.

Đặt 𝜁𝑛/2 = 𝜁2𝑛. Khi đó {︀
𝜁2𝑖𝑛 : 0 6 𝑖 6 𝑛− 1

}︀
=
{︁
𝜁𝑖𝑛/2 : 0 6 𝑖 6

𝑛

2
− 1
}︁
.

Dựa trên quy nạp ta sẽ chứng minh biến đổi Fourier rời rạc loại 1, tức là tính (𝐹 (𝜁0𝑛), . . . , 𝐹 (𝜁
𝑛−1
𝑛 )), theo

công thức (2.14) bằng 𝑛 phép cộng trong vành 𝑅 và 𝑛 phép tính nhân với lũy thừa của 𝜁𝑛 trong vành 𝑅
nếu ta đã biết các giá trị 𝐹0(𝜁

𝑖
𝑛/2) và 𝐹1(𝜁

𝑖
𝑛/2) với 𝑖 = 0, . . . ,

𝑛

2
− 1.

Khi 𝑡 = 1 và 𝑛 = 2 = 2𝑡 (bước cơ sở quy nạp) thì để tính (𝑓0, 𝑓1) ta cần tìm 𝐹0 + 𝜁𝑖2𝐹1 với 𝐹0 và 𝐹1 là
các phần tử thuộc vành 𝑅, 𝑖 = 0, 1. Như vậy, với 𝑛 = 2 thì cần:

• 2 = 𝑛𝑡 phép nhân với lũy thừa của 𝜁𝑛 = 𝜁2 trong vành 𝑅, ứng với 𝜁𝑖2𝐹1 khi 𝑖 = 0, 1;

• 2 = 𝑛𝑡 phép cộng trong vành 𝑅, ứng với 𝐹0+𝜁
𝑖
2𝐹1.

Giả sử với mọi 𝑗 < 𝑡, để tính biến đổi Fourier rời rạc loại 1 trên vector 2𝑗 chiều ta cần:

• 2𝑗 · 𝑗 phép nhân với lũy thừa của 𝜁2𝑗 = (𝜁𝑛)
2𝑡−𝑗

trong vành 𝑅;

• 2𝑗 · 𝑗 phép cộng trong vành 𝑅.

Khi đó, nếu 𝑗 = 𝑡 thì việc tính (𝑓0, . . . , 𝑓𝑛−1) theo công thức (2.14) bao gồm tính 𝐹0(𝜁
𝑖
𝑛/2) và 𝐹1(𝜁

𝑖
𝑛/2)

với 𝑖 = 0, . . . , 𝑛− 1. Nói cách khác là tính biến đổi Fourier cho vector độ dài 𝑛/2 gồm các hệ số 𝐹0(𝑥) và
𝐹1(𝑥) cộng thêm:

• 𝑛 phép cộng trong vành 𝑅;

• 𝑛 phép nhân với lũy thừa của 𝜁𝑛 trong vành 𝑅.

Khi đó, theo giả thiết quy nạp, việc tính vector (𝑓0, . . . , 𝑓𝑛−1) cần không nhiều hơn:

• 𝑛 phép cộng trong vành 𝑅;

• cộng với 𝑛 phép nhân trong vành 𝑅;
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• cộng với 2 · 2𝑡−1 · (𝑡− 1) phép nhân với lũy thừa của 𝜁𝑛 trong vành 𝑅.

Như vậy cần tổng cộng 𝑛 + 𝑛(𝑡 − 1) = 𝑛𝑡 phép cộng trong vành 𝑅 và 𝑛 + 𝑛(𝑡 − 1) = 𝑛𝑡 phép nhân với
lũy thừa của 𝜁𝑛 trong vành 𝑅. Như vậy mệnh đề đầu tiên của định lý được chứng minh.

Mệnh đề thứ hai chứng minh tương tự, ta thay 𝜁𝑛 thành 𝜁2𝑛.

Mệnh đề thứ ba suy ra từ hai mệnh đề trên và Bổ đề 2.

INFO-CIRCLE Example 16

Xét vector (𝑓0, 𝑓1, 𝑓2, 𝑓3) = (1, 2, 3, 4) thuộc C4 như bên trên.

Ở đây, 𝑛 = 4 = 22 và 𝑡 = 2.

Chọn nghiệm 𝜁8 = 𝑒𝑖𝜋/4 của phương trình 𝑥4 + 1 = 0. Khi đó 𝜁4 = 𝜁28 = 𝑒𝑖𝜋/2 = 𝑖.

Ta chia vector thành hai phần:

• vector con gồm các phần tử ở vị trí chẵn là (𝑓0, 𝑓2) = (1, 3);

• vector con gồm các phần tử ở vị trí lẻ là (𝑓1, 𝑓3) = (2, 4).

Đặt 𝜁2 = 𝜁24 = −1.

Khi đó, với vector con (𝑓0, 𝑓2) = (1, 3) ta tính:

𝐹0 = 𝑓0 + 𝜁02 · 𝑓2 = 1 + 1 · 3 = 4,

𝐹1 = 𝑓0 + 𝜁12 · 𝑓2 = 1 + (−1) · 3 = −2.

Tương tự, với vector con (𝑓1, 𝑓3) = (2, 4) ta tính

𝐹2 = 𝑓1 + 𝜁02 · 𝑓3 = 2 + 1 · 4 = 6,

𝐹3 = 𝑓1 + 𝜁12 · 𝑓3 = 2 + (−1) · 4 = −2.

Kết hợp hai vector (𝐹0, 𝐹2) và (𝐹3, 𝐹4) ta tính được biến đổi Fourier nhanh.

𝑓0 = 𝐹0 + 𝜁04 · 𝐹2 = 4 + 1 · 6 = 10,

𝑓2 = 𝐹0 + 𝜁24 · 𝐹2 = 4 + (−1) · 6 = −2,

𝑓1 = 𝐹1 + 𝜁14 · 𝐹3 = −2 + 𝑖 · (−2) = −2− 2𝑖,

𝑓3 = 𝐹1 + 𝜁34 · 𝐹3 = −2 + (−𝑖) · (−2) = −2 + 2𝑖.

Ở đây, hệ số 𝑓𝑖 ở vị trí lẻ sẽ được tính nhờ các 𝐹𝑖 ở vị trí lẻ cùng với lũy thừa lẻ của 𝜁𝑛, và ngược lại, hệ
số 𝑓𝑖 ở vị trí chẵn sẽ được tính nhờ các 𝐹𝑖 ở vị trí chẵn cùng với lũy thừa chẵn của 𝜁𝑛.

Như vậy kết quả là

(𝑓0, 𝑓1, 𝑓2, 𝑓3) = (10,−2− 2𝑖,−2,−2 + 2𝑖),

giống với ví dụ ở trên. Tuy nhiên chúng ta chỉ dùng 4 phép cộng và 4 phép nhân với 𝜁2 để tính các 𝐹𝑖,
cộng thêm 4 phép cộng và 4 phép nhân với 𝜁4 để tính các 𝑓𝑖. Như vậy tổng cộng ta dùng 8 = 𝑛𝑡 phép
cộng, và 8 = 𝑛𝑡 phép nhân cho các lũy thừa của 𝜁4 (vì 𝜁2 cũng là lũy thừa của 𝜁4).
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Biến đổi Fourier và phép nhân đa thức

INFO-CIRCLE Lemma 3

Một phép nhân trong vành 𝑅[𝑥]/(𝑥2𝑡 + 1) có thể được tính bởi:

• 𝑛 = 2𝑡 phép nhân trong vành 𝑅;

• 3𝑛𝑡 phép cộng trong vành 𝑅;

• 3𝑛𝑡 phép nhân với lũy thừa của 𝜁2𝑛 trong vành 𝑅;

• 𝑛 phép nhân với 𝑛−1 trong vành 𝑅.

INFO-CIRCLE Remark 9

Bổ đề không áp dụng khi 𝑅 = Z và 𝑅 = Q vì hai vành này không có phần tử 𝜁2𝑛 (căn bậc 𝑛 của đơn vị).

Sau đây ta chứng minh Bổ đề 3.

INFO-CIRCLE Chứng minh

Đặt
𝑛−1∑︀
𝑖=0

𝑓𝑖𝑥
𝑖 và

𝑛−1∑︀
𝑖=0

𝑔𝑖𝑥
𝑖 với 𝐹,𝐺 ∈ 𝑅[𝑥] và là biểu diễn của phần tử trong lớp nhân tử 𝑅[𝑥]/(𝑥2𝑡 + 1).

Đặt 𝐻 =
𝑛−1∑︀
𝑖=0

ℎ𝑖𝑥
𝑖 ∈ 𝑅[𝑥] sao cho 𝐹 ·𝐺 ≡ 𝐻 (mod 𝑥𝑛 + 1). Nói cách khác 𝐻 là tích 𝐹 ·𝐺 trong vành và

ta sẽ tính 𝐻.

Biến đổi Fourier loại 2 cho vector (𝑓0, . . . , 𝑓𝑛−1) và (𝑔0, . . . , 𝑔𝑛−1) cho ta đẳng thức:

𝑓𝑖 · 𝑔𝑖 = 𝐹 (𝜁𝑖2𝑛) ·𝐺(𝜁𝑖2𝑛) = 𝐻(𝜁𝑖2𝑛) = ℎ̌𝑖

với 𝑖 lẻ, 1 6 𝑖 6 2𝑛− 1, vì 𝜁𝑛2𝑛 + 1 = 0.

Như vậy nếu ta biết tất cả 𝑓𝑖 và 𝑔𝑖 thì có thể tính mọi ℎ̌𝑖 với 𝑛 phép nhân trong vành 𝑅.

Theo Định lý 6, các phần tử 𝑓𝑖 và 𝑔𝑖 có thể tính với 2𝑡𝑛 phép cộng trong vành 𝑅 và 2𝑡𝑛 phép nhân với
lũy thừa của 𝜁2𝑛 trong vành 𝑅.

Cũng theo Định lý 6, các phần tử ℎ𝑖 có thể tính, với điều kiện đã biết ℎ̌𝑖, với

• 𝑡𝑛 phép cộng trong vành 𝑅;

• 𝑡𝑛 phép nhân với lũy thừa của 𝜁2𝑛 trong vành 𝑅

• 𝑛 phép nhân với phần tử 𝑛−1 trong vành 𝑅.

Ta có điều phải chứng minh.

INFO-CIRCLE Corollary 1

Đặt 𝑇 là vành giao hoán với đơn vị, 2−1 ∈ 𝑇 , 𝜁4𝑛 = 𝜁2𝑡+2 ∈ 𝑇 là nghiệm phương trình 𝑥2𝑛 + 1 = 0. Nếu
𝐹 (𝑥), 𝐺(𝑥) ∈ 𝑇 [𝑥], deg𝐹 (𝑥) < 𝑛, deg𝐺(𝑥) < 𝑛 thì tích 𝐹 (𝑥) ·𝐺(𝑥) có thể tính với:
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• 2𝑛 phép nhân trong 𝑇 ;

• 6𝑛(𝑡+ 1) phép cộng trong 𝑇 ;

• 6𝑛(𝑡+ 1) phép nhân với lũy thừa của 𝜁4𝑛 trong 𝑇 ;

• 2𝑛 phép nhân với (2−1)𝑡+1 trong 𝑇 .

INFO-CIRCLE Chứng minh

Vì chặn trên của bậc đa thức 𝐹 (𝑥) và 𝐺(𝑥) nên bậc của 𝐹 (𝑥) ·𝐺(𝑥) sẽ nhỏ hơn 2𝑛. Khi chia 𝐹 (𝑥) ·𝐺(𝑥)
cho 22𝑛 + 1 ta thu được chính đa thức 𝐹 (𝑥) · 𝐺(𝑥). Khi đó tích 𝐹 (𝑥) · 𝐺(𝑥) trong 𝑅[𝑥] có thể tính với
một phép nhân trong 𝑅[𝑥]/(𝑥2𝑛 +1). Từ Bổ đề 1, ta thay 𝑛 thành 2𝑛 và 𝑡 thay thành 𝑡+1, kết hợp Bổ
đề 3 ta có điều phải chứng minh.

Đặt 𝑇 là vành giao hoán với đơn vị 1 và có phần tử 2−1.

Ta hiểu phép cộng trong 𝑇 là cả phép cộng lẫn phép trừ (cộng cho số đối). Ta cần bổ đề cơ sở sau.

INFO-CIRCLE Lemma 4

Nếu 𝑡 > 2 thì một phép nhân trong vành 𝑇 [𝑥]/(𝑥2𝑡 + 1) có thể thực hiện với:

• 𝑂(2𝑡 · 𝑡) phép nhân trong 𝑇 ;

• 𝑂(2𝑡 · 𝑡 · log 𝑡) phép cộng trong 𝑇 .

INFO-CIRCLE Remark 10

Kết quả trên có thể áp dụng với vành số nguyên Z nếu ta xem 𝑇 là vành như sau:

𝑇 =
{︁𝑚
2𝑘

: 𝑚 ∈ Z, 𝑘 ∈ Z>0

}︁
, 𝑇 ⊇ Z.

Trên máy tính, mỗi phần tử của 𝑇 được lưu chính xác, ví dụ dưới dạng cặp (𝑚, 𝑘).

Ta sẽ xem xét định lí quan trọng tiếp theo rồi quay lại chứng minh Bổ đề 4.

INFO-CIRCLE Theorem 7

Phép nhân hai đa thức có bậc không quá 𝑛 trong vành 𝑇 [𝑥], với 𝑛 > 3, được tính với 𝑀(𝑛) = 𝑂(𝑛 log𝑛)
phép nhân trong 𝑇 và 𝐴(𝑛) = 𝑂(𝑛 log𝑛 log log𝑛) phép cộng trong 𝑇 .

INFO-CIRCLE Chứng minh

Gọi 𝑡 ∈ N là số sao cho 2𝑡−1 6 2𝑛 < 2𝑡. Dễ thấy 𝑡 > 2 và 2𝑛 < 2𝑡 < 4𝑛.

Do đó phép nhân hai đa thức có bậc không quá 𝑛 theo modulo 𝑥2𝑡 + 1 là phép nhân thông thường, kết
quả không thay đổi sau phép modulo.
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Theo Bổ đề 4 thì ta có thể tính tích với 𝑀(𝑛) = 𝑂(2𝑡 · 𝑡) = 𝑂(𝑛 log𝑛) phép nhân trong 𝑇 và 𝐴(𝑛) =
𝑂(2𝑡 · 𝑡 log 𝑡) = 𝑂(𝑛 · log𝑛 · log log𝑛) phép cộng trong 𝑇 .

Tiếp theo chúng ta quay lại chứng minh Bổ đề 4.

INFO-CIRCLE Chứng minh

Đặt 𝐹 = 𝐹 (𝑥) và 𝐺 = 𝐺(𝑥) là các đa thức bậc không quá 2𝑡 − 1. Đặt

𝐻 = 𝐻(𝑥) =

2𝑡−1∑︁
𝑖=0

𝐻𝑖𝑥
𝑖

với 𝐻 = 𝐹𝐺 (mod 𝑥2𝑡 + 1). Ta cần tính các hệ số 𝐻0, 𝐻1, ..., 𝐻2𝑡−1 theo các hệ số của 𝐹 và 𝐺.

Đặt 𝑘 là tham số tự nhiên với 1 6 𝑘 < 𝑡 mà ta sẽ chọn ở dưới.

Ta biểu diễn 𝐹 và 𝐺 dưới dạng

𝐹 =

2𝑡−𝑘−1∑︁
𝑖=0

𝑓𝑖(𝑥)𝑥
𝑖·2𝑘 , 𝐺 =

2𝑡−𝑘−1∑︁
𝑖=0

𝑔𝑖(𝑥)𝑥
𝑖·2𝑘

với

• 𝑓𝑖(𝑥), 𝑔𝑖(𝑥) ∈ 𝑇 [𝑥];

• deg 𝑓𝑖(𝑥) 6 2𝑘 − 1;

• deg 𝑔𝑖(𝑥) 6 2𝑘 − 1.

Thuật toán tính 𝐹 ·𝐺 được thực hiện theo các bước sau.

Bước 1. Nhân
2𝑡−𝑘−1∑︀
𝑖=0

𝑓𝑖(𝑥)𝑌𝑖 với
2𝑡−𝑘−1∑︀
𝑖=0

𝑔𝑖(𝑥)𝑌𝑖 trên vành 𝑇 [𝑥, 𝑌 ]/(𝑌 2𝑡−𝑘−1). Kết quả được biểu diễn

bởi ̃︀𝐻 =
2𝑡−𝑘−1∑︀
𝑖=0

ℎ𝑖(𝑥)𝑌
𝑖.

Bước 2. Thay 𝑌 = 𝑥2
𝑘 vào ̃︀𝐻 vào tính modulo 𝑥2𝑡 + 1 = 𝑌 2𝑡−𝑘

+ 1. Khi đó

𝐹 (𝑥) ·𝐺(𝑥) =
2𝑡−𝑘−1∑︁

𝑙=0

𝑓𝑙(𝑥)𝑥
2𝑘𝑙 ·

2𝑡−𝑘−1∑︁
𝑗=0

𝑔𝑗(𝑥)𝑥
2𝑘𝑗 ≡

2𝑡−𝑘−1∑︁
𝑖=0

ℎ𝑖(𝑥)𝑥
2𝑘𝑖 (mod (𝑥2

𝑘

)2
𝑡−𝑘

+ 1).

Từ bước 2 ta sẽ tính được 𝐻(𝑥) =
2𝑡−1∑︀
𝑖=0

𝐻𝑖𝑥
𝑖. Ta cần hiểu tại sao ở bước 2 dãy {ℎ𝑖(𝑥)} theo modulo

𝑥2
𝑡

+ 1 tìm được hệ số 𝐻𝑖 của 𝐻(𝑥).

Ở bước 1 ta nhân
2𝑡−𝑘−1∑︁

𝑙=0

𝑓𝑙(𝑥)𝑌
𝑙 ·

2𝑡−𝑘−1∑︁
𝑗=0

𝑔𝑗(𝑥)𝑌
𝑗 ≡

2𝑡−𝑘−1∑︁
𝑖=0

ℎ𝑖(𝑥)𝑌
𝑖 (mod 𝑌 2𝑡−𝑘

+ 1).

Ở đây 𝑙 + 𝑗 6 2𝑡−𝑘+1 − 2 < 2𝑡−𝑘+1 − 1. Khi đó có hai trường hợp có thể xảy ra.

Trường hợp 1. Nếu 0 6 𝑙 + 𝑗 6 2𝑡−𝑘 − 1 thì

𝑌 𝑙 · 𝑌𝑗 ≡ 𝑌 𝑙+𝑗 (mod 𝑌 2𝑡−𝑘

+ 1).
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Trường hợp 2. Nếu 2𝑡−𝑘 6 𝑙 + 𝑗 6 2 · 2𝑡−𝑘 − 2 thì

𝑌 𝑙+𝑗 ≡ −𝑌 𝑖 (mod 𝑌 2𝑡−𝑘

+ 1),

với 𝑖 = 𝑙 + 𝑗 − 2𝑡−𝑘.

Khi đó

ℎ𝑖(𝑥) =
∑︁
𝑙,𝑗

𝑗+𝑗=𝑖

𝑓𝑙(𝑥)𝑔𝑗(𝑥)−
∑︁
𝑙,𝑗

𝑙+𝑗=𝑖+2𝑡−𝑘

𝑓𝑙(𝑥)𝑔𝑗(𝑥),

với 𝑖 = 0, . . . , 2𝑡−𝑘 − 1.

Từ đây suy ra

degℎ𝑖(𝑥) 6 deg 𝑓𝑙(𝑥) = deg 𝑔𝑗(𝑥) 6 2𝑘+1 − 2 < 2𝑘+1 − 1.

Vì 𝑘 < 𝑡 nên degℎ𝑖 < 2𝑡 − 1.

Bước 2 thực hiện không nhiều hơn 2𝑡 phép cộng trên 𝑇 vì nếu chúng ta đã biết các giá trị ℎ𝑖(𝑥) =
2𝑘+1−1∑︀
𝑗=0

ℎ𝑖𝑗𝑥
𝑗 thì khi thay 𝑌 = 𝑥2

𝑘 ta có biểu thức

2𝑡−𝑘−1∑︁
𝑖=0

2𝑘+1−1∑︁
𝑗=0

ℎ𝑖𝑗𝑥
𝑗+2𝑘𝑖 (mod 𝑥2

𝑡

+ 1).

Phép tính modulo 𝑥2𝑡 + 1 ta sẽ được các biểu thức với 𝑗 + 2𝑘𝑖 > 2𝑡.

Khi đó, với 𝑗+2𝑘𝑖 = 𝑟2𝑡+ 𝑙, 0 6 𝑙 < 2𝑡, nếu thay 𝑥𝑗+2𝑘𝑖 thành (−1)𝑟 ·𝑥𝑙 thì đại lượng (−1)𝑟 ·ℎ𝑖𝑗 sẽ được
thêm vào hệ số của 𝑥𝑙 (tức là thực hiện một phép cộng hoặc trừ). Các phép cộng như vậy sẽ không lớn
hơn số lượng số hạng, tức là không lớn hơn 2𝑡−𝑘 · 2𝑘+1 = 2𝑡+1.

Ở đây, khi 0 6 𝑖 6 2𝑡−𝑘+1 ta có bất đẳng thức

𝑗 + 2𝑘 · 𝑖 6 2𝑘+1 − 1 + 2𝑡−1 − 2𝑘 = 2𝑘 + 2𝑡−1 − 1 6 2𝑡 − 1

vì 𝑘 6 𝑡− 1. Với những số 𝑖 như vậy thì phép tính modulo là không cần thiết.

Lúc này còn các giá trị 𝑖 trong đoạn 2𝑡−𝑘−1 6 𝑖 6 2𝑡−𝑘 − 1, số lượng các giá trị này không nhiều hơn
2𝑡−𝑘−1. Khi đó, cặp (𝑖, 𝑗) ở bước 2 sẽ triệt tiêu theo modulo, và có không nhiều hơn 2𝑡−𝑘−1 · 2𝑘+1 = 2𝑡

cặp. Như vậy ta đã chứng minh được ở bước 2 thực hiện không nhiều hơn 2𝑡 phép cộng trong 𝑇 .

Bây giờ xét bước 1. Phép nhân ta không thực hiện trong vành 𝑇 [𝑥, 𝑌 ]/(𝑌 2𝑡−𝑘 − 1) mà trong vành
𝑅[𝑌 ]/(𝑌 2𝑡−𝑘 − 1) với 𝑅 = 𝑇 [𝑥]/(𝑥2

𝑘+1

+ 1).

Trong vành 𝑅 có phần tử 𝜁2𝑘+2 ≡ 𝑥 (mod 𝑥2𝑘+1

+ 1) là nghiệm phương trình 𝑋2𝑘+1

+ 1 = 0.

Chọn 𝑘 =

[︂
𝑡

2

]︂
> 1. Khi đó

𝑘 >
𝑡− 1

2
, 𝑘 6

𝑡

2
< 𝑡.

Vì 2𝑡−𝑘+1 6 2𝑘+2 nên trong 𝑅 có phần tử 𝜁2𝑡−𝑘+1 là một lũy thừa của phần tử 𝜁2𝑘+2 .

Một phép nhân cho lũy thừa của phần tử 𝜁2𝑡−𝑘+1 trong vành 𝑅 được thực hiện bởi 2𝑘+1 phép cộng trong
𝑇 .
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Vì 𝑥 ≡ 𝜁2𝑘+2 (mod 𝑥2𝑘+1

+ 1) nên

𝑅 =
{︁
𝑎0 + 𝑎1𝜁2𝑘+2 + · · ·+ 𝑎2𝑘+1𝜁2

𝑘+1−1
2𝑘+2 : 𝑎𝑖 ∈ 𝑇, 𝑖 = 0, 1, . . . , 2𝑘+1 − 1

}︁
.

Phép nhân với 𝜁𝑗
2𝑡−𝑘+1 = 𝜁𝑗

2𝑘+2 với đẳng thức 𝜁2𝑘+1

2𝑘+2 = −1 sẽ cho kết quả là hoán vị các hệ số 𝑎0, 𝑎1, ...,
𝑎2𝑘+1−1 và một số phần tử sẽ đổi dấu.

Ta dùng Bổ đề 3 để đánh giá độ phức tạp của một phép nhân trong vành 𝑅[𝑌 ]/(𝑌 2𝑡−𝑘

+ 1).

Ta cần thực hiện:

• 2𝑡−𝑘 phép nhân trong 𝑅;

• 3 · (𝑡− 𝑘) · 2𝑡−𝑘 phép cộng trong 𝑅 (ở đây có 3 · (𝑡− 𝑘) · 2𝑡−𝑘 · 2𝑘+1 phép cộng trong 𝑇 vì các phần
tử của vành 𝑅 được biểu diễn bởi đa thực bậc không quá 2𝑘+1 − 1 trong 𝑇 [𝑥]);

• 3 · (𝑡− 𝑘) · 2𝑡−𝑘 phép nhân với lũy thừa của 𝜁2𝑡−𝑘+1 ;

• 2𝑡−𝑘 phép nhân với (2−1)𝑡−𝑘 (lần nữa, cần 2𝑡−𝑘 · 2𝑘+1 = 2𝑡+1 phép nhân trong 𝑇 cho phần tử
(2−1)𝑡−𝑘).

Tổng cộng ta cần:

• 2𝑡−𝑘 phép nhân trong 𝑅;

• 6 · (𝑡− 𝑘) · 2𝑘+1 phép cộng trong 𝑇 ;

• 2𝑡+1 phép nhân cho (2−1)𝑡−𝑘 trong 𝑇 .

Ta tính thêm 2𝑡 phép cộng trong 𝑇 ở bước 2, đặt

𝑘(𝑡) = 𝑘 + 1 =

[︂
𝑡

2

]︂
+ 1 > 2. (2.15)

Khi đó, một phép nhân trong 𝑇 [𝑥]/(𝑥2
𝑘+1

+ 1) được thực hiện bởi 2𝑡−𝑘(𝑡)+1 phép nhân trong vành
𝑅 = 𝑇 [𝑥]/(𝑥2

𝑘(𝑡)

+ 1), cộng với không nhiều hơn 12 · 𝑡 · 2𝑡 phép cộng trong 𝑇 , cộng với 2𝑡+1 phép nhân
trong 𝑇 .

Khi 𝑡 > 3 thì 𝑘(𝑡) < 𝑡. Ta chuyển phép nhân ở trên trong vành 𝑇 [𝑥]/(𝑥2𝑡 + 1) thành phép nhân trong
vành 𝑇 [𝑥]/(𝑥2𝑘(𝑡)

+ 1), và đi xuống tiếp cho tới khi gặp vành 𝑇 [𝑥]/(𝑥4 + 1). Ở bước cuối này phép nhân
bất kì đều cần 𝑂(1) phép cộng và phép nhân trong 𝑇 .

Ta kí hiệu 𝑀1(2
𝑗) và 𝐴1(2

𝑗) là số lượng phép nhân và cộng trong 𝑇 , tương ứng với số lượng cần thiết để
thực hiện phép nhân ở trên trong vành 𝑇 [𝑥]/(𝑥2𝑗 + 1).

Khi đó, với 𝑡 > 3 ta có bất đẳng thức

𝑀1(2
𝑡) 6 2𝑡−𝑘(𝑡)+1 ·𝑀1(2

𝑘(𝑡)) + 2𝑡+1,

𝐴1(2
𝑡) 6 2𝑡−𝑘(𝑡)+1 ·𝐴1(2

𝑘(𝑡)) + 12 · 𝑡 · 2𝑡,

với 𝑘(𝑡) định nghĩa ở (2.15).

Đặt 𝛼(𝑗) = 𝐴1(2
𝑗)

2𝑗
với 𝑗 = 2, 3, . . .

Khi đó 𝛼(𝑗) 6 2𝛼(𝑘(𝑡)) + 12𝑡.

Giả sử ta có bất đẳng thức sau với 2 6 𝑗 6 𝑡:

𝛼(𝑗) 6 𝑐 · 𝑗 log 𝑗
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với hằng số tuyệt đối 𝑐 nào đó.

Khi đó ta có bất đẳng thức

𝛼(𝑡) 6 2𝑐 · 𝑘(𝑡) · log(𝑘(𝑡)) + 12𝑡 6 2𝑐

(︂
𝑡

2
+ 1

)︂
log
(︂
𝑡

2
+ 1

)︂
+ 12𝑡 < 𝑐 · 𝑡 log 𝑡

khi hằng số 𝑐 đủ lớn.

Như vậy

𝐴1(2
𝑡) 6 2𝑡 · 𝑐 · 𝑡 log 𝑡 = 𝑂(2𝑡 · 𝑡 log 𝑡)

và ta đã chứng minh được ý thứ hai của Bổ đề 4 về phép cộng.

Bây giờ, lại đặt 𝛽(𝑗) = 𝑀1(2
𝑗)

2𝑗
với 𝑗 = 2, 3, . . .

Ta có bất đẳng thức

𝛽(𝑡) 6 2𝛽(𝑘(𝑡)) + 2.

Từ đây suy ra

𝛽(𝑡) 6 2(2𝛽(𝑘(𝑘(𝑡))) + 2) + 2 = 22𝛽(𝑘(𝑘(𝑡))) + 22 + 2,

và tương tự như vậy.

Vì 𝑘(𝑡) 6 𝑡

2
+ 1 nên

𝑘(𝑘(𝑡)) 6
1

2

(︂
𝑡

2
+ 1

)︂
+ 1 =

𝑡

22
+ 1 +

1

2
; . . . ; 𝑘(𝑘(. . . (𝑘(𝑡)) . . .)) <

𝑡

2𝑗
+ 2

với mọi 𝑗 > 1. Vì vậy khi 𝑗 = [log2 𝑡] ta có bất đẳng thức

𝛽(𝑡) 6 2𝑗 · 𝑐1 + 2 + 22 + · · ·+ 2𝑗 < 2𝑗 · 𝑐1 + 2𝑗+1 6 𝑐2𝑡

với 𝑐1, 𝑐2 là các hằng số tuyệt đối.

Như vậy 𝑀1(𝑡) = 𝑂(𝑡 · 2𝑡) và ta đã chứng minh xong ý đầu của Bổ đề 4.

Ví dụ nhân đa thức với Sympy

Để ví dụ, mình sẽ viết chương trình Python nhân hai đa thức bậc 4 trên Q trong modulo 𝑥4 + 1.

Thuật toán ở các chứng minh trên là thuật toán Cooley-Tukey FFT.

Đầu tiên mình sẽ viết hàm đảo ngược bit (dùng cho radix-2 decimal-in-time).

def _reverse_bit(n: int, nbits: int) -> int:
m = 0
for _ in range(nbits):

m = (m << 1) + (n & 1)
n = n >> 1

return m

(continues on next page)
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(continued from previous page)

assert _reverse_bit(3, 3) == 6
assert _reverse_bit(1, 3) == 4

FFT là thuật toán chia để trị -- để tính toán FFT cho vector độ dài 𝑛 = 2𝑡, ta sẽ tính trên hai vector độ dài
𝑛/2 và kết hợp kết quả lại.

from sympy import pi, sin, cos, I, simplify
from sympy.codegen.cfunctions import log2

def _mult_W(v: list[int]) -> list[int]:
n = len(v)
w = cos(2 * pi / n) + I * sin(2 * pi / n)
u = [0] * n
for i in range(0, n // 2):

u[i] = v[i] + w**i * v[i + n // 2]
u[i + n // 2] = v[i] + w**(i + n // 2) * v[i + n // 2]

return u

def _fft(v: list[int]) -> list[int]:
n = len(v)

if n == 2:
return _mult_W(v)

else:
u = _fft(v[:n // 2]) + _fft(v[n // 2:])
return _mult_W(u)

def fft(v: list[int]) -> list[int]:
n = len(v)
b = int(log2(n))
idx = [_reverse_bit(i, b) for i in range(n)]
v = [v[idx[i]] for i in range(n)]

return list(map(simplify, _fft(v)))

def _mult_iW(v: list[int]) -> list[int]:
n = len(v)
w = cos(-2 * pi / n) + I * sin(-2 * pi / n)
u = [0] * n
for i in range(0, n // 2):

u[i] = v[i] + w**i * v[i + n // 2]
u[i + n // 2] = v[i] + w**(i + n // 2) * v[i + n // 2]

return u

def _ifft(v: list[int]) -> list[int]:
n = len(v)
if n == 2:

return _mult_iW(v)
else:

u = _ifft(v[:n // 2]) + _ifft(v[n // 2:])
return _mult_iW(u)

(continues on next page)

2.8. Toán rời rạc 247



Math Book

(continued from previous page)

def ifft(v: list[int]) -> list[int]:
n = len(v)
b = int(log2(n))
idx = [_reverse_bit(i, b) for i in range(n)]
v = [v[idx[i]] for i in range(n)]

return [simplify(i / n) for i in _ifft(v)]

Tiếp theo mình kiểm tra các hàm đã viết bên trên.

assert fft([2, 3, 0, 0]) == [5, 2 + 3*I, -1, 2 - 3*I]
assert ifft([5, 2 + 3*I, -1, 2 - 3*I]) == [2, 3, 0, 0]

import random
v = [random.randint(-4, 4) for _ in range(8)]
assert ifft(fft(v)) == v, fft(v)

Ví dụ, để nhân hai đa thức

𝑎(𝑥) = 1 + 2𝑥− 𝑥2 + 3𝑥3,

𝑏(𝑥) = −1− 4𝑥+ 3𝑥2 − 2𝑥3,

trong modulo 𝑥4 + 1, đầu tiên mình viết hệ số của mỗi đa thức thành vector theo số mũ tăng dần, như vậy

𝑎 = (1, 2,−1, 3), 𝑏 = (−1,−4, 3,−2).

Tiếp theo, mình sẽ thêm vào sau các vector 𝑎 và 𝑏 các số 0 để đạt độ dài là lũy thừa của 2 nhưng lớn hơn
bậc của modulo. Ở đây modulo là 𝑥4 + 1 nên mình sẽ thêm các số 0 để đạt độ dài 4 · 2 = 8.

𝑎′ = (1, 2,−1, 3, 0, 0, 0, 0), 𝑏′ = (−1, 4, 3,−2, 0, 0, 0, 0).

Tiếp theo, mình áp dụng FFT cho hai vector 𝑎′ và 𝑏′.

a = [1, 2, -1, 3, 0, 0, 0, 0]
b = [-1, -4, 3, -2, 0, 0, 0, 0]

fa = fft(a)
fb = fft(b)

Đặt

𝑓𝑎 = FFT(𝑎′) = (𝑎0, 𝑎1, . . . , 𝑎7),

𝑓𝑏 = FFT(𝑏′) = (𝑏0, 𝑏1, . . . , 𝑏7).

Khi đó ta tính vector 𝑓𝑐 theo là tích theo cặp của 𝑓𝑎 và 𝑓𝑏, nghĩa là

𝑓𝑐 = (𝑐0, 𝑐1, . . . , 𝑐7), 𝑐𝑖 = 𝑎𝑖 · 𝑏𝑖.

Tiếp theo, ta tính 𝑐′ là biến đổi Fourier rời rạc ngược của 𝑓𝑐:

𝑐′ = FFT−1(𝑓𝑐) = (𝐶0, 𝐶1, . . . , 𝐶7).

Khi đó, ta tính vector 𝑐 độ dài 4 theo công thức

𝑐 = (𝐶𝑖 − 𝐶𝑖+4)
3
𝑖=0.
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fc = [i * j for i, j in zip(fa, fb)]
fc = list(map(simplify, ifft(fc)))
c = [fc[i] - fc[i + 4] for i in range(4)]
print(c)

Kết quả là vector (18,−17, 2, 5).

Kiểm tra kết quả bằng tay, mình có

𝑎(𝑥) · 𝑏(𝑥) = (1 + 2𝑥− 𝑥2 + 3𝑥3) · (−1− 4𝑥+ 3𝑥2 − 2𝑥3)

= −1− 4𝑥+ 3𝑥2 − 2𝑥3

− 2𝑥− 8𝑥2 + 6𝑥3 − 4𝑥4

+ 𝑥2 + 4𝑥3 − 3𝑥4 + 2𝑥5

− 3𝑥3 − 12𝑥4 + 9𝑥5 − 6𝑥6

= −1− 6𝑥− 4𝑥2 + 5𝑥3 − 19𝑥4 + 11𝑥5 − 6𝑥6.

Trong modulo 𝑥4 + 1 ta có thể thay thế 𝑥4 thành −1, như vậy kết quả trên tương đương

𝑎(𝑥) · 𝑏(𝑥) = −1− 6𝑥− 4𝑥2 + 5𝑥3 − 19𝑥4 + 11𝑥5 − 6𝑥6

= −1− 6𝑥− 4𝑥2 + 5𝑥3 − 19 · (−1) + 11𝑥 · (−1)− 6𝑥2 · (−1)
= 18− 17𝑥+ 2𝑥2 + 5𝑥3 mod 𝑥4 + 1.

Nếu viết hệ số của kết quả dưới dạng vector theo số mũ tăng dần thì mình có (18,−17, 2, 5), bằng đúng
phép tính với thuật toán Cooley-Tukey.

Một lý do khiến mình viết code trong khi nhiều thư viện Python như numpy, sympy, sagemath đã hỗ trợ là
vì trong [12] (tài liệu tham khảo chính của bài viết này) thì DFT thuận sử dụng 𝜁2𝑛 là nghiệm của 𝑥𝑛 + 1
nên nếu xét trên C thì 𝜁2𝑛 = 𝑒𝑖𝜋/𝑛. Trong khi đó các tài liệu khác như wikipedia, numpy, sympy, ... sử dụng
𝑒−𝑖𝜋/𝑛 để tính DFT thuận. Ngược lại, [12] sử dụng 𝑒−𝑖𝜋/𝑛 để tính DFT ngược, trong khi các tài liệu khác
dùng 𝑒𝑖𝜋/𝑛. Ở đây chúng ta có thể thấy dù là cách nào thì để thực hiện phép nhân nhanh đa thức modulo
𝑥2

𝑡

+ 1 đều cần cả DFT thuận và ngược, nên kết quả không thay đổi nhờ vào tính chất của DFT.

2.8.4 Đại cương tổ hợp
Chúng ta có hai quy tắc đếm, và những công thức đếm khác đều được sinh ra cũng như tuân theo hai quy
tắc này. Đó là quy tắc cộng và quy tắc nhân.

Quy tắc cộng và quy tắc nhân

Khi một công việc có thể thực hiện bằng một trong nhiều phương án, ta sử dụng quy tắc cộng. Ví dụ, nếu
chúng ta muốn lấy một cây bút trong hộp có 3 cây bút đỏ, 4 cây bút xanh và 5 cây bút vàng, thì chúng ta
có tất cả 3 + 4 + 5 = 12 cách lấy.

Khi một công việc được thực hiện trên nhiều công đoạn, ở mỗi công đoạn có nhiều phương án thì ta sử dụng
quy tắc nhân. Ví dụ, nếu chúng ta đi từ thành phố A tới thành phố B, giữa đường đi ngang thành phố C.
Từ A tới C có 4 con đường, từ C tới B có 3 con đường thì có tất cả 4 · 3 = 12 con đường đi từ A tới B mà
đi ngang qua C.

Nguyên lý bù trừ. Ở quy tắc cộng, khi các phương án rời nhau, thì ta cộng chúng lại. Tuy nhiên, khi các
phương án có sự giao nhau thì chúng ta sử dụng nguyên lý bù trừ, hay còn gọi là quy tắc cộng mở rộng.

Gọi 𝐴 và 𝐵 là hai tập hợp. Kí hiệu |𝐴 ∪ 𝐵| là số lượng phần tử của 𝐴 hợp 𝐵 và |𝐴 ∩ 𝐵| là số lượng phần
tử của 𝐴 giao 𝐵.
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Khi đó

|𝐴 ∪𝐵| = |𝐴|+ |𝐵| − |𝐴 ∩𝐵|.

Sử dụng sơ đồ Venn để mô tả công thức trên:

A B

Hình 2.48: Nguyên lý bù trừ cho hai tập hợp

Ta thấy rằng, khi chúng ta cộng số phần tử của hai tập hợp lại với nhau thì phần giao của chúng bị trùng.
Do đó ta phải trừ đi một lần phần giao thì mới có hợp của hai tập hợp.

INFO-CIRCLE Example 17

Trong một lớp học có 20 học sinh. Trong đó có 13 học sinh biết chơi bóng chuyền, 15 học sinh biết chơi
bóng bàn. Biết rằng học sinh nào cũng biết chơi bóng chuyền hoặc bóng bàn. Hỏi có bao nhiêu học sinh
biết chơi cả hai môn bóng chuyền và bóng bàn?

INFO-CIRCLE Giải

Đặt 𝐴 là tập hợp các học sinh biết chơi bóng chuyền. Ta có |𝐴| = 13.

Đặt 𝐵 là tập hợp các học sinh biết chơi bóng bàn. Ta có |𝐵| = 15.

Do lớp học có 20 học sinh và học sinh nào cũng biết chơi hoặc bóng chuyền, hoặc bóng bàn, nên
|𝐴 ∪𝐵| = 20.

Theo nguyên lý bù trừ, số lượng học sinh biết chơi cả hai bộ môn là

|𝐴 ∩𝐵| = |𝐴|+ |𝐵| − |𝐴 ∪𝐵| = 13 + 15− 20 = 8.

Như vậy có 8 học sinh biết chơi cả hai môn.

Ta có thể có công thức bù trừ cho ba tập hợp.

|𝐴 ∪𝐵 ∪ 𝐶| = |𝐴|+ |𝐵|+ |𝐶| − (|𝐴 ∩𝐵|+ |𝐵 ∩ 𝐶|+ |𝐶 ∩𝐴|) + |𝐴 ∩𝐵 ∩ 𝐶|.
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Trong trường hợp tổng quát cho 𝑛 tập hợp 𝐴1, 𝐴2, ..., 𝐴𝑛 thì công thức bù trừ là:

|𝐴1 ∪𝐴2 ∪ . . . ∪𝐴𝑛| =
𝑛∑︁

𝑖=1

|𝐴𝑖|

−
∑︁

16𝑖1,𝑖2,6𝑛,𝑖1 ̸=𝑖2

|𝐴𝑖1 ∩𝐴𝑖2 |

+
∑︁

16𝑖1,𝑖2,𝑖3,𝑖1 ̸=𝑖2 ̸=𝑖3 ̸=𝑖1

|𝐴𝑖1 ∩𝐴𝑖2 ∩𝐴𝑖3 |+ . . .

+(−1)𝑡−1
∑︁

16𝑖1,...,𝑖𝑡,𝑖1 ̸=... ̸=𝑖𝑡

|𝐴𝑖1 ∩ . . . ∩𝐴𝑖𝑡 |+ . . .

+(−1)𝑛−1|𝐴1 ∩ . . . ∩𝐴𝑛|.

Hoán vị, tổ hợp, chỉnh hợp

Xét một tập hợp 𝑛 phần tử

𝐴 = {𝑎1, 𝑎2, . . . , 𝑎𝑛}.

Một cách xếp 𝑛 phần tử này theo thứ tự là một hoán vị của tập hợp đó. Tập hợp có 𝑛 phần tử thì số hoán
vị là 𝑛!.

INFO-CIRCLE Chứng minh

Xét vị trí đầu tiên, ta có thể xếp một trong 𝑛 phần tử vào vị trí này.

Đối với vị trí thứ hai, vì ta đã xếp một phần tử vào vị trí đầu nên ta còn 𝑛− 1 phần tử có thể xếp vào
vị trí thứ hai.

Tương tự, với vị trí thứ ba ta có 𝑛− 2 cách chọn.

Tiếp tục như vậy cho tới vị trí cuối cùng (vị trí thứ 𝑛) ta còn đúng 1 phần tử.

Do đó, theo quy tắc nhân, số cách xếp 𝑛 phần tử theo thứ tự là

𝑛 · (𝑛− 1) · (𝑛− 2) · · · 2 · 1 = 𝑛!.

Ví dụ, với tập 𝐴 = {1, 2, 3} thì ta có các hoán vị là

{1, 2, 3}, {1, 3, 2}, {2, 1, 3}, {2, 3, 1}, {3, 1, 2}, {3, 2, 1}.

Chỉnh hợp là một trường hợp nhỏ hơn của hoán vị. Khi đó từ một tập hợp có 𝑛 phần tử, ta lấy ra 𝑘 phần
tử và sắp 𝑘 phần tử đó theo thứ tự. Khi đó với 𝑘 6 𝑛 thì số chỉnh hợp là 𝑛!

(𝑛− 𝑘)!
.

INFO-CIRCLE Chứng minh

Vị trí đầu tiên ta có 𝑛 cách chọn.

Vị trí thứ hai ta có 𝑛− 1 cách chọn.

Tương tự vậy, ta thấy rằng ở vị trí thứ 𝑖 thì ta có 𝑛− 𝑖+ 1 cách chọn (chỉ số của vị trí và số cách chọn
luôn có tổng bằng 𝑛+ 1).

Do đó, tới vị trí thứ 𝑘 thì số cách chọn là 𝑛− 𝑘 + 1.
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Như vậy theo quy tắc nhân, số chỉnh hợp là

𝑛 · (𝑛− 1) · · · (𝑛− 𝑘 + 1)

=
𝑛 · (𝑛− 1) · · · (𝑛− 𝑘 + 1) · (𝑛− 𝑘) · (𝑛− 𝑘 − 1) · · · 2 · 1

(𝑛− 𝑘) · (𝑛− 𝑘 − 1) · · · 2 · 1

=
𝑛!

(𝑛− 𝑘)!
.

Khi chúng ta lấy ra 𝑘 phần tử từ 𝑛 phần tử nhưng không sắp chúng theo thứ tự, ta có tổ hợp. Do đó ta cần
chia cho số hoán vị của 𝑘 phần tử. Như vậy số tổ hợp 𝑘 phần tử từ tập hợp 𝑛 phần tử là 𝑛!

(𝑛− 𝑘)! · 𝑘!
.

2.8.5 Công thức truy hồi
Dãy số là một ánh xạ từ N tới R

𝑢 : N→ R, 𝑛 ↦→ 𝑢(𝑛).

Khi đó các giá trị 𝑢(1), 𝑢(2), ... được gọi là số hạng của dãy số. Chúng ta cũng có thể viết 𝑢1, 𝑢2, ... thay
vì 𝑢(1), 𝑢(2), ..., hoặc thậm chí là {𝑢𝑛}.

Cấp số cộng và công thức truy hồi bậc nhất

Cho dãy số {𝑢𝑛} với phần tử đầu 𝑢0 và công sai 𝑑. Khi đó các phần tử sau đó được tính với công thức

𝑢𝑛 = 𝑢𝑛−1 + 𝑑

với mọi 𝑛 > 1 thì {𝑢𝑛} được gọi là cấp số cộng.

Như vậy cấp số cộng là một dãy số có dạng

𝑢𝑛 = 𝜙(𝑛, 𝑢𝑛−1).

Dãy số có dạng như trên gọi là truy hồi bậc nhất (hay first order).

INFO-CIRCLE Example 18

Dãy số {𝑢𝑛} xác định bởi

𝑢𝑛 = 𝑎𝑢𝑛−1 + 𝑏𝑛+ 𝑐

với 𝑢0 là số hạng đầu; 𝑎, 𝑏 và 𝑐 là các số thực.

INFO-CIRCLE Example 19

Dãy số {𝑢𝑛} xác định bởi

𝑢𝑛 = 𝑎𝑢2𝑛−1 + 𝑏𝑢𝑛−1 + 𝑐

với 𝑢0 là số hạng đầu; 𝑎, 𝑏 và 𝑐 là các số thực.
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Ta cần chú ý rằng việc nói truy hồi bậc nhất mang nghĩa là số hạng thứ 𝑛 chỉ phụ thuộc vào số hạng thứ
𝑛− 1, chứ không phải các số hạng trước đó như số hạng thứ 𝑛− 2, 𝑛− 3, vân vân và mây mây.

Ở ví dụ thứ hai thì số hạng thứ 𝑛 là hàm bậc hai theo số hạng thứ 𝑛− 1 nhưng đây là công thức truy hồi
bậc nhất.

Dãy số Fibonacci và công thức truy hồi bậc hai

Đây có lẽ là dãy số nổi tiếng nhất trong toán học. Công thức của dãy số là với hai phần tử ban đầu 𝑢0 = 0
và 𝑢1 = 1, các phần tử sau sẽ được tính với công thức

𝑢𝑛 = 𝑢𝑛−1 + 𝑢𝑛−2

với mọi 𝑛 > 2.

Ở đây, số hạng thứ 𝑛 được tính bởi hai số hạng trước nó nên đây là ví dụ của truy hồi bậc hai. Dãy số
truy hồi bậc hai là dãy số có dạng

𝑢𝑛 = 𝜙(𝑛, 𝑢𝑛−1, 𝑢𝑛−2).

INFO-CIRCLE Example 20

Dãy số {𝑢𝑛} được xác định bởi

𝑢𝑛 = 𝑎𝑢𝑛−1 + 𝑏𝑢𝑛−2 + 𝑐

với 𝑢0 và 𝑢1 là số hạng đầu; 𝑎, 𝑏 và 𝑐 là các số thực.

Công thức truy hồi bậc cao

Tổng quát, nếu số hạng thứ 𝑛 của dãy số {𝑢𝑛} được tính bởi 𝑘 số hạng trước nó, nghĩa là

𝑢𝑛 = 𝜙(𝑛, 𝑢𝑛−1, 𝑢𝑛−2, . . . , 𝑢𝑛−𝑘)

thì ta gọi là công thức truy hồi bậc 𝑘.

Các dãy truy hồi có ứng dụng rộng rãi trong toán học và các ngành khoa học khác, tiêu biểu nhất là dãy
Fibonacci ở trên. Trong khoa học máy tính, công thức truy hồi có một ứng dụng để sinh một dãy số cho
nhiều mục đích khác nhau như sinh số giả ngẫu nhiên (pseudo-random), sinh khóa cho thuật toán mã hóa
dòng (stream cipher). Các ứng dụng này thường sử dụng dãy truy hồi tuyến tính, tức là bậc của các hạng
tử 𝑢𝑛−1, 𝑢𝑛−2, ..., 𝑢𝑛−𝑘 không quá 1. Nói cách khác thì

𝑢𝑛 = 𝑎𝑛−1𝑢𝑛−1 + 𝑎𝑛−2𝑢𝑛−2 + · · ·+ 𝑎𝑛−𝑘𝑢𝑛−𝑘 + 𝜑(𝑛),

trong đó 𝜑(𝑛) là một hàm số nào đó không phụ thuộc các hạng tử 𝑢𝑛−1, ..., 𝑢𝑛−𝑘. Các hệ số 𝑎𝑛−1, ..., 𝑎𝑛−𝑘

nằm trong trường số nào đó tùy thuộc bài toán. Ví dụ với các dãy LFSR (Linear Feedback Shift Register)
để sinh dãy trong tin học ở trên thì các phép tính được thực trên trên trường F2. Hiện tại chúng ta sẽ khảo
sát dãy số với hệ số thực.

Chúng ta quan tâm đến công thức tổng quát của dãy số truy hồi. Dễ thấy rằng, để tính số hạng thứ 𝑛 theo
truy hồi thì ta phải biết đủ 𝑘 số hạng trước đó. Nhưng với mỗi số hạng trong 𝑘 số hạng đó ta lại cần đi
ngược về trước đó nữa cho đến khi tới các số hạng ban đầu 𝑢0, 𝑢1, ..., 𝑢𝑘−1. Tuy nhiên đôi khi chúng ta quan
tâm một số tính chất đại số mà cần công thức tổng quát cho {𝑢𝑛} và chỉ phụ thuộc 𝑛, nghĩa là 𝑢𝑛 = 𝑓(𝑛).
Khi đó chúng ta sẽ sử dụng phương pháp hàm sinh (hay generating function method, hay метод
проводящих функций).
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Phương pháp hàm sinh

Phương pháp hàm sinh thực hiện theo các bước sau:

1. Xác định các số hạng ban đầu 𝑢0, 𝑢1, ..., 𝑢𝑘−1.

2. Gọi 𝐺(𝑥) là đa thức với hệ số là các số hạng của dãy số, tức là

𝐺(𝑥) = 𝑢0 + 𝑢1𝑥+ 𝑢2𝑥
2 + · · ·+ 𝑢𝑛𝑥

𝑛 + · · ·

3. Phân tích 𝐺(𝑥) thành tổng các phân thức dạng 1

𝐻(𝑥)
. Sau đó ta gom các số hạng có cùng lũy thừa

của 𝑥 lại để được công thức tổng quát của {𝑢𝑛}. Các hàm 𝐻(𝑥) sẽ được trình bày ở phần cuối với các
ví dụ, và ta gọi chúng là hàm sinh.

Một ví dụ hay dùng của hàm sinh là khai triển sau.

1

1−𝑚𝑥
= 1 +𝑚𝑥+𝑚2𝑥2 + · · ·+𝑚𝑛𝑥𝑛 + · · · (2.16)

Công thức trên có thể thu được từ khai triển Taylor-Maclaurin hoặc bằng quy nạp.

Ví dụ I

Xét dãy số {𝑢𝑛} với 𝑢0 = 0, 𝑢1 = 1, và

𝑢𝑛 = 5𝑢𝑛−1 − 6𝑢𝑛−2 với mọi 𝑛 > 2.

Đặt

𝐺(𝑥) = 𝑢0 + 𝑢1𝑥+ 𝑢2𝑥
2 + · · ·+ 𝑢𝑛𝑥

𝑛 + · · · (2.17)

Khi đó, ta nhân 𝐺(𝑥) với 𝑥, 𝑥2 và nhân thêm số hạng để khử các hạng tử theo công thức truy hồi

𝑢𝑛 − 5𝑢𝑛−1 + 6𝑢𝑛−2 = 0.

Cụ thể, ta tính

𝑥 ·𝐺(𝑥) = 𝑢0𝑥+ 𝑢1𝑥
2 + 𝑢2𝑥

3 + · · ·+ 𝑢𝑛−1𝑥
𝑛 + · · · ,

và

𝑥2 ·𝐺(𝑥) = 𝑢0𝑥
2 + 𝑢1𝑥

3 + 𝑢2𝑥
4 + · · ·+ 𝑢𝑛−2𝑥

𝑛 + · · ·

Khi đó

𝐺(𝑥)− 5𝑥 ·𝐺(𝑥) + 6𝑥2 ·𝐺(𝑥) = 𝑢0 + 𝑢1𝑥+ 𝑢2𝑥
2 + 𝑢3𝑥

3 + · · ·+𝑢𝑛𝑥𝑛 + · · ·
− 5𝑢0𝑥−5𝑢1𝑥2−5𝑢2𝑥3 − · · ·−5𝑢𝑛−1𝑥

𝑛 + · · ·
+6𝑢0𝑥

2+6𝑢1𝑥
3 + · · ·+6𝑢𝑛−2𝑥

𝑛 + · · ·

Các bạn có thấy điều gì không? Các số hạng trước 𝑥2, 𝑥3, ... đều bằng 0 theo công thức truy hồi. Như vậy
thu gọn vế trái và thay 𝑢0, 𝑢1 vào vế phải ta có

(1− 5𝑥+ 6𝑥2) ·𝐺(𝑥) = 𝑢0 + 𝑢1𝑥− 5𝑢0𝑥 = 𝑥,

tương đương với

𝐺(𝑥) =
𝑥

1− 5𝑥+ 6𝑥2
.
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Vì 1− 5𝑥+ 6𝑥2 phân tích thành nhân tử là (1− 2𝑥)(1− 3𝑥) nên ta muốn phân tích 𝐺(𝑥) thành tổng

𝐺(𝑥) =
𝛼

1− 2𝑥
+

𝛽

1− 3𝑥
=

(𝛼+ 𝛽) + (−3𝛼− 2𝛽)𝑥

(1− 2𝑥)(1− 3𝑥)
,

với 𝛼 và 𝛽 là hệ số cần tìm để

(𝛼+ 𝛽) + (−3𝛼− 2𝛽)𝑥 ≡ 𝑥.

Như vậy, đồng nhất hệ số ta có

𝛼+ 𝛽 = 0, −3𝛼− 2𝛽 = 1,

giải hệ ta có 𝛼 = −1 và 𝛽 = 1. Ta thu được

𝐺(𝑥) =
−1

1− 2𝑥
+

1

1− 3𝑥
.

Theo công thức (2.16), ta có
1

1− 2𝑥
= 1 + 2𝑥+ 22𝑥2 + · · ·+ 2𝑛𝑥𝑛 + · · · ,

và
1

1− 3𝑥
= 1 + 3𝑥+ 32𝑥2 + · · ·+ 3𝑛𝑥𝑛 + · · · .

Thay hai khai triển trên vào 𝐺(𝑥) ta có

𝐺(𝑥) =− (1 + 2𝑥+ 22𝑥2 + · · ·+ 2𝑛𝑥𝑛 + · · · )
+ (1 + 3𝑥+ 32𝑥2 + · · ·+ 3𝑛𝑥𝑛 + · · · )

=0 + (3− 2)𝑥+ (32 − 22)𝑥2 + · · ·+ (3𝑛 − 2𝑛)𝑥𝑛 + · · ·

Đồng nhất hệ số với (2.17) ta có

𝑢𝑛 = 3𝑛 − 2𝑛.

Đây chính là công thức tổng quát của dãy {𝑢𝑛}.

Tất nhiên là ví dụ trên có thể được giải bằng cách khác là đa thức đặc trưng và đây là phương pháp phổ
biến ở phổ thông. Tuy nhiên một số bài toán khác không thể sử dụng đa thức đặc trưng. Trước khi đến với
các bài toán như vậy thì mình sẽ liệt kê một số hàm sinh thông dụng để giải quyết các bài toán đó.

Một số hàm sinh thông dụng

1

1−𝑚𝑥
= 1 +𝑚𝑥+𝑚2𝑥2 + · · ·+𝑚𝑛𝑥𝑛 + · · ·

1

(1− 𝑥)𝑡
=

∞∑︁
𝑖=0

𝐶𝑖
𝑡+𝑖−1𝑥

𝑖.

Khi 𝑡 = 2 thì 𝐶𝑖
𝑖+1 =

(𝑖+ 1)!

𝑖! · 1!
= 𝑖+ 1 nên ta có kết quả

1

(1− 𝑥)2
=

∞∑︁
𝑖=0

(𝑖+ 1)𝑥𝑖.

Kết hợp hai công thức trên

1

(1−𝑚𝑥)𝑡
=

∞∑︁
𝑖=0

𝐶𝑖
𝑡+𝑖−1𝑚

𝑖𝑥𝑖.
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Ví dụ II

Cho dãy số {𝑢𝑛} xác định bởi 𝑢0 = 1, 𝑢1 = 2 và

𝑢𝑛 = 6𝑢𝑛−1 − 8𝑢𝑛−2 + 𝑛, với mọi 𝑛 > 2.

Tương tự, đầu tiên ta đặt 𝐺(𝑥) là đa thức có hệ số là dãy {𝑢𝑛}, nghĩa là

𝐺(𝑥) = 𝑢0 + 𝑢1𝑥+ 𝑢2𝑥
2 + · · ·+ 𝑢𝑛𝑥

𝑛 + · · ·

Ta cũng nhân 𝑥 và 𝑥2 cho 𝐺(𝑥) và thu được

𝑥 ·𝐺(𝑥) = 𝑢0𝑥+ 𝑢1𝑥
2 + 𝑢2𝑥

3 + · · ·+ 𝑢𝑛−1𝑥
𝑛 + · · · ,

và

𝑥2 ·𝐺(𝑥) = 𝑢0𝑥
2 + 𝑢1𝑥

3 + 𝑢2𝑥
4 + · · ·+ 𝑢𝑛−2𝑥

𝑛 + · · ·

Như vậy, hoàn toàn tương tự ví dụ I, mình tính được

𝐺(𝑥)− 6𝑥 ·𝐺(𝑥) + 8𝑥2 ·𝐺(𝑥) = 𝑢0

+ (𝑢1 − 6𝑢0)𝑥

+ (𝑢2 − 6𝑢1 + 8𝑢0)𝑥
2

+ (𝑢3 − 6𝑢2 + 8𝑢1)𝑥
3

+ · · ·
+ (𝑢𝑛 − 6𝑢𝑛−1 + 8𝑢𝑛−2)𝑥

𝑛

+ · · ·

Cơ mà ở đây 𝑢𝑛 − 6𝑢𝑛−1 + 8𝑢𝑛−2 không đủ để triệt tiêu thành 0 mà cần thêm 𝑛 nữa. Vậy phải làm sao?

Chúng ta sẽ cần một hàm 𝐹 (𝑥) sao cho

𝐺(𝑥)− 6𝑥 ·𝐺(𝑥) + 8𝑥2 ·𝐺(𝑥) + 𝐹 (𝑥) = 𝑢0

+ (𝑢1 − 6𝑢0)𝑥

+ (𝑢2 − 6𝑢1 + 8𝑢0−2)𝑥2

+ (𝑢3 − 6𝑢2 + 8𝑢1−3)𝑥3

+ · · ·
+ (𝑢𝑛 − 6𝑢𝑛−1 + 8𝑢𝑛−2−𝑛)𝑥𝑛

+ · · ·

Như vậy mình gom các hệ số màu đỏ lại sẽ được

𝐹 (𝑥) = −2𝑥2 − 3𝑥3 + · · · − 𝑛𝑥𝑛 + · · ·

Khi đó

𝐺(𝑥)− 6𝑥 ·𝐺(𝑥) + 8𝑥2 ·𝐺(𝑥) + 𝐹 (𝑥) = 𝑢0 + (𝑢1 − 6𝑢0)𝑥,

và việc của chúng ta là tìm một hàm sinh biểu thị cho 𝐹 (𝑥) nữa để có thể biểu diễn 𝐺(𝑥) như ở ví dụ I.
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Ta có
𝐹 (𝑥) = −2𝑥2 − 3𝑥3 − · · · − 𝑛𝑥𝑛 + · · ·

= 1𝑥− 𝑥(1 + 2𝑥+ 3𝑥2 + · · ·+ 𝑛𝑥𝑛−1 + · · · )
= 𝑥− 𝑥(1 + 𝑥+ 𝑥2 + 𝑥3 + · · ·+ 𝑥𝑛 + · · · )′

= 𝑥− 𝑥 ·
(︂

1

1− 𝑥

)︂′

= 𝑥− 𝑥 · 1

(1− 𝑥)2

=
𝑥(1− 2𝑥+ 𝑥2) + 𝑥

(1− 𝑥)2
= −𝑥

2(2− 𝑥)
(1− 𝑥)2

.

Thay 𝑢0, 𝑢1 và 𝐹 (𝑥) vào ta tính được 𝐺(𝑥) là hàm

(1− 6𝑥+ 8𝑥2) ·𝐺(𝑥)− 𝑥2(2− 𝑥)
(1− 𝑥)2

= 1− 4𝑥,

tương đương với

𝐺(𝑥) =
1

1− 6𝑥+ 8𝑥2

[︂
1− 4𝑥+

𝑥2(2− 𝑥)
(1− 𝑥)2

]︂
=

(1− 4𝑥)(1− 2𝑥+ 𝑥2)− 2𝑥2 + 𝑥3

(1− 6𝑥+ 8𝑥2)(1− 𝑥)2

=
1− 2𝑥+ 𝑥2 − 4𝑥+ 8𝑥2 − 4𝑥3 + 2𝑥2 − 𝑥3

(1− 6𝑥+ 8𝑥2)(1− 𝑥)2

=
1− 6𝑥+ 11𝑥2 − 5𝑥3

(1− 6𝑥+ 8𝑥2)(1− 𝑥)2
.

Bây giờ, 1− 6𝑥+ 8𝑥2 phân tích thành nhân tử (1− 2𝑥)(1− 4𝑥). Vậy mình sẽ cần tách 𝐺(𝑥) thành

𝐺(𝑥) =
𝐴

1− 2𝑥
+

𝐵

1− 4𝑥
+

𝐶

1− 𝑥
+

𝐷

(1− 𝑥)2

với 𝐴, 𝐵, 𝐶 và 𝐷 là các hệ số cần tìm. Quy đồng mẫu số mình có

𝐺(𝑥) =
𝐴(1− 4𝑥)(1− 𝑥)2 +𝐵(1− 2𝑥)(1− 𝑥)2 + 𝐶(1− 2𝑥)(1− 4𝑥)(1− 𝑥) +𝐷(1− 2𝑥)(1− 4𝑥)

(1− 6𝑥+ 8𝑥2)(1− 𝑥)2
.

Thu gọn tử số lại mình được

(𝐴+𝐵 + 𝐶 +𝐷) + (−6𝐴− 4𝐵 − 7𝐶 − 6𝐷)𝑥+ (9𝐴+ 5𝐵 + 14𝐶 + 8𝐷)𝑥2 + (−4𝐴− 2𝐵 − 8𝐶)𝑥3,

và đồng nhất hệ số thì mình cần giải hệ phương trình⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝐴+𝐵 + 𝐶 +𝐷 = 1

−6𝐴− 4𝐵 − 7𝐶 − 6𝐷 = −6
9𝐴+ 5𝐵 + 14𝐶 + 8𝐷 = 11

−4𝐴− 2𝐵 − 8𝐶 = −5

⇐⇒

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝐴 = −1/2
𝐵 = 7/18

𝐶 = 7/9

𝐷 = 1/3

Bây giờ thay các hàm sinh vào 𝐺(𝑥) (chưa cần thay 𝐴, 𝐵, 𝐶 và 𝐷 vội) thì mình có

𝐺(𝑥) = 𝐴 ·
(︀
1 + 2𝑥+ 22𝑥2 + · · ·+ 2𝑛𝑥𝑛 + · · ·

)︀
+𝐵 ·

(︀
1 + 4𝑥+ 42𝑥2 + · · ·+ 4𝑛𝑥𝑛 + · · ·

)︀
+ 𝐶 ·

(︀
1 + 𝑥+ 𝑥2 + · · ·+ 𝑥𝑛 + · · ·

)︀
+𝐷 · (1 + 2𝑥+ 3𝑥+ · · ·+ (𝑛+ 1)𝑥𝑛 + · · · ) .

Nhìn vào hệ số của 𝑥𝑛 mình có công thức tổng quát

𝑢𝑛 = 𝐴 · 2𝑛 +𝐵 · 4𝑛 + 𝐶 +𝐷 · (𝑛+ 1) = −2𝑛−1 +
7 · 4𝑛

18
+

7

9
+
𝑛+ 1

3
.
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Ví dụ III

Trong một số trường hợp "hơi lú", ví dụ như

𝑢𝑛 = 4𝑢𝑛−1 − 4𝑢𝑛−2

thì nếu sử dụng đa thức đặc trưng ta có một phương trình bậc hai với nghiệm kép. Khi đó công thức tổng
quát không còn ở dạng

𝑢𝑛 = 𝛼 · 𝑧𝑛1 + 𝛽 · 𝑧𝑛2

với 𝑧1 và 𝑧2 là hai nghiệm phân biệt của phương trình đặc trưng, mà ở một dạng khác. Phương pháp hàm
sinh sẽ giúp chúng ta tìm công thức tổng quát ở trường hợp này.

Xét đa thức 𝐺(𝑥) với hệ số là các số hạng của dãy {𝑢𝑛} cho bởi công thức truy hồi ở trên:

𝐺(𝑥) = 𝑢0 + 𝑢1𝑥+ 𝑢2𝑥
2 + · · ·+ 𝑢𝑛𝑥

𝑛 + · · ·

Thực hiện tương tự bên trên, mình tính

𝑥 ·𝐺(𝑥) = 𝑢0𝑥+ 𝑢1𝑥
2 + 𝑢2𝑥

3 + · · ·+ 𝑢𝑛−1𝑥
𝑛 + · · ·

và

𝑥2 ·𝐺(𝑥) = 𝑢0𝑥
2 + 𝑢1𝑥

3 + 𝑢2𝑥
4 + · · ·+ 𝑢𝑛−2𝑥

𝑛 + · · ·

Như vậy

𝐺(𝑥)− 4𝑥 ·𝐺(𝑥) + 4𝑥2 ·𝐺(𝑥) = 𝑢0

+ (𝑢1 − 4𝑢0)𝑥

+
��������:0
(𝑢2 − 4𝑢1 + 4𝑢0)𝑥

2

+ · · ·

+
�����������:0

(𝑢𝑛 − 4𝑢𝑛−1 + 4𝑢𝑛−2)𝑥
𝑛

+ · · ·
= 𝑢0 + (𝑢1 − 4𝑢0)𝑥.

Đặt 𝐺(𝑥) làm nhân tử chung và chuyển vế mình có

𝐺(𝑥) =
𝑢0 + (𝑢1 − 4𝑢0)𝑥

(1− 2𝑥)2
.

Mình cần tách 𝐺(𝑥) thành tổng

𝐺(𝑥) =
𝐴

1− 2𝑥
+

𝐵

(1− 2𝑥)2
.

Quy đồng mẫu số và đồng nhất hệ số mình cần tìm 𝐴 và 𝐵 thỏa mãn hệ phương trình{︃
𝐴+𝐵 = 𝑢0

−2𝐴 = (𝑢1 − 4𝑢0)
⇐⇒

{︃
𝐴 = (−𝑢1 + 4𝑢0)/2

𝐵 = (𝑢1 − 2𝑢0)/2

Thay hàm sinh vào 𝐺(𝑥) mình được

𝐺(𝑥) = 𝐴 · (1 + 2𝑥+ 22𝑥2 + · · ·+ 2𝑛𝑥𝑛 + · · · )
+𝐵 ·

[︀
1 + 2 · 2𝑥+ 3 · 22𝑥2 + · · ·+ (𝑛+ 1) · 2𝑛𝑥𝑛

]︀
.

Hệ số trước 𝑥𝑛 cho ta công thức tổng quát của dãy số

𝑢𝑛 = 𝐴 · 2𝑛 +𝐵 · (𝑛+ 1) · 2𝑛 = 2𝑛−1 · [2𝑢0 + (𝑢1 − 2𝑢0) · 𝑛] .
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2.8.6 Hệ phương trình tuyến tính trên trường hữu hạn
Xét hệ phương trình tuyến tính trên tập các số nguyên

𝐴 =

⎛⎜⎜⎜⎝
𝑎11 𝑎12 · · · 𝑎1𝑛
𝑎21 𝑎22 · · · 𝑎2𝑛
...

...
. . .

...
𝑎𝑛1 𝑎𝑛2 · · · 𝑎𝑛𝑛

⎞⎟⎟⎟⎠
2.8.7 Lý thuyết đồ thị
Phần này mình sử dụng các quyển sách dành cho học sinh chuyên Tin [13].

Các định nghĩa cơ bản

INFO-CIRCLE Definition 27 (Đồ thị)

Đồ thị (hay graph, hay граф) 𝐺 = (𝑉,𝐸) gồm một tập hợp các đỉnh 𝑉 và tập hợp các cạnh 𝐸 nối các
đỉnh với nhau.

Đồ thị vô hướng

INFO-CIRCLE Example 21

Đồ thị sau có:

1. Tập hợp các đỉnh

𝑉 = {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣6}.

2. Tập hợp các cạnh

𝐸 = {𝑒12, 𝑒23, 𝑒24, 𝑒26, 𝑒56}.

v1 v2
e12 v3

v4

e23

e24

v5 v6
e56

e26

Hình 2.49: Đồ thị vô hướng

Ở ví dụ trên, cạnh 𝑒𝑖𝑗 nối đỉnh 𝑣𝑖 và đỉnh 𝑣𝑗 . Trong trường hợp này hướng của cạnh không quan trọng nên
việc viết 𝑒𝑖𝑗 và 𝑒𝑗𝑖 là tương đương. Đồ thị lúc này gọi là đồ thị vô hướng (hay undirected graph).

Hai đỉnh được gọi là kề nhau (hay adjacent) nếu có cạnh nối giữa chúng.

Ở ví dụ trên thì hai đỉnh 𝑣1 và 𝑣2 kề nhau, nhưng đỉnh 𝑣1 không kề với 𝑣3 vì không có cạnh 𝑒13.

Khi đó cạnh nối hai đỉnh kề nhau được gọi là cạnh liên thuộc (hay incident).

Ở đồ thị vô hướng, ta nói bậc (hay degree) của đỉnh 𝑣 là số cạnh liên thuộc với đỉnh 𝑣, và kí hiệu là deg(𝑣).
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Ở hình 2.49 ta thấy deg(𝑣1) = 1, deg(𝑣2) = 3, deg(𝑣3) = 1, deg(𝑣4) = 1, deg(𝑣5) = 1, deg(𝑣6) = 2. Tổng
quát ta có định lí sau.

INFO-CIRCLE Theorem 8

Giả sử 𝐺 = (𝑉,𝐸) là đồ thị vô hướng, khi đó tổng tất cả các bậc của các đỉnh trong 𝑉 sẽ bằng hai lần
số cạnh: ∑︁

𝑣∈𝑉

deg(𝑣) = 2|𝐸|.

INFO-CIRCLE Chứng minh

Khi lấy tổng tất cả các bậc thì mỗi cạnh 𝑒𝑖𝑗 sẽ được tính một lần cho đỉnh 𝑣𝑖 và một lần cho đỉnh 𝑣𝑗 .
Từ đó suy ra kết quả.

INFO-CIRCLE Corollary 2

Trong đồ thị vô hướng thì số đỉnh có bậc lẻ là số chẵn.

INFO-CIRCLE Chứng minh

Giả sử 𝑣1 là tập các đỉnh có bậc lẻ và 𝑣2 là tập các đỉnh có bậc chẵn. Khi đó 1 ∪ 𝑉2 = 𝑉 và 𝑉1 ∩ 𝑉2 = ∅.
Theo định lí trên thì ∑︁

𝑣1∈𝑉1

deg(𝑣1) +
∑︁

𝑣2∈𝑉2

deg(𝑣2) = 2|𝐸|

là số chẵn, mà tổng bậc của các đỉnh bậc chẵn
∑︀

𝑣2∈𝑉2

deg(𝑣2) cũng là số chẵn nên suy ra tổng
∑︀

𝑣1∈𝑉1

deg(𝑣1)

cũng là chẵn.

Do mỗi giá trị deg(𝑣1) là lẻ với mọi 𝑣1 ∈ 𝑉1 nên tổng của chúng là chẵn khi và chỉ khi số phần tử của 𝑣1
là chẵn. Ta có điều phải chứng minh.

Đồ thị có hướng

Nếu chúng ta quan tâm đến hướng thì khi vẽ cạnh 𝑒𝑖𝑗 ta vẽ mũi tên từ đỉnh 𝑣𝑖 tới đỉnh 𝑣𝑗 . Đồ thị khi đó
gọi là đồ thị có hướng (hay directed graph).

260 Chapter 2. Toán khó quá người ơi



Math Book

v1 v2
e12 v3

v4

e23

e24

v6 v5

e65

e56

e52

Hình 2.50: Đồ thị có hướng

Ở hình trên:

• chỉ có cạnh từ 𝑣1 tới 𝑣2 là 𝑒12 chứ không có cạnh từ 𝑣2 tới 𝑣1
• có cạnh từ 𝑣6 tới 𝑣5 là 𝑒65 và cũng có cạnh từ 𝑣5 tới 𝑣6 là 𝑒56.

Lúc này tập đỉnh là

𝑉 = {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣6},

và tập cạnh là

𝐸 = {𝑒12, 𝑒23, 𝑒24, 𝑒52, 𝑒56, 𝑒65}.

Đối với đồ thị có hướng thì cạnh 𝑒𝑖𝑗 là cạnh đi ra từ đỉnh 𝑖 và đi vào đỉnh 𝑗. Đỉnh 𝑖 gọi là đỉnh đầu, đỉnh 𝑗
gọi là đỉnh cuối.

INFO-CIRCLE Definition 28 (Bán bậc vào, bán bậc ra)

Bán bậc ra (hay out-degree) của đỉnh 𝑣 là số lượng cạnh đi ra khỏi nó và kí hiệu là deg+(𝑣).

Bán bậc vào (hay in-degree) của đỉnh 𝑣 là số lượng cạnh đi vào nó và kí hiệu là deg−(𝑣).

Với ví dụ ở hình 2.50 thì:

• deg+(𝑣1) = 1, deg−(𝑣1) = 0;

• deg+(𝑣2) = 2, deg−(𝑣2) = 1;

• deg+(𝑣3) = 0, deg−(𝑣3) = 1;

• deg+(𝑣4) = 0, deg−(𝑣4) = 1;

• deg+(𝑣5) = 2, deg−(𝑣5) = 1;

• deg+(𝑣6) = 1, deg−(𝑣6) = 1.

INFO-CIRCLE Theorem 9

Nếu 𝐺 = (𝑉,𝐸) là đồ thị có hướng thì tổng tất cả các bán bậc ra của các đỉnh bằng tổng tất cả các bán
bậc vào, và cũng bằng tổng số cung của đồ thị∑︁

𝑣∈𝑉

deg+(𝑣) =
∑︁
𝑣∈𝑉

deg−(𝑣) = |𝐸|.
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INFO-CIRCLE Chứng minh

Mỗi cạnh của đồ thị đi ra từ đúng một đỉnh nên
∑︀
𝑣∈𝑉

deg+(𝑣) = |𝐸|.

Tương tự, mỗi cạnh của đồ thị đi vào đúng một đỉnh nên
∑︀
𝑣∈𝑉

deg−(𝑣) = |𝐸|.

Kết hợp hai đẳng thức trên ta có điều phải chứng minh.

Đường đi và chu trình

Một dãy có thứ tự các đỉnh 𝑣𝑖0 , 𝑣𝑖1 , ..., 𝑣𝑖𝑛 sao cho 𝑒𝑖𝑡𝑖𝑡+1 ∈ 𝐸 với mọi 𝑡 = 0, 1, . . . , 𝑛− 1 được gọi là đường
đi. Lúc này đường đi có 𝑛+ 1 đỉnh 𝑣𝑖0 , 𝑣𝑖1 , ..., 𝑣𝑖𝑛 và 𝑛 cạnh 𝑒𝑖0𝑖1 , 𝑒𝑖1𝑖2 , ..., 𝑒𝑖𝑛−1𝑖𝑛 .

Nếu tồn tại một đường đi từ đỉnh 𝑣𝑖0 tới đỉnh 𝑣𝑖𝑛 thì ta nói đỉnh 𝑣𝑖𝑛 đến được (hay reachable) từ đỉnh
𝑣𝑖0 và kí hiệu là 𝑣𝑖0  𝑣𝑖𝑛 .

1. Đỉnh 𝑣𝑖0 được gọi là đỉnh đầu của đường đi.

2. Đỉnh 𝑣𝑖𝑛 được gọi là đỉnh cuối của đường đi.

3. Các đỉnh 𝑣𝑖1 , ..., 𝑣𝑖𝑛−1 được gọi là đỉnh trong của đường đi.

Đường đi được gọi là đường đi đơn (hay simple) nếu tất cả các đỉnh trên đường đi hoàn toàn phân biệt.

Hình 2.51 thể hiện hai đường đi đơn từ đỉnh 𝑣1 tới đỉnh 𝑣3:

• đường đi thứ nhất là 𝑣1, tới 𝑣2 và tới 𝑣3
• đường đi thứ hai là 𝑣1, tới 𝑣2, đi xuống 𝑣4, đi lên 𝑣6 và quay lại 𝑣3.

v1 v2 v3

v4

v5

v6
→ →

→
→ →

←

Hình 2.51: Đường đi từ 𝑣1 tới 𝑣3

Đường đi được gọi là chu trình (hay circuit) nếu đỉnh đầu trùng với đỉnh cuối, nghĩa là 𝑣𝑖0 = 𝑣𝑖𝑛 .

Đẳng cấu đồ thị

INFO-CIRCLE Definition 29

Hai đồ thị 𝐺 = (𝑉,𝐸) và 𝐺′ = (𝑉 ′, 𝐸′) được gọi là đẳng cấu (hay isomorphic) nếu tồn tại một song
ánh 𝑓 : 𝑉 → 𝑉 ′ sao cho số cung nối đỉnh 𝑢 với đỉnh 𝑣 trên 𝐸 bằng số cung nối đỉnh 𝑓(𝑢) với đỉnh 𝑓(𝑣)
trên 𝐸′.

Nói cách khác, kí hiệu 𝑒𝑖𝑗 là cạnh nối đỉnh 𝑣𝑖 và 𝑣𝑗 trên 𝐸. Đặt 𝑣′𝑖 = 𝑓(𝑣𝑖) và 𝑣′𝑗 = 𝑓(𝑣𝑗) là các đỉnh thuộc
𝑉 ′. Khi đó 𝑒′𝑖𝑗 là cạnh thuộc 𝐸′ nối đỉnh 𝑣′𝑖 và đỉnh 𝑣′𝑗 . Nếu giữa 𝑣𝑖 và 𝑣𝑗 không có cạnh nào thì cũng không
có cạnh nối 𝑣′𝑖 và 𝑣′𝑗 .
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Bài toán đẳng cấu đồ thị (graph isomorphism problem) là một trong những bài toán khó hiện nay (tháng 1
năm 2025) về việc tìm lời giải trong thời gian đa thức. Nếu cho trước hai đồ thị thì nhiệm vụ của bài toán
là xác định xem hai đồ thị có đẳng cấu hay không. Rõ ràng nếu số đỉnh nhỏ thì chúng ta có thể thử từng
hoán vị (song ánh) của tập đỉnh, nhưng khi số đỉnh lớn thì việc thử sai tất cả hoán vị là không thể.

Đồ thị con

INFO-CIRCLE Definition 30 (Đồ thị con)

Đồ thị 𝐺′ = (𝑉 ′, 𝐸′) là đồ thị con (hay subgraph, hay подграф) của đồ thị 𝐺 = (𝑉,𝐸) nếu 𝑉 ′ ⊆ 𝑉
và 𝐸′ ⊆ 𝐸.

Nói cách khác, đồ thị con thu được từ đồ thị ban đầu bằng việc lấy một lượng nhất định đỉnh và cạnh.

Ở đồ thị trên hình 2.52, mình lấy các đỉnh 𝑣1, 𝑣2, 𝑣4 và 𝑣5, và lấy các cạnh 𝑒24, 𝑒45 thì mình có đồ thị con
trên hình 2.53. Các bạn có thể thấy ở đồ thị ban đầu thì 𝑣1 nối với 𝑣2, nhưng ở đồ thị con thì không có
cạnh nối giữa hai đỉnh này.

v1 v2 v3

v4

v5

v6

Hình 2.52: Đồ thị ban đầu

v1 v2

v4

v5

Hình 2.53: Đồ thị con

Đồ thị đầy đủ

Đồ thị vô hướng được gọi là đầy đủ (hay complete, hay полный) nếu mọi cặp đỉnh đều kề nhau.

Đồ thị đầy đủ gồm 𝑛 đỉnh kí hiệu là 𝐾𝑛.
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Hình 2.54: Ví dụ 𝐾6

Dễ thấy số cạnh của đồ thị đầy đủ 𝑛 đỉnh là 𝐶2
𝑛.

Đồ thị hai phía

Đồ thị vô hướng được gọi là hai phía (hay bipartite) nếu tập đỉnh của nó có thể chia thành hai tập rời
nhau 𝑉1 và 𝑉2 sao cho không tồn tại cạnh nối hai đỉnh của 𝑉1, và cũng không tồn tại cạnh nối hai đỉnh của
𝑉2.

Nếu |𝑉1| = 𝑛1 và |𝑉2| = 𝑛2 và giữa mọi cặp đỉnh (𝑣1, 𝑣2), trong đó 𝑣1 ∈ 𝑉1 và 𝑣2 ∈ 𝑉2, đều có cạnh nối thì
đồ thị hai phía đó được gọi là đồ thị hai phía đầy đủ, kí hiệu là 𝐾𝑣1,𝑣2 .

Hình 2.55: Ví dụ đồ thị hai phía đầy đủ 𝐾3,2

Theo quy tắc nhân, số cạnh của đồ thị hai phía đầy đủ là 𝑣1 · 𝑣2 vì mỗi đỉnh ở 𝑉1 đều có 𝑣2 cạnh nối với nó,
và có tất cả 𝑣1 đỉnh trong 𝑉1.

Đồ thị phẳng

Đồ thị được gọi là đồ thị phẳng (hay planar graph, hay планарный граф) nếu chúng ta có thể vẽ đồ
thị trên mặt phẳng sao cho:

1. Mỗi đỉnh tương ứng với một điểm trên mặt phẳng, không có hai đỉnh cùng tọa độ.

2. Mỗi cạnh tương ứng với một đường liên tục nối hai đỉnh và hai cạnh bất kì không giao nhau.

Phép vẽ đồ thị phẳng này được gọi là biểu diễn phẳng của đồ thị.

INFO-CIRCLE Theorem 10 (Định lí Kuratowski)
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Một đồ thị vô hướng là đồ thị phẳng khi và chỉ khi nó không chứa đồ thị con đẳng cấu với 𝐾3,3 hoặc 𝐾5.

INFO-CIRCLE Theorem 11 (Công thức Euler)

Nếu một đồ thị vô hướng liên thông là đồ thị phẳng và biểu diễn phẳng của đồ thị đó gồm 𝑣 đỉnh và 𝑒
cạnh chia mặt phẳng thành 𝑓 phần thì

𝑣 − 𝑒+ 𝑓 = 2.

Công thức Euler này chúng ta cũng thấy ở hình học không gian đối với một khối đa diện. Nếu 𝑣 là số đỉnh
(vertices), 𝑒 là số cạnh (edges) và 𝑓 là số mặt (faces) thì 𝑣 − 𝑒+ 𝑓 = 2.

1. Hình tứ diện có 4 đỉnh, 6 cạnh và 4 mặt nên 4− 6 + 4 = 2.

2. Hình lập phương có 8 đỉnh, 12 cạnh và 6 mặt nên 8− 12 + 6 = 2.

INFO-CIRCLE Theorem 12

Nếu đồ thị vô hướng 𝐺 = (𝑉,𝐸) là đồ thị phẳng có ít nhất 3 đỉnh thì

|𝐸| 6 3|𝑉 | − 6.

Ngoài ra nếu 𝐺 không có chu trình độ dài 3 thì

|𝐸| 6 2|𝑉 | − 4.

Tính liên thông của đồ thị

Tính liên thông trên đồ thị vô hướng

INFO-CIRCLE Definition 31 (Đồ thị liên thông)

Một đồ thị vô hướng được gọi là liên thông (hay connected, hay связанный) nếu giữa hai đỉnh bất
kì của đồ thị tồn tại đường đi.

Đồ thị chỉ gồm một đỉnh duy nhất cũng được coi là đồ thị liên thông.
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Hình 2.56: Đồ thị liên thông
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INFO-CIRCLE Definition 32 (Thành phần liên thông)

Cho đồ thị 𝐺 = (𝑉,𝐸). Nếu đồ thị con 𝐺′ = (𝑉 ′, 𝐸′) của 𝐺 là đồ thị liên thông thì 𝐺′ được gọi là thành
phần liên thông (hay connected component, связанный компонент) của đồ thị 𝐺.
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Hình 2.57: Các thành phần liên thông trên đồ thị

Trên hình 2.57 có ba thành phần liên thông:

• thành phần liên thông thứ nhất gồm hai đỉnh 𝑣1, 𝑣2, và cạnh 𝑒12
• thành phần liên thông thứ hai gồm ba đỉnh 𝑣3, 𝑣4, 𝑣6, và các cạnh 𝑒36, 𝑒46
• thành phần liên thông thứ ba chỉ gồm đỉnh 𝑣5.

Đôi khi việc bỏ đi một đỉnh và tất cả cạnh liên thuộc với nó sẽ tăng số lượng thành phần liên thông hơn so với
đồ thị ban đầu. Các đỉnh như vậy gọi là đỉnh cắt (hay cut vertices), hoặc nút khớp (hay articulation
nodes).

Tương tự, khi bỏ đi một cạnh mà số lượng thành phần liên thông tăng lên thì cạnh đó gọi là cạnh cắt (hay
cut edges) hoặc cầu (hay bridge).

Ở hình 2.58 là một đồ thị liên thông, nếu chúng ta xóa cạnh 𝑒24 (cạnh màu đỏ) thì chúng ta sẽ có hai thành
phần liên thông:

• thành phần liên thông thứ nhất gồm hai đỉnh 𝑣1 và 𝑣2
• thành phần liên thông thứ hai gồm bốn đỉnh 𝑣3, 𝑣4, 𝑣5 và 𝑣6.
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Hình 2.58: Ví dụ về cầu

Đồ thị có thể có nhiều cầu. Ở hình 2.58, thay vì xóa cạnh 𝑒24, nếu ta xóa cạnh 𝑒46 thì cũng làm tăng số
thành phần liên thông. Do đó cạnh 𝑒46 cũng là cầu. Tương tự cho cạnh 𝑒12, ...

Tính liên thông trên đồ thị có hướng

Một đồ thị có hướng được gọi là:

• liên thông mạnh (hay strongly connected) nếu tồn tại đường đi giữa hai đỉnh bất kì của đồ thị;

• liên thông yếu (hay weakly connected) nếu phiên bản vô hướng của nó là đồ thị liên thông.
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Bài toán xác định các thành phần liên thông

Bài toán xác định các thành phần liên thông của đồ thị là một bài toán quan trọng trong lý thuyết đồ thị.
Bài toán sẽ tìm tất cả thành phần liên thông của đồ thị vô hướng.

Để liệt kê các thành phần liên thông của đồ thị vô hướng 𝐺 = (𝑉,𝐸) ta thực hiện các bước sau:

1. Bắt đầu từ một đỉnh bất kì, ta tìm tất cả đỉnh đến được từ đỉnh đó. Như vậy chúng ta tìm được một
thành phần liên thông.

2. Loại những đỉnh ở thành phần liên thông đầu tiên và xét một trong những đỉnh còn lại. Lặp lại công
việc ở bước 1, ta tìm tất cả đỉnh đến được từ đỉnh đang xét. Như vậy chúng ta tìm được thêm một
thành phần liên thông.

3. Thực hiện đến khi đã xét hết tất cả đỉnh trong đồ thị.

Ở đây, để tìm tất cả đỉnh đến được từ một đỉnh nào đó trong đồ thị ta sử dụng thuật toán DFS (Depth
First Search, Duyệt Sâu) hoặc BFS (Breadth First Search, Duyệt Rộng).

Cây

INFO-CIRCLE Definition 33 (Cây)

Cây (hay tree, hay дерево) là đồ thị vô hướng, liên thông, và không có chu trình đơn.

v1

v2 v3

v4 v5 v6

Hình 2.59: Ví dụ về cây

INFO-CIRCLE Definition 34 (Cây khung)

Xét đồ thị 𝐺 = (𝑉,𝐸) và 𝑇 = (𝑉 ′, 𝐸′) là đồ thị con của 𝐺. Nếu 𝑇 là cây thì ta gọi 𝑇 là cây khung hoặc
cây bao trùm (hay spanning tree) của đồ thị 𝐺.

Điều kiện cần và đủ để một đồ thị vô hướng có cây khung là đồ thị đó phải liên thông.

Một đồ thị có thể có nhiều cây khung. Ở hình 2.60 ta xóa đi cạnh 𝑒23 và 𝑒46 (hai cạnh màu đỏ) thì thu được
một cây khung. Tương tự, ở hình 2.61 ta xóa đi hai cạnh màu đỏ là 𝑒13 và 𝑒23 thì cũng thu được một cây
khung khác.
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Hình 2.60: Cây khung thứ nhất
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Hình 2.61: Cây khung thứ hai

INFO-CIRCLE Theorem 13 (Daisy Chain Theorem)

Giả sử 𝑇 = (𝑉,𝐸) là đồ thị vô hướng với 𝑛 đỉnh. Khi đó các mệnh đề sau tương đương:

1. 𝑇 là cây.

2. 𝑇 không chứa chu trình đơn và có 𝑛− 1 cạnh.

3. 𝑇 liên thông và mỗi cạnh của nó đều là cầu.

4. Giữa hai đỉnh bất kì của 𝐺′ đều tồn tại đúng một đường đi đơn.

5. 𝑇 không chứa chu trình đơn nhưng nếu ta thêm vào một cạnh thì ta thu được chu trình đơn.

6. 𝑇 liên thông và có 𝑛− 1 cạnh.

Các mệnh đề trên có thể xem như các định nghĩa tương đương của cây. Trong nhiều trường hợp thì tính
chất của cây có thể thu được từ các định nghĩa này nên mình sẽ chứng minh chuỗi mệnh đề này.

INFO-CIRCLE Chứng minh 1 ⇒ 2

Từ 𝑇 là cây, theo định nghĩa thì 𝑇 không chứa chu trình đơn. Ta chứng minh cây 𝑇 có 𝑛 đỉnh thì sẽ có
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𝑛− 1 cạnh bằng quy nạp.

Với 𝑛 = 1 thì cây chỉ có thể có 0 cạnh (không nối đi đâu cả).

Giả thiết quy nạp: với 𝑛 > 1 thì cây 𝑇 với 𝑛 đỉnh có 𝑛− 1 cạnh. Đặt các đỉnh là 𝑣1, 𝑣2, ..., 𝑣𝑛.

Bây giờ ta thêm đỉnh 𝑣𝑛+1 vào cây 𝑇 để được cây mới 𝑇 ′. Ta cần chứng minh cây mới có 𝑛 cạnh.

Do 𝑇 liên thông nên giữa mọi cặp đỉnh 𝑢 và 𝑣 của 𝑇 đều có đường đi, giả sử là

𝑢 = 𝑣𝑖1 → 𝑣𝑖2 → · · · → 𝑣𝑖𝑘 = 𝑣.

Khi đó, nếu cả hai đỉnh 𝑢 và 𝑣 đều có cạnh nối với 𝑣𝑛+1 thì ta thu được chu trình

𝑣𝑛+1 → 𝑢 = 𝑣𝑖1 → 𝑣𝑖2 → · · · → 𝑣𝑖𝑘 = 𝑣 → 𝑣𝑛+1,

như vậy sẽ không tạo thành cây. Nghĩa là từ 𝑣𝑛+1 chỉ có thể nối với một trong các đỉnh 𝑣1, ..., 𝑣𝑛 nên
số cạnh chỉ có thể tăng lên 1 để có được cây mới. Khi đó, với 𝑛+ 1 đỉnh ta có 𝑛 cạnh, theo quy nạp ta
có điều phải chứng minh.

INFO-CIRCLE Chứng minh 2 ⇒ 3

Giả sử 𝑇 có 𝑘 thành phần liên thông 𝑇1, 𝑇2, ..., 𝑇𝑘. Vì 𝑇 không chứa chu trình đơn nên các thành phần
liên thông của 𝑇 cũng không chứa chu trình đơn, tức là 𝑇1, 𝑇2, ..., 𝑇𝑘 đều là cây.

Gọi 𝑛1, 𝑛2, ..., 𝑛𝑘 lần lượt là số đỉnh của 𝑇1, 𝑇2, ..., 𝑇𝑘 thì

• 𝑛1 + · · ·+ 𝑛𝑘 = 𝑛;

• cây 𝑇1 có 𝑛1 − 1 cạnh (từ chứng minh 1 ⇒ 2), tương tự cây 𝑇2 có 𝑛2 − 1 cạnh, ..., 𝑇𝑘 có 𝑛𝑘 − 1
cạnh.

Cộng số lượng cạnh của 𝑘 cây lại ta có tổng số cạnh của cây 𝑇 , kết hợp giả thiết ban đầu ta có

𝑛1 + 𝑛2 + · · ·+ 𝑛𝑘 − 𝑘 = 𝑛− 𝑘 = 𝑛− 1.

Như vậy 𝑘 = 1, nghĩa là 𝑇 liên thông. Từ đây, do 𝑇 không có chu trình nên nếu bỏ một cạnh bất kì
thì đồ thị mới cũng không có chu trình. Đồ thị mới không thể liên thông vì nếu giả sử ngược lại (phản
chứng) đồ thị mới liên thông thì nó sẽ phải là cây có 𝑛 đỉnh. Nhưng hiện tại đồ thị chỉ có 𝑛− 2 cạnh vì
đã bỏ đi một cạnh, không phải 𝑛− 1. Do đó cạnh bỏ đi là cầu.

INFO-CIRCLE Chứng minh 3 ⇒ 4

Gọi 𝑢 và 𝑣 là hai đỉnh bất kì trong 𝑇 . Vì 𝑇 liên thông nên sẽ có một đường đi đơn từ 𝑢 tới 𝑣 là

𝑢 = 𝑣𝑖1 → 𝑣𝑖2 → · · · → 𝑣𝑖𝑘 = 𝑣.

Giả sử tồn tại một đường đi đơn khác từ 𝑢 tới 𝑣 là

𝑢 = 𝑣𝑗1 → 𝑣𝑗2 → · · · → 𝑣𝑗𝑙 = 𝑣.

Khi đó nếu ta xóa đi một cạnh ở đường đi đơn đầu nhưng không nằm trên đường đi đơn thứ hai thì 𝑢
vẫn tới được 𝑣 nhờ vào đường đi đơn thứ hai. Nói cách khác 𝑢 và 𝑣 vẫn liên thông nên dữ kiện "mọi
cạnh đều là cầu" mâu thuẫn.

2.8. Toán rời rạc 269



Math Book

Nói rõ hơn, không mất tính tổng quát, giả sử đường đi đơn thứ nhất và thứ hai có cạnh chung là 𝑣𝑖2 → 𝑣𝑖3 ,
nghĩa là 𝑣𝑖2 = 𝑣𝑗2 và 𝑣𝑖3 = 𝑣𝑗3 . Khi đó nếu ta xóa cạnh 𝑣𝑖2 → 𝑣𝑖3 thì 𝑢 vẫn tới được 𝑣 và số lượng thành
phần liên thông không tăng.

INFO-CIRCLE Chứng minh 4 ⇒ 5

Cây 𝑇 sẽ không chứa chu trình đơn vì khi đó sẽ có hai đường đi đơn từ hai điểm bất kì trên chu trình đó
(chúng ta có thể tưởng tượng đi cùng chiều và ngược chiều kim đồng hồ đều có thể đi từ 1 tới 3).

Khi đó, hai đỉnh bất kì 𝑢 và 𝑣 luôn liên thông, nghĩa là tồn tại đường đi

𝑢 = 𝑣𝑖1 → 𝑣𝑖2 → · · · → 𝑣𝑖𝑘 = 𝑣.

Nếu ta thêm bất kì bất kì cạnh nào nối giữa hai đỉnh trên đường đi, không mất tính tổng quát giả sử là
𝑣𝑖1 và 𝑣𝑖𝑘 , khi đó ta có chu trình vì

𝑢 = 𝑣𝑖1 → 𝑣𝑖2 → · · · → 𝑣𝑖𝑘 = 𝑣 → 𝑣𝑖1 .

Như vậy cứ thêm vào một cạnh ta sẽ có chu trình.

INFO-CIRCLE Chứng minh 5 ⇒ 6

Giữa hai đỉnh bất kì 𝑢 và 𝑣 của 𝑇 có hai trường hợp:

• 𝑢 và 𝑡 được nối bởi một cạnh;

• 𝑢 và 𝑡 không kề nhau (không có cạnh nối). Ở trường hợp này, nếu chúng ta vẽ cạnh nối 𝑢 với 𝑣 thì
theo giả thiết sẽ tạo ra chu trình. Điều này chỉ xảy ra khi và chỉ khi có một đường đi đơn từ 𝑢 tới
𝑣.

Như vậy trong cả hai trường hợp thì luôn tồn tại đường đi từ 𝑢 tới 𝑣, nói cách khác là hai đỉnh liên
thông. Điều này đúng với mọi đỉnh trong đồ thị nên 𝑇 liên thông.

Do ta đã chứng minh được 𝑇 liên thông, và giả thiết là 𝑇 không chứa chu trình đơn, nên suy ra 𝑇 là cây.
Như vậy 𝑇 có 𝑛− 1 cạnh.

INFO-CIRCLE Chứng minh 6 ⇒ 1

Sử dụng phản chứng, giả sử 𝑇 không là cây. Khi đó 𝑇 không liên thông hoặc 𝑇 có chu trình. Do giả
thiết 𝑇 liên thông nên ta chỉ xét trường hợp 𝑇 có chu trình.

Nếu ta bỏ một cạnh trên chu trình này thì 𝑇 vẫn liên thông. Nếu 𝑇 vẫn còn chu trình thì ta lại bỏ đi
một cạnh của chu trình đó. Tiếp tục cho đến khi 𝑇 không còn chu trình nào. Lúc này 𝑇 là cây nhưng
lại có ít hơn 𝑛− 1 cạnh do chúng ta đã bỏ ít nhất một cạnh. Điều này vô lí vì ở chứng minh trên (1 ⇒
2), nếu 𝑇 là cây thì 𝑇 có 𝑛− 1 cạnh. Như vậy theo phản chứng suy ra 𝑇 là cây.

INFO-CIRCLE Theorem 14

Số cây khung của đồ thị đầy đủ 𝐾𝑛 là 𝑛𝑛−2.

270 Chapter 2. Toán khó quá người ơi



Math Book

Đồ thị Euler và đồ thị Hamilton

Đồ thị Euler

Leonhard Euler là người đầu tiên mô hình hóa bài toán rời rạc này thành một hệ thống hoàn chỉnh là Lý
thuyết đồ thị hiện nay.

INFO-CIRCLE Definition 35 (Chu trình Euler)

Chu trình đi qua tất cả các cạnh của đồ thị, mỗi cạnh đúng một lần, được gọi là chu trình Euler (hay
Euler circuit, Euler circle, Euler tour).

INFO-CIRCLE Definition 36 (Đường đi Euler)

Đường đi đi qua tất cả các cạnh của đồ thị, mỗi cạnh đúng một lần, được gọi là đường đi Euler.

Lúc này, bài toán 7 cây cầu nổi tiếng của thành phố Konigsberg (nay là thành phố Kaliningrad thuộc Liên
bang Nga) trở thành bài toán xác định xem có tồn tại chu trình Euler hay không.

INFO-CIRCLE Definition 37 (Đồ thị Euler)

Đồ thị có chu trình Euler được gọi là đồ thị Euler (hay Eulerian graph, unicursal graph).

INFO-CIRCLE Definition 38 (Đồ thị nửa Euler)

Đồ thị có đường đi Euler được gọi là đồ thị nửa Euler (hay Semi-Eulerian graph, Traversable
graph).

Các định lí và thuật toán trên đồ thị Euler

INFO-CIRCLE Theorem 15

Một đồ thị vô hướng liên thông 𝐺 = (𝑉,𝐸) có chu trình Euler khi và chỉ khi mọi đỉnh của nó đều có bậc
chẵn.

INFO-CIRCLE [TODO] Chứng minh

Chiều thuận. Nếu 𝐺 có chu trình Euler thì khi đi theo chu trình đó, mỗi đỉnh sẽ đi vào một lần và
đi ra một lần nên bậc của nó tăng lên 2. Áp dụng cho mỗi lần gặp một đỉnh thì cuối cùng bậc của mỗi
đỉnh phải là số chẵn

[TODO] Chiều ngược. Nếu mọi đỉnh của đồ thị đều có bậc chẵn, ta cần xây dựng cách tìm chu trình
Euler.
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INFO-CIRCLE Corollary 3

Một đồ thị vô hướng liên thông 𝐺 = (𝑉,𝐸) có đường đi Euler khi và chỉ khi nó có đúng hai đỉnh bậc lẻ.

INFO-CIRCLE Chứng minh

Điều kiện của đường đi Euler "lỏng hơn" chu trình vì điểm đầu không cần phải trùng với điểm cuối. Do
đó nếu 𝐺 có đường đi Euler thì đỉnh bắt đầu và kết thúc sẽ có bậc lẻ, các đỉnh còn lại có bậc chẵn. Ngược
lại nếu đồ thị liên thông có đúng hai đỉnh bậc lẻ, khi đó ta vẽ cạnh nối hai đỉnh đó thì tất cả đỉnh của
đồ thị đều có bậc chẵn, nghĩa là tồn tại chu trình Euler. Loại bỏ cạnh đó thì ta có đường đi Euler.

[TODO] Chu trình Euler và đường đi Euler của đồ thị có hướng liên thông yếu.

Đồ thị Hamilton

Khái niệm đường đi và chu trình Hamilton được đưa ra bởi William Rowan Hamilton (1856).

INFO-CIRCLE Definition 39 (Chu trình Hamilton và đồ thị Hamilton)

Đồ thị 𝐺 = (𝑉,𝐸) được gọi là đồ thị Hamilton (hay Hamilton graph) nếu tồn tại chu trình đơn đi
qua tất cả các đỉnh.

Chu trình đơn đi qua tất cả các đỉnh gọi là chu trình Hamilton (hay Hamiltonian circuit, Hamilton
circle).

Người ta quy ước rằng đồ thị chỉ gồm một đỉnh là đồ thị Hamilton nhưng đồ thị gồm hai đỉnh liên thông
không phải là đồ thị Hamilton.

2.9 Topology

2.9.1 Nhập môn topology
Phần này mình sử dụng tài liệu [14] (phần II, bài 3).

INFO-CIRCLE Definition 40

Không gian topo (hay topological space) là một cặp (𝑋, 𝜏), trong đó:

1. 𝑋 là một tập hợp khác rỗng.

2. 𝜏 là một họ các tập con của 𝑋 thỏa ba tiên đề

• ∅ ∈ 𝜏 và 𝑋 ∈ 𝜏 ;

• hợp bất kì một họ (hữu hạn hoặc vô hạn) các tập thuộc 𝜏 cũng là tập thuộc 𝜏 ;

• giao của một số hữu hạn các tập thuộc 𝜏 cũng là tập thuộc 𝜏 .

Các phần tử thuộc 𝜏 được gọi là tập mở (hay open set, открытое множество).

Như vậy:

• ∅ và 𝑋 là các tập mở;
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• hợp của các tập mở cũng là tập mở;

• giao của một số hữu hạn tập mở cũng là tập mở.

INFO-CIRCLE Example 22

Topo thô hay topo tầm thường (indiscrete/trivial) là tập 𝜏 = {∅, 𝑋}. Topo này chỉ gồm hai phần tử là
tập rỗng và bản thân tập 𝑋. Dễ thấy ba tiền đề được thỏa mãn.

INFO-CIRCLE Example 23

Khi 𝜏 = 𝑃 (𝑋) là tập hợp tất cả tập con của tập 𝑋.

Ví dụ, nếu 𝑋 = {𝑥1, 𝑥2} thì

𝑃 (𝑋) = {∅, {𝑥1}, {𝑥2}, {𝑥1, 𝑥2}}.

Một kết quả thông dụng là khi tập 𝑋 có 𝑛 phần tử thì 𝑃 (𝑋) có 2𝑛 phần tử. Lúc này 𝜏 cũng thỏa ba
tiên đề trong định nghĩa.

INFO-CIRCLE Example 24

Topo chuẩn (standard) trên R: tập 𝑈 ⊆ R được gọi là mở nếu với mọi điểm 𝑥 ∈ 𝑈 , tồn tại một khoảng
mở (𝑎; 𝑏) sao cho 𝑥 ∈ (𝑎; 𝑏) ⊆ 𝑈 .

Tập mở (open set, открытое множество) là định nghĩa các phần tử trong 𝜏 .

Tập đóng (closed set, замкнутое множество) nếu phần của nó trong 𝑋 là tập mở. Nói cách khác, nếu
𝐹 ⊆ 𝑋 là tập đóng thì 𝑋 ∖ 𝐹 là tập mở.

INFO-CIRCLE Remark 11

Tập mở và tập đóng không phải hai khái niệm loại trừ nhau. Một tập thuộc 𝜏 có thể vừa mở và vừa
đóng.

Ở Ví dụ 23 thì {𝑥1} và {𝑥2} là các tập mở. Đồng thời, {𝑥1} = 𝑋 ∖ {𝑥2} nên {𝑥1} cũng là tập đóng, tương
tự cho {𝑥2}.
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3
Mật mã học cũng khó

3.1 Đại số Bool và mật mã học

3.1.1 Giới thiệu
Giới thiệu

Trung tâm của stream cipher và block cipher là các hàm boolean.

Ở những bài viết ở phần "Đại số boolean và mật mã học" này mình sẽ mô tả các đặc trưng khi xây dựng
các hệ mật mã dạng dòng (stream cipher) và khối (block cipher) từ các hàm boolean.

Nhắc lại, hàm boolean 𝑛 biến là ánh xạ 𝑓 từ {0, 1}𝑛 tới {0, 1}. Ở phần này mình sẽ sử dụng kí hiệu trường
F2. Như vậy hàm boolean trên 𝑛 biến là ánh xạ

𝑓 : F𝑛
2 → F2, 𝑓(𝑥1, 𝑥2, . . . , 𝑥𝑛) = 𝑦.

Tiếp theo, khi "ghép" các hàm boolean lại ta có hàm boolean vector (hay vectorial Boolean function).
Như vậy hàm boolean vector là ánh xạ

𝐹 : F𝑛
2 → F𝑚

2 , 𝑓(𝑥1, 𝑥2, . . . , 𝑥𝑛) = (𝑦1, 𝑦2, . . . , 𝑦𝑚) ∈ F𝑚
2 .

Như vậy chúng ta có thể coi mỗi hàm 𝑦𝑖 = 𝑓𝑖(𝑥1, . . . , 𝑥𝑛) là một hàm boolean nên khi ghép cạnh nhau chúng
ta có hàm boolean vector.

𝑥1 𝑥2 · · · 𝑥𝑛 𝑓1(𝑥) 𝑓2(𝑥) · · · 𝑓𝑚(𝑥)

0 0 · · · 0 𝑓1(0, . . . , 0) 𝑓2(0, . . . , 0) · · · 𝑓𝑚(0, . . . , 0)
...

...
...

...
...

...
...

...
1 1 · · · 1 𝑓1(1, . . . , 1) 𝑓2(1, . . . , 1) · · · 𝑓𝑚(1, . . . , 1)

Ở đây 𝑥 = (𝑥1, . . . , 𝑥𝑛) ∈ F𝑛
2 .
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Bảng kí hiệu

Kí hiệu Ý nghĩa
ℱ𝑛 Tập hợp tất cả hàm boolean 𝑛 biến
𝒜𝑛 Tập hợp tất cả hàm boolean affine 𝑛 biến
ℒ𝑛 Tập hợp tất cả hàm boolean tuyến tính 𝑛 biến
deg 𝑓 Bậc của hàm boolean 𝑓 ở dạng chuẩn tắc đại số (ANF)
wt(𝑓) Trọng số của hàm boolean 𝑓
𝑁𝑓 Nonlinearity của hàm boolean 𝑓
𝑊𝑓 (𝑎) Hệ số Walsh của hàm 𝑓 ứng với vector 𝑎

Các tính chất mật mã của hàm boolean

Bậc đại số cao

Tham số deg 𝑓 phải cao. Điều này đặc biệt quan trọng trong các stream cipher sử dụng LFSR.

Nonlinearity cao

Nonlinearity cực kì quan trọng trong việc chống phá mã tuyến tính (linear cryptanalysis). Nonlinearity càng
cao, dấu vết tuyến tính càng thấp.

Hàm boolean có nonlinearity cực đại được gọi là hàm bent (hay bent function).

Theo phần đại số boolean ở trước thì

𝑁𝑓 6 2𝑛−1 − 1

2
· 2𝑛/2−1

khi 𝑛 chẵn.

Điều kiện cần và đủ để tồn tại hàm boolean 𝑛 biến là 𝑛 chẵn.

Nếu 𝑛 lẻ thì không tồn tại hàm bent 𝑛 biến. Tuy nhiên chúng ta vẫn có thể xem xét các hàm có nonlinearity
𝑁𝑓 lớn nhất và gọi chúng là Almost Bent (AB).

Khi đó

𝑁𝑓 6 2𝑛−1 − 2(𝑛−1)/2.

Bài tập

1. Chứng minh rằng khoảng cách từ hàm boolean 𝑓 với 𝑛 biến tới hàm boolean affine

𝑙𝑎,𝑏(𝑥) = 𝑎1𝑥1 ⊕ . . .⊕ 𝑎𝑛𝑥𝑛 ⊕ 𝑏

với 𝑎 = (𝑎1, . . . , 𝑎𝑛) ∈ F𝑛
2 và 𝑏 ∈ F2 được tính theo công thức:

𝑑(𝑓, 𝑙𝑎,0(𝑥)) = 2𝑛−1 − 1

2
𝑊𝑓 (𝑎),

𝑑(𝑓, 𝑙𝑎,1(𝑥)) = 2𝑛−1 +
1

2
𝑊𝑓 (𝑎).

2. Chứng minh rằng nonlinearity của hàm boolean 𝑓 bất kì được tính bởi công thức

𝑁𝑓 = 2𝑛−1 − 1

2
max
𝑦
|𝑊𝑓 (𝑦)|.

3. Chứng minh rằng hàm boolean 𝑓 là hàm bent khi và chỉ khi 𝑊𝑓 (𝑦) = ±2𝑛/2 với mọi vector 𝑦.

276 Chapter 3. Mật mã học cũng khó



Math Book

Balanced

Hàm boolean được gọi là balanced (hay cân bằng, сбалансированный) nếu nhận giá trị 0 và 1 nhiều
như nhau. Như vậy nếu hàm boolean 𝑓 trên 𝑛 biến cân bằng khi và chỉ khi

wt(𝑓) = 2𝑛−1.

Bài tập: Xác định số lượng hàm boolean cân bằng có 𝑛 biến.

𝑟-resillient

Đặt 𝑟 là số nguyên không âm nhỏ hơn 𝑛. Hàm boolean 𝑓 với 𝑛 biến được gọi là 𝑟-resillient (hay 𝑟-устойчивой)
nếu với mọi hàm con mà nhận được từ việc cố định 𝑟 biến thì đều là hàm cân bằng.

Hàm boolean này có độ an toàn cao hơn so với hàm cân bằng, giúp chống lại cách tấn công correlation
cryptanalysis.

Correlation immune

Hàm boolean 𝑓 với 𝑛 biến được gọi là correlation immune of order 𝑟 (корреляционно-иммунной
порядка 𝑟, tạm dịch là kháng tương quan bậc 𝑟) với 1 6 𝑟 6 𝑛 nếu với mọi hàm con 𝑓𝑎1,...,𝑎𝑟

𝑖1,...,𝑖𝑟
nhận được từ

việc cố định 𝑟 biến thì đều thỏa đẳng thức

wt(𝑓𝑎1,...,𝑎𝑟

𝑖1,...,𝑖𝑟
) =

wt(𝑓)
2𝑟

.

Bài tập

1. Chứng minh rằng hàm boolean 𝑓 là 𝑟-resillient khi và chỉ khi nó cân bằng và correlation immune bậc
𝑟.

2. (Định lí Siegenthaler I, 1984). Chứng minh rằng nếu hàm boolean 𝑓 là correlation immune bậc 𝑟
thì deg 𝑓 + 𝑟 6 𝑛.

3. (Định lí Siegenthaler II) Chứng minh rằng nếu hàm boolean 𝑓 là 𝑟-resillient và 𝑟 6 𝑛 − 2 thì
deg 𝑓 + 𝑟 6 𝑛− 1.

Chứng minh cho các định lí Siegenthaler có thể tìm ở [15].

4. Chứng minh rằng hàm boolean 𝑓 là correlation immune bậc 𝑟 khi và chỉ khi 𝑊𝑓 (𝑦) = 0 với mọi vector
𝑦 thỏa 1 6 wt(𝑦) 6 𝑟.

Năm 2007 Д. Г. Фон–Дер–Флаасс tìm được chặn trên cho correlation immune của hàm boolean không cân
bằng.

5. (Định lí Д. Г. Фон–Дер–Флаасс, [16]). Gọi 𝑓 là hàm boolean không cân bằng có correlation
immune bậc 𝑟 khác 0. Chứng minh rằng 𝑟 6 (2𝑛/3)− 1.

6. Chứng minh rằng với hàm boolean 𝑟-resillient 𝑓 sao cho 𝑟 6 𝑛 − 2 thì ta có bất đẳng thức 𝑁𝑓 6
2𝑛−1 − 2𝑟+1 [17].

Algebraic immune

Tính chất này được giới thiệu vào năm 2004.

Algebraic immune (tạm dịch là kháng đại số) của hàm boolean 𝑓 là số 𝑑 nhỏ nhất sao cho tồn tại hàm
boolean 𝑔 bậc 𝑑, không đồng nhất với 0, thỏa mãn 𝑓𝑔 = 0 hoặc (𝑓 ⊕ 1)𝑔 = 0.

Algebraic immune của hàm 𝑓 được kí hiệu là AI(𝑓).
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Ví dụ algebraic immune hàm 𝑓(𝑥) = 𝑥1𝑥2𝑥3 ⊕ 𝑥1 bằng 1, vì ta có thể chọn 𝑔(𝑥) = 𝑥1 ⊕ 1. Khi đó
𝑓𝑔 = (𝑥1𝑥2𝑥3 ⊕ 𝑥1)(𝑥1 ⊕ 1) = 1.

Bài tập

1. Chứng minh rằng algebraic immune của hàm boolean 𝑓 bất kì với 𝑛 biến không vượt quá giá trị ⌈𝑛/2⌉.

2. Chứng minh một số tính chất cơ bản của algebraic immune:

• AI(𝑓) 6 deg 𝑓 ;

• AI(𝑓 · 𝑔) 6 AI(𝑓) + AI(𝑔);

• AI(𝑓 ⊕ 𝑔) 6 AI(𝑓) + AI(𝑔);

• AI(𝑓) = AI(𝑔) nếu 𝑔 nhận được từ 𝑓 qua một biến đổi affine trên các biến, nghĩa là 𝑔(𝑥) = 𝑓(𝐴𝑥⊕𝑏)
với 𝐴 là ma trận khả nghịch bậc 𝑛 và 𝑏 là vector.

3. Xác định giá trị của AI(𝑓) với các hàm boolean sau và tìm hàm 𝑔 tương ứng:

• 𝑓(𝑥) = 𝑥1𝑥2𝑥4 ⊕ 𝑥1𝑥2 ⊕ 1;

• 𝑓(𝑥) = 0;

• 𝑓(𝑥) = 1;

• 𝑓(𝑥) = 𝑥1 · · ·𝑥𝑘 với 𝑘 = 1, 2, . . . , 𝑛;

• 𝑓(𝑥) = 𝑥1 ⊕ . . .⊕ 𝑥𝑛;

• 𝑓(𝑥) = 𝑥1𝑥2 ⊕ . . .⊕ 𝑥𝑛−1𝑥𝑛 (tổng tất cả cặp tích);

• 𝑓(𝑥) = 𝑥1𝑥2𝑥3𝑥4 ⊕ 𝑥5𝑥6.

4. Cho ví dụ hàm boolean 𝑓 với giá trị algebraic immune nhỏ nhất, nghĩa là AI(𝑓) = 𝑑 với 𝑑 = 1, 2, . . . , 𝑘.

Differentially 𝛿-uniform

Differential 𝛿-uniform

Khái niệm này lần đầu được định nghĩa trong [18].

Hàm boolean vector 𝐹 : F𝑛
2 → F𝑛

2 gọi là differentially 𝛿- uniform nếu với mọi vector 𝑎 khác không và
vector 𝑏 bất kì thì phương trình

𝐹 (𝑥)⊕ 𝐹 (𝑥⊕ 𝑎) = 𝑏

có không quá 𝛿 nghiệm với 𝛿 là số nguyên dương.

Để ý rằng nếu phương trình có nghiệm là 𝑥 thì cũng có nghiệm 𝑥⊕ 𝑎. Số 𝛿 càng nhỏ thì phép biến đổi của
thuật toán mã hóa càng ít có dấu hiệu vi sai, tăng khả năng kháng phá mã vi sai.

Một cách tổng quát ta có định nghĩa sau.

INFO-CIRCLE Definition (Differential 𝛿-uniform)

Hàm boolean vector từ F𝑛
𝑝 tới F𝑚

𝑝 được gọi là differential 𝛿- uniform nếu với mọi 𝑎 ∈ F𝑛
𝑝 khác không

và với mọi F𝑚
𝑝 thì phương trình

𝐹 (𝑥+ 𝑎)− 𝐹 (𝑥) = 𝑏

có không quá 𝛿 nghiệm.
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Trong mật mã học thường dùng 𝑝 = 2. Thông thường các hàm boolean tập trung vào việc xây dựng các
S-box nên 𝑛 thường là 4 hoặc 8.

Perfect Nonlinear và Almost Perfect Nonlinear

INFO-CIRCLE Definition (Hàm Perfect Nonlinear)

Hàm boolean vector 𝐹 từ F𝑛
𝑝 tới F𝑚

𝑝 được gọi là hàm Perfect Nonlinear (PN) nếu phương trình

𝐹 (𝑥+ 𝑎)− 𝐹 (𝑥) = 𝑏

có đúng 𝑝𝑛−𝑚 nghiệm với mọi vector 𝑎 ∈ F𝑛
𝑝 khác không và 𝑏 ∈ F𝑚

𝑝 .

Số lượng hàm PN rất ít. Đối với các giá trị 𝑛 và 𝑝 thường được sử dụng trong mật mã thậm chí không tồn
tại hàm PN. Do đó chúng ta sẽ nới lỏng điều kiện thành hàm Almost Perfect Nonlinear (APN).

INFO-CIRCLE Definition (Hàm Almost Perfect Nonlinear)

Hàm boolean vector 𝐹 từ F𝑛
𝑝 tới F𝑚

𝑝 được gọi là hàm Almost Perfect Nonlinear (APN) nếu phương
trình

𝐹 (𝑥+ 𝑎)− 𝐹 (𝑥) = 𝑏

có không quá hai nghiệm với mọi 𝑎 ∈ F𝑛
𝑝 khác không và với mọi 𝑏 ∈ F𝑚

𝑝 .

Bài toán khó hiện nay là xây dựng hàm APN là song ánh với số biến 𝑛 chẵn. Đặc biệt là 𝑛 có dạng lũy thừa
của 2.

Như vậy, theo định nghĩa có thể thấy điều tương đương sau

• APN là differential 2-uniform.

• PN là differential 1-uniform khi 𝑛 = 𝑚.

Hoán vị APN

Từ trước tới nay có ba phương pháp xây dựng hoán vị APN trên F𝑛
2 . Tuy nhiên cả ba phương pháp chỉ hoạt

động trên 𝑛 lẻ. Câu hỏi về việc xây dựng hoán vị APN tới giờ vẫn là vấn đề mở với 𝑛 chẵn, dặc biệt là 𝑛
có dạng lũy thừa của 2 như đã nói ở trên.

Bài tập

Chứng minh hàm 𝑆 : F8
2 → F8

2 của S-box trong thuật toán AES là differentially 4-uniform.

Bài tập này cho thấy rằng S-box tốt thì 𝛿 sẽ nhỏ nhất có thể nhằm kháng phá mã vi sai.

3.1.2 Đại số Boolean
Boolean (hay luận lý) chỉ giá trị đúng hoặc sai của mệnh đề nào đó.

Theo cách hiểu cơ bản, boolean gồm hai giá trị 0 hoặc 1 (sai hoặc đúng). Chương này tham khảo chính từ
[19], [20] và [21].

Một số kí hiệu hay dùng:
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1. Để chỉ tập hợp tất cả hàm boolean 𝑛 biến ta dùng ℱ𝑛.

2. Để chỉ tập hợp tất cả hàm boolean affine 𝑛 biến ta dùng 𝒜𝑛.

3. Để chỉ tập hợp tất cả hàm boolean tuyến tính 𝑛 biến ta dùng ℒ𝑛.

Hàm boolean 𝑓 đối với các biến 𝑥1, 𝑥2, ..., 𝑥𝑛 là hàm số nhận giá trị trong F𝑛
2 và trả về giá trị thuộc F2.

Nói cách khác 𝑓 là ánh xạ từ F𝑛
2 tới F2.

Ta kí hiệu hàm boolean 𝑛 biến là 𝑓(𝑥1, 𝑥2, . . . , 𝑥𝑛).

Do 𝑥𝑖 ∈ F2 nên ta có 2𝑛 vector (bộ số) (𝑥1, 𝑥2, . . . , 𝑥𝑛). Giá trị của hàm 𝑓 lại nằm trong tập {0, 1} nên ứng
với mỗi vector có thể có 2 giá trị của hàm boolean, và ta có 2𝑛 vector nên số lượng hàm boolean có thể có
là 22

𝑛 .

Một số toán tử boolean hay dùng: đối, AND, OR, XOR, NAND, NOR, kéo theo, tương đương.

Để biểu diễn hàm boolean chúng ta dùng bảng chân trị. Bảng chân trị tương ứng với các toán tử boolean
trên là:

AND OR XOR NAND NOR
𝑥1 𝑥2 𝑥1 · 𝑥2 𝑥1 ∨ 𝑥2 𝑥1 ⊕ 𝑥2 𝑥1|𝑥2 𝑥1 ↓ 𝑥2
0 0 0 0 0 1 1
0 1 0 1 1 1 0
1 0 0 1 1 1 0
1 1 1 1 0 0 0

Toán tử đối làm đổi giá trị của hàm bool (0 thành 1 và 1 thành 0), kí hiệu 𝑥.

Bảng 3.1: Toán tử đối

𝑥 𝑥

0 1
1 0

Bảng 3.2: Toán tử kéo theo và tương đương

𝑥1 𝑥2 𝑥1 → 𝑥2 𝑥1 ∼ 𝑥2
0 0 1 1
0 1 1 0
1 0 0 0
1 1 1 1

Toán tử tương đương còn chỉ sự tương đương của hai mệnh đề logic.

Khi hai biểu thức logic có cùng bảng chân trị thì hai mệnh đề đó tương đương nhau. Do đó ta có thể viết
một số kết quả như sau (từ các bảng chân trị cơ bản trên):

• 𝑥1|𝑥2 ∼ 𝑥1 · 𝑥2. Ở đây ta đổi dấu từng giá trị hàm boolean 𝑥1 · 𝑥2;

• 𝑥1 ↓ 𝑥2 ∼ 𝑥1 ∨ 𝑥2. Tương tự ta đổi dấu từng giá trị hàm boolean 𝑥1 ∨ 𝑥2.
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Hàm boolean

Algebraic Normal Form

Đặt 𝑓(𝑥) là hàm boolean 𝑛 biến. Với số 𝑚 6 𝑛 thì

𝑓(𝑥1, . . . , 𝑥𝑛) =
⨁︁

𝑎1,...,𝑎𝑚∈F2

(𝑥1 ⊕ 𝑎1 ⊕ 1)× · · ·×

×(𝑥𝑚 ⊕ 𝑎𝑚 ⊕ 1) · 𝑓(𝑎1, . . . , 𝑎𝑚, 𝑥𝑚+1, . . . , 𝑥𝑛)

INFO-CIRCLE Chứng minh

Chọn bộ (𝑏1, . . . , 𝑏𝑚) bất kì thuộc F𝑚
2 .

Thay 𝑥𝑖 bởi 𝑏𝑖 với 𝑖 = 1, . . . ,𝑚 thì

𝑓(𝑏1, . . . , 𝑏𝑚, 𝑥𝑚+1, 𝑥𝑚) =
⨁︁

𝑎1,...,𝑎𝑚∈F2

(𝑏1 ⊕ 𝑎1 ⊕ 1) · · · (𝑏𝑚 ⊕ 𝑎𝑚 ⊕ 1) · 𝑓(𝑎1, . . . , 𝑎𝑚, 𝑥𝑚+1, . . . , 𝑥𝑛).

Ở vế phải, tích
𝑚∏︀
𝑖=1

(𝑏𝑖 ⊕ 𝑎𝑖 ⊕ 1) = 1 khi và chỉ khi 𝑏𝑖 ⊕ 𝑎𝑖 ⊕ 1 = 1 với mọi 𝑖 = 1, . . . ,𝑚.

Nói cách khác là khi 𝑏𝑖 ≡ 𝑎𝑖 thì ta còn 𝑓 ở vế phải, còn các trường hợp kia thì bằng 0. Do đó ta có điều
phải chứng minh.

Khi đó, 𝑓(𝑎1, . . . , 𝑎𝑚, 𝑥𝑚+1, . . . , 𝑥𝑚) được gọi là hệ số khai triển của hàm 𝑓 theo các biến 𝑥1, ..., 𝑥𝑚.

INFO-CIRCLE Example 2.8

Xét 𝑓(𝑥1, 𝑥2) = 𝑥1𝑥2 ⊕ 1. Với 𝑚 = 1, ta có

𝑎1 = 0⇒ (𝑥1 ⊕ 0⊕ 1) · 𝑓(0, 𝑥2) = (𝑥1 ⊕ 1) · 1 = 𝑥1 ⊕ 1,

𝑎1 = 1⇒ (𝑥1 ⊕ 1⊕ 1) · 𝑓(1, 𝑥2) = 𝑥1 ⊕ (𝑥2 ⊕ 1).

Như vậy

𝑓(𝑥1, 𝑥2) = (𝑥1 ⊕ 1)⊕ (𝑥1 · (𝑥2 ⊕ 1)) .

Nếu khai triển vế phải ra chúng ta thấy bằng với hàm 𝑓 ban đầu.

Tương ứng với 𝑚 biến ta có 2𝑚 hệ số khai triển.

Đặt 𝑓1, ..., 𝑓2𝑚 là các hệ số khai triển hàm 𝑓 theo 𝑚 biến bất kì. Khi đó

wt(𝑓) =
2𝑚∑︁
𝑖=1

wt(𝑓𝑖). (3.1)

INFO-CIRCLE Definition 2.21 (Algebraic Normal Form)

Với hàm boolean 𝑛 biến 𝑓(𝑥1, 𝑥2, . . . , 𝑥𝑛), algrebaric normal form (hay ANF, dạng chuẩn tắc đại
số, алгебраическая нормальная форма) tương ứng với hàm bool đó là cách biểu diễn đa thức đó
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dưới dạng tổng các tích như sau

𝑓(𝑥1, 𝑥2, . . . , 𝑥𝑛) = 𝑎0 ⊕ 𝑎1𝑥1 ⊕ 𝑎2𝑥2 ⊕ 𝑎3𝑥1𝑥2 ⊕ . . .⊕ 𝑎𝑘𝑥1𝑥2 . . . 𝑥𝑛

với 𝑎𝑖 ∈ {0, 1}.

Ta thấy rằng có 𝑛 biến, do đó có 2𝑛 hệ số 𝑎𝑖 với mỗi 𝑖 = 0, 1, . . . , 2𝑛 − 1.

Trong các tài liệu tiếng Nga thì ANF còn được gọi là đa thức Zhegalkin (hay полином Жегалкина)

INFO-CIRCLE Definition 2.22 (Bậc của đa thức Zhegalkin)

Tương tự như bậc của một đa thức đại số thông thường, bậc của đa thức Zhegalkin là bậc của đơn thức
chứa nhiều biến 𝑥𝑖 nhất. Kí hiệu là deg(𝑓).

INFO-CIRCLE Example 2.9

Xét hàm boolean 𝑓(𝑥, 𝑦, 𝑧) = 1⊕ 𝑥⊕ 𝑦𝑧 ⊕ 𝑥𝑦𝑧. Khi đó deg(𝑓) = 3 vì đơn thức chứa nhiều biến nhất là
𝑥𝑦𝑧 có 3 đơn thức.

Xét hàm boolean 𝑓(𝑥, 𝑦, 𝑧) = 1⊕ 𝑧⊕ 𝑧𝑦⊕ 𝑥𝑦. Khi đó deg(𝑓) = 2 vì đơn thức chứa nhiều biến nhất là 𝑧𝑦
(cũng có thể xét 𝑥𝑦).

INFO-CIRCLE Definition 2.23 (Trọng số của hàm boolean)

Trọng số (hay weight, вес) của hàm boolean 𝑛 biến 𝑓(𝑥1, 𝑥2, . . . , 𝑥𝑛) là số lượng giá trị khác 0 của
hàm 𝑓 .

Kí hiệu là wt(𝑓).

INFO-CIRCLE Example 2.10

Hàm boolean 𝑓(𝑥, 𝑦) = (0, 1, 0, 1) có trọng số wt(𝑓) = 2.

Hàm boolean 𝑓(𝑥, 𝑦, 𝑧) = (1, 0, 1, 1, 1, 0, 0, 1) có trọng số wt(𝑓) = 5.

INFO-CIRCLE Property 2.2 (Một số tính chất của trọng số)

Gọi 𝑓 là hàm boolean 𝑛 biến. Khi đó:

1. 0 6 wt(𝑓) 6 2𝑛.

2. wt(𝑓 ⊕ 1) = 2𝑛 − wt(𝑓).

3. Nếu ℎ cũng là một hàm boolean 𝑛 biến thì

wt(𝑓 ⊕ ℎ) = wt(𝑓) + wt(ℎ)− 2wt(𝑓ℎ).

4. wt(𝑓) nhận giá trị lẻ khi và chỉ khi deg(𝑓) = 𝑛.
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INFO-CIRCLE Definition 2.24 (Hàm boolean cân bằng)

Nếu hàm boolean 𝑛 biến 𝑓 có trọng số bằng 2𝑛−1 thì 𝑓 được gọi là hàm boolean cân bằng (hay balanced,
сбалансированная).

INFO-CIRCLE Remark 2.5

Ta nói hàm boolean 𝑔 giả phụ thuộc vào biến 𝑦 nếu 𝑔(𝑥1, . . . , 𝑥𝑛, 𝑦) = 𝑓(𝑥1, . . . 𝑥𝑛). Khi đó wt(𝑔) =
2wt(𝑓).

INFO-CIRCLE Chứng minh

Do

𝑔(𝑥1, . . . , 𝑥𝑛, 0) = 𝑔(𝑥1, . . . , 𝑥𝑛, 1) = 𝑓(𝑥1, . . . , 𝑥𝑛)

nên ta có điều phải chứng minh.

INFO-CIRCLE Remark 2.6

Đặt 𝑓(𝑥1, . . . , 𝑥𝑛) và 𝑔(𝑦1, . . . , 𝑦𝑚) là các hàm boolean phụ thuộc vào tập các biến không giao nhau. Khi
đó:

1. Nếu 𝑓 và 𝑔 là các hàm số khác hằng 1 thì 𝑓 · 𝑔 không là hàm cân bằng.

2. 𝑓 hoặc 𝑔 cân bằng khi và chỉ khi 𝑓 ⊕ 𝑔 cân bằng.

INFO-CIRCLE Chứng minh

Đặt 𝑥 = (𝑥1, . . . , 𝑥𝑛) và 𝑦 = (𝑦1, . . . , 𝑦𝑚).

1. Đặt wt(𝑓) = 𝑟 < 2𝑛 và wt(𝑔) = 𝑠 < 2𝑚. Vì 𝑓(𝑥) · 𝑔(𝑦) = 1 khi và chỉ khi 𝑓(𝑥) = 𝑔(𝑦) = 1 nên
wt(𝑓 · 𝑔) = 𝑟 · 𝑠.

Do đó nếu 𝑓 · 𝑔 cân bằng thì 2𝑛+𝑚−1 = wt(𝑓 · 𝑔) = 𝑟 · 𝑠.

Như vậy 𝑟 = 2𝑘 và 𝑠 = 2𝑙 với 𝑘 6 𝑛− 1 và 𝑙 6 𝑚− 1.

Suy ra 𝑟 · 𝑠 6 2𝑛+𝑚−2. Điều này vô lý vì 𝑟 · 𝑠 = 2𝑛+𝑚−1 > 2𝑛+𝑚−2. Như vậy giả sử ban đầu 𝑟 < 2𝑛 là
sai, tương tự với 𝑠 và ta có điều phải chứng minh.

2. Chú ý rằng 𝑓(𝑥)⊕ 𝑔(𝑦) = 1 khi và chỉ khi 𝑓(𝑥) ̸= 𝑔(𝑦), suy ra

wt(𝑓 ⊕ 𝑔) = wt(𝑓) · wt(𝑔) + wt(𝑓) · wt(𝑔).

Điều kiện đủ. Giả sử hàm 𝑓 cân bằng, suy ra

wt(𝑓) = wt(𝑓) = 2𝑛−1.

Như vậy

wt(𝑓 ⊕ 𝑔) = 2𝑛−1 · wt(𝑔) + 2𝑛−1 · wt(𝑔) = 2𝑛−1 · 2𝑚.
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Vậy 𝑓 ⊕ 𝑔 là hàm cân bằng.

Điều kiện cần. Giả sử wt(𝑓) = 𝑟 ̸= 2𝑛−1 và wt(𝑔) = 𝑠. Như vậy

wt(𝑓 ⊕ 𝑔) = 𝑟(2𝑚 − 𝑠) + 𝑠(2𝑛 − 𝑟) = 2𝑛+𝑚−1

do 𝑓 ⊕ 𝑔 là hàm cân bằng. Tiếp theo

𝑠 =
2𝑛+𝑚−1 − 2𝑚 · 𝑟

2𝑛 − 2𝑟
= 2𝑚−1.

Vậy 𝑔 là hàm cân bằng.

Đặt

𝑓(𝑥1, . . . , 𝑥𝑛) =
⨁︁

𝑎1,...,𝑎𝑛∈F2

𝑔(𝑎1, . . . , 𝑎𝑛) · 𝑥𝑎1
1 · · ·𝑥𝑎𝑛

𝑛 . (3.2)

Hàm 𝑔 khi đó được gọi là hệ số ANF của hàm 𝑓 .

Ánh xạ 𝜇(𝑓) = 𝑔 được gọi là biến đổi Mobius (hay преобразование Мёбиуса).

INFO-CIRCLE Example 2.11

Cho hàm bool 𝑓(𝑥, 𝑦) = 𝑥 ∨ 𝑦. Ta có bảng chân trị sau.

𝑥 𝑦 𝑓(𝑥, 𝑦)

0 0 0
0 1 1
1 0 1
1 1 1

Bảng chân trị này tương đương với đa thức Zhegalkin

𝑓(𝑥, 𝑦) = 𝑥⊕ 𝑦 ⊕ 𝑥𝑦.

ANF ở ví dụ trên có thể được viết lại

𝑓(𝑥, 𝑦) = 0 · 𝑥0𝑦0 ⊕ 1 · 𝑥0𝑦1 ⊕ 1 · 𝑥1𝑦0 ⊕ 1 · 𝑥1𝑦1.

Như vậy biến đổi Mobius của hàm 𝑓 là

𝑥 𝑦 𝑓(𝑥, 𝑦) 𝑔 = 𝜇(𝑓)

0 0 0 0
0 1 1 1
1 0 1 1
1 1 1 1

Ta kí hiệu 𝑥𝑎 = 𝑥𝑎1
1 · · ·𝑥𝑎𝑛

𝑛 với

• 𝑥 = (𝑥1, . . . , 𝑥𝑛);

284 Chapter 3. Mật mã học cũng khó



Math Book

• 𝑎 = (𝑎1, . . . , 𝑎𝑛).

Do 𝑥𝑎𝑖
𝑖 = 1 khi và chỉ khi 𝑎𝑖 6 𝑥𝑖, ta có 𝑥𝑎 = 1 khi và chỉ khi 𝑎 4 𝑥 theo nghĩa 𝑎𝑖 6 𝑥𝑖 với math:i = 1,

ldots, n.

Ta có thể viết lại (3.2) là

𝑓(𝑥) =
⨁︁
𝑎∈F𝑛

2

𝑔(𝑎) · 𝑥𝑎 =
⨁︁
𝑎∈F𝑛

2

𝑔(𝑎).

INFO-CIRCLE Remark 2.7 (Biến đổi Mobius)

Đặt 𝑓 ∈ ℱ𝑛 và 𝑔 = 𝜇(𝑓). Khi đó với mọi 𝑎 ∈ F𝑛
2 ta có

𝑔(𝑎) =
⨁︁
𝑥4𝑎

𝑓(𝑥).

INFO-CIRCLE Chứng minh

Ta chứng minh bằng quy nạp theo trọng số của 𝑎.

Ở bước cơ sở khi trọng số bằng không, 𝑔(0) = 𝑓(0) với 0 là vector chứa 𝑛 số 0.

Giả thiết quy nạp: giả sử mệnh đề đúng với mọi vector 𝑎 có trọng số nhỏ hơn 𝑝.

Khi 𝑎 có trọng số bằng 𝑝, ta có

𝑓(𝑎) =
⨁︁
𝑥4𝑎

𝑔(𝑥) =

(︃⨁︁
𝑥≺𝑎

𝑔(𝑥)

)︃
⊕ 𝑔(𝑎) (tách thành phần nhỏ hơn và bằng𝑎)

=

⎛⎝⨁︁
𝑥≺𝑎

⨁︁
𝑦4𝑥

𝑓(𝑦)

⎞⎠⊕ 𝑔(𝑎) (sử dụng giả thiết quy nạp thay 𝑔(𝑥)).

Đặt

𝑆 =
⨁︁
𝑥≺𝑎

⨁︁
𝑦4𝑥

𝑓(𝑦) =
⨁︁
𝑦≺𝑎

𝑓(𝑦)
⨁︁

𝑦4𝑥≺𝑎

1 =
⨁︁
𝑦≺𝑎

𝑓(𝑦).

Đẳng thức thứ hai đúng là do 𝑦 nhận tất cả vector từ 0 tới 𝑥 mà 𝑥 ≺ 𝑎 nên thực chất có thể thay 𝑥
thành 𝑦.

Đẳng thức cuối đúng là do 2wt(𝑎)−wt(𝑦) − 1 là số lẻ nào đó mà 𝑦 4 𝑥 ≺ 𝑎, suy ra 𝑔(𝑎) = 𝑆 ⊕ 𝑓(𝑎) =⨁︀
𝑦4𝑎

𝑓(𝑦).

INFO-CIRCLE Corollary 2.1

𝜇(𝜇(𝑓)) = 𝑓.
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INFO-CIRCLE Remark 2.8

𝑔(1) =
⨁︁
𝑥∈F𝑛

2

𝑓(𝑥)

với 1 là vector có 𝑛 số 1.

INFO-CIRCLE Remark 2.9

Nếu 𝑓 ∈ ℱ𝑛 và deg 𝑓 = 𝑑 > 1 thì

2𝑛−𝑑 6 wt(𝑓) 6 2𝑛 − 2𝑛−𝑑.

INFO-CIRCLE Chứng minh

Đặt 𝑥𝑖1 · · ·𝑥𝑖𝑑 là đơn thức có bậc cao nhất ở ANF. Khai triển 𝑓 thành 𝑛− 𝑑 biến và đặt 𝑓1, ..., 𝑓2𝑛−𝑑 là
các hệ số khai triển.

Ở ANF, mỗi hệ số đều có 𝑥𝑖1 , ..., 𝑥𝑖𝑑 nên mọi hệ số đều khác hằng, suy ra

1 6 wt(𝑓𝑖) 6 2𝑑 − 1

với 𝑖 = 1, . . . , 2𝑛−𝑑. Ta có điều phải chứng minh.

Nói riêng, nếu deg 𝑓 = 1 thì 𝑓 là hàm cân bằng.

Phụ thuộc tuyến tính

INFO-CIRCLE Definition 2.25

Hàm 𝑓(𝑥1, . . . , 𝑥𝑛) được gọi là linear dependent (hay линейно зависить) vào biến 𝑥𝑖 nếu 𝑓 có thể
biểu diễn ở dạng

𝑓(𝑥1, . . . , 𝑥𝑛) = 𝑔(𝑥1, . . . , 𝑥𝑖−1, 𝑥𝑖+1, . . . , 𝑥𝑛)⊕ 𝑥𝑖

với 𝑔 ∈ ℱ𝑛−1.

Theo trường hợp riêng ở trên thì nếu 𝑓 linear dependent vào một biến bất kì thì 𝑓 là hàm cân bằng.

Ta có thể diễn đạt định nghĩa trên theo cách khác:

𝑓(𝑥1, . . . , 𝑥𝑖−1, 0, 𝑥𝑖+1, . . . , 𝑥𝑛) ̸= 𝑓(𝑥1, . . . , 𝑥𝑖−1, 1, 𝑥𝑖+1, . . . , 𝑥𝑛).

INFO-CIRCLE Definition 2.26
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Hàm 𝑓(𝑥1, . . . , 𝑥𝑛) được gọi là quasi-linear dependent (hay квазилинейно зависить) trên cặp biến
𝑥𝑖 và 𝑥𝑗 nếu 𝑓 đổi giá trị khi ta đảo giá trị ở vị trí 𝑖 và 𝑗.

Nói cách khác, ta có

𝑓(𝑥1, . . . , 𝑥𝑖, . . . , 𝑥𝑗 , . . . , 𝑥𝑛) = 𝑓(𝑥1, . . . , 𝑥̄𝑖, . . . , 𝑥̄𝑗 , . . . , 𝑥𝑛)

với 𝑥𝑖, 𝑥𝑗 ∈ F2.

INFO-CIRCLE Remark 2.10

Hàm 𝑓(𝑥1, . . . , 𝑥𝑛, 𝑦, 𝑧) là hàm quasi-linear dependent trên biến 𝑦 và 𝑧 khi và chỉ khi 𝑓 có dạng

𝑓(𝑥1, . . . , 𝑥𝑛, 𝑦, 𝑧) = 𝑔(𝑥1, . . . , 𝑥𝑛, 𝑦 ⊕ 𝑧)⊕ 𝑦.

INFO-CIRCLE Chứng minh

Điều kiện cần. Đặt 𝑥 = F𝑛
2 . Khi đó

𝑓(𝑥, 0, 0) = 𝑔(𝑥, 0), 𝑓(𝑥, 1, 1) = 𝑔(𝑥, 0)⊕ 1 = 𝑓(𝑥, 0, 0)

𝑓(𝑥, 0, 1) = 𝑔(𝑥, 1), 𝑓(𝑥, 1, 0) = 𝑔(𝑥, 1)⊕ 1 = 𝑓(𝑥, 1, 0).

Như vậy 𝑓 là quasi-linear dependent.

Điều kiện đủ. Khai triển 𝑓 theo 𝑦 và 𝑧, sau đó thay $:math:(bm{x}, 0, 0) bởi 𝑓(𝑥, 0, 0)⊕ 1, tương tự
𝑓(𝑥, 0, 1) thành 𝑓(𝑥, 0, 1)⊕ 1. Nói cách khác là

𝑓(𝑥, 𝑦, 𝑧) = (𝑦 ⊕ 1) · (𝑧 ⊕ 1) · 𝑓(𝑥, 0, 0)
⊕ (𝑦 ⊕ 1) · 𝑧 · 𝑓(𝑥, 0, 1)
⊕ 𝑦 · (𝑧 ⊕ 1) · 𝑓(𝑥, 1, 0)
⊕ 𝑦 · 𝑧 · 𝑓(𝑥, 1, 1).

(3.3)

Ta gom hai nhóm:

(𝑦 ⊕ 1) · (𝑧 ⊕ 1) · 𝑓(𝑥, 0, 0)⊕ 𝑦 · 𝑧 · 𝑓(𝑥, 1, 1)
=(𝑦𝑧 ⊕ 𝑦 ⊕ 𝑧 ⊕ 1) · 𝑓(𝑥, 0, 0)⊕ 𝑦𝑧 · (𝑓(𝑥, 0, 0)⊕ 1)

=(𝑦 ⊕ 𝑧 ⊕ 1) · 𝑓(𝑥, 0, 0)⊕ 𝑦𝑧,

và

(𝑦 ⊕ 1) · 𝑧 · 𝑓(𝑥, 0, 1)⊕ 𝑦 · (𝑧 ⊕ 1) · 𝑓(𝑥, 1, 0)
=(𝑦 ⊕ 1) · 𝑧 · 𝑓(𝑥, 0, 1)⊕ 𝑦 · (𝑧 ⊕ 1) · (𝑓(𝑥, 0, 1)⊕ 1)

=(𝑦 ⊕ 𝑧) · 𝑓(𝑥, 0, 1)⊕ 𝑦𝑧 ⊕ 𝑦.

Tóm lại, phương trình khai triển ở (3.3) sẽ tương đương với

𝑓(𝑥, 𝑦, 𝑧) = (𝑦 ⊕ 𝑧 ⊕ 1) · 𝑓(𝑥, 0, 0)⊕ (𝑦 ⊕ 𝑧) · 𝑓(𝑥, 0, 1)⏟  ⏞  
𝑔(𝑥,𝑦⊕𝑧)

⊕𝑦.
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INFO-CIRCLE Remark 2.11

Nếu hàm boolean quasi-linear dependent trên hai biến bất kì thì hàm boolean đó cân bằng.

INFO-CIRCLE Chứng minh

Đặt 𝑥 ∈ F𝑛
2 . Do 𝑓(𝑥, 𝑦, 𝑧) ∈ ℱ𝑛+2 và 𝑓 quasi-linear dependent trên hai biến 𝑦 và 𝑧 nên theo Chú ý 2.10

thì 𝑓 có dạng

𝑓(𝑥, 𝑦, 𝑧) = 𝑔(𝑥, 𝑦 ⊕ 𝑧)⊕ 𝑦.

Do tổng (XOR) của 𝑓 có phần tuyến tính nên 𝑓 cân bằng.

Chúng ta cũng có thể chứng minh theo cách khác bằng khai triển 𝑓 theo 𝑦 và 𝑧

𝑓(𝑥, 𝑦, 𝑧) = 𝑦 · 𝑧 · (𝑔(𝑥, 0)⊕ 1)⊕ 𝑦 · (𝑧 ⊕ 1) · (𝑔(𝑥, 1)⊕ 1)

⊕ (𝑦 ⊕ 1) · 𝑧 · 𝑔(𝑥, 1)⊕ (𝑦 ⊕ 1) · (𝑧 ⊕ 1) · 𝑔(𝑥, 0).

Theo đẳng thức (3.1) thì

wt(𝑓) = wt(𝑔(𝑥, 0)) + wt(𝑔(𝑥, 1)) + wt(𝑔(𝑥, 1)) + wt(𝑔(𝑥, 0)) = 2𝑛+1.

INFO-CIRCLE Example 2.12 (hàm quasi-linear dependent)

Hàm boolean

𝑓(𝑥, 𝑦, 𝑧) = 𝑦 ⊕ 𝑥𝑧 ⊕ 𝑥𝑦

quasi-linear dependent trên hai biến 𝑦 và 𝑧.

Cách tìm đa thức Zhegalkin từ bảng chân trị

Ta có nhiều phương pháp để tìm đa thức Zhegalkin của một hàm boolean từ bảng chân trị.

Phương pháp tam giác

Ở hàng đầu ta viết các phần tử bảng chân trị từ trái sang phải. Với 𝑛 biến sẽ có 2𝑛 ô.

Hàng thứ hai có 2𝑛 − 1 ô. Phần tử dưới sẽ bằng XOR của 2 phần tử ngay trên nó (tạo thành tam giác).
Tiếp tục như vậy tới khi ta có hàng cuối chỉ có 1 ô.

x y f

0

0

1

1

0

1

0

1

0

1

1

1

0 1 1 1

1 0 0

1 0

1

1
y

x

xy

Hình 3.1: Phương pháp tam giác
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Khi đó, tương ứng với các biến, nếu biến đó là 1 thì đơn thức sẽ chứa biến đó, 0 thì không ghi. Ở ví dụ
trên, nếu (𝑥, 𝑦) = (0, 0) thì không có gì (phần tử 1), (𝑥, 𝑦) = (0, 1) tương ứng với đơn thức 𝑦 trong đa thức
Zhegalkin, (𝑥, 𝑦) = (1, 0) tương ứng đơn thức 𝑥. Cuối cùng (𝑥, 𝑦) = (1, 1) tương ứng đơn thức 𝑥𝑦.

Hệ số trước mỗi đơn thức là phần tử đầu tiên bên trái theo bảng kim tự tháp. Như vậy đa thức Zhegalkin
là:

𝑓(𝑥, 𝑦) = 0 · 1⊕ 1 · 𝑦 ⊕ 1 · 𝑥⊕ 1 · 𝑥𝑦 = 𝑥⊕ 𝑦 ⊕ 𝑥𝑦.

Đa thức Zhegalkin đóng vai trò quan trọng trong nhiều lĩnh vực, bao gồm cả toán học, vật lý, khoa học
máy tính, vì AND và XOR là hai toán tử đại số cơ bản, do đó biểu diễn đa thức Zhegalkin được gọi là dạng
chuẩn tắc đại số như ở trên đề cập.

Một ví dụ khác của đa thức Zhegalkin với hàm 3 biến 𝑥, 𝑦 và 𝑧 như hình sau:

x y z f
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0

1

0

1

0

1

1

1

0

0

1

1

0 1 1 1 0 0 1 1
1 0 0 1 0 1 0

1 0 1 1 1 1
1 1 0 0 0

0 1 0 0
1 1 0

0 1
1

1
z

y

yz

x
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xy

xyz

Như vậy ứng với hàm boolean 𝑓 thì đa thức Zhegalkin là:

𝑓(𝑥, 𝑦, 𝑧) = 𝑧 ⊕ 𝑦𝑧 ⊕ 𝑥⊕ 𝑥𝑧 ⊕ 𝑥𝑦𝑧.

Phương pháp Möbius

Phương pháp này cho phép chúng ta tính hệ số đa thức Zhegalkin như phương pháp tam giác nhưng nhanh
hơn và đỡ sai sót hơn.

Đầu tiên chúng ta chia đôi bảng chân trị thành hai nửa trái phải. Nửa trái giữa nguyên, mỗi phần tử ở nửa
phải được XOR (cộng modulo 2) với phần tử tương ứng ở nửa trái.

Ví dụ với hàm 𝑓(𝑥, 𝑦) = (0, 1, 1, 1) như trên.

Bước 1, ta giữ nguyên hai phần tử đầu 0 và 1. Phần tử thứ ba (mới) bằng phần tử thứ ba (cũ) XOR với
phần tử đầu, nghĩa là 0⊕ 1 = 1. Phần tử thứ tư (mới) bằng phần tử thứ tư (cũ) XOR với phần tử thứ hai,
nghĩa là 1⊕ 1 = 0.

Tiếp theo, chúng ta xử lý như trên cho hai phần tử bên nửa trái (hai phần tử bên nửa phải xử lý tương tự).

0 1 1 1

0 1 1 0

Hình 3.2: Bước 1
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0 1 1 0

0 1 1 1

Hình 3.3: Bước 2

Như vậy ta có kết quả là (0, 1, 1, 1), tương ứng với các đơn thức 1, 𝑦, 𝑥, 𝑥𝑦 (như trên). Vậy đa thức Zhegalkin
là 𝑓(𝑥, 𝑦) = 𝑥⊕ 𝑦 ⊕ 𝑥𝑦.

Hàm affine và hàm tuyến tính

Hàm affine và hàm tuyến tính

INFO-CIRCLE Definition (Hàm boolean affine)

Xét hàm boolean 𝑛 biến 𝑓(𝑥1, 𝑥2, . . . , 𝑥𝑛). Khi đó 𝑓 được gọi là hàm boolean affine nếu nó có dạng

𝑓(𝑥1, 𝑥2, . . . , 𝑥𝑛) = 𝑎0 ⊕ 𝑎1𝑥1 ⊕ 𝑎2𝑥2 ⊕ . . .⊕ 𝑎𝑛𝑥𝑛.

Khi 𝑎0 = 0 thì ta gọi là hàm boolean tuyến tính (linear).

Ta thấy rằng chỉ có các hạng tử dạng 𝑎𝑖𝑥𝑖 xuất hiện trong biểu diễn đa thức Zhegalkin tương ứng của hàm
boolean đó, hay nói cách khác hàm boolean là affine khi deg(𝑓) = 1.

INFO-CIRCLE Example

Hàm boolean 𝑓(𝑥, 𝑦) = 𝑥⊕ 𝑦 là hàm boolean affine và cũng tuyến tính.

Hàm boolean 𝑓(𝑥, 𝑦) = 𝑥⊕ 𝑥𝑦 không là hàm boolean affine.

Số lượng hàm affine và hàm tuyến tính

Ở phần trên ta đã tính được

|ℱ𝑛| = 22
𝑛

.

Số lượng hàm boolean affine là số cách chọn các hệ số 𝑎0, 𝑎1, ..., 𝑎𝑛. Như vậy cần chọn 𝑛 + 1 số trong F2

nên

|𝒜𝑛| = 2𝑛+1.

Đối với hàm boolean tuyến tính thì chọn từ 𝑎1 tới 𝑎𝑛 nên cần chọn 𝑛 số, suy ra

|ℒ𝑛| = 2𝑛.

Hàm đơn điệu
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INFO-CIRCLE Definition 2.28 (Vector so sánh được)

Xét hai vector 𝑎 = (𝑎1, 𝑎2, . . . , 𝑎𝑛) và 𝑏 = (𝑏1, 𝑏2, . . . , 𝑏𝑛) với 𝑎𝑖, 𝑏𝑖 ∈ F2.

Ta nói 𝑎 so sánh được nhỏ hơn 𝑏 nếu với mọi 𝑖 = 1, 2, . . . , 𝑛 ta có 𝑎𝑖 6 𝑏𝑖. Kí hiệu 𝑎 4 𝑏.

INFO-CIRCLE Example 2.14

Ta có (1, 0, 0) 4 (1, 0, 1), còn (1, 0, 0) và (0, 1, 0) thì không so sánh được (vị trí thứ nhất và thứ hai).

INFO-CIRCLE Definition 2.29 (Hàm boolean đơn điệu)

Hàm boolean 𝑛 biến 𝑓(𝑥1, 𝑥2, . . . , 𝑥𝑛) được gọi là hàm đơn điệu (hay monotone) nếu với mọi vector
(𝑎1, 𝑎2, . . . , 𝑎𝑛) 4 (𝑏1, 𝑏2, . . . , 𝑏𝑛) thì ta có

𝑓(𝑎1, 𝑎2, . . . , 𝑎𝑛) 6 𝑓(𝑏1, 𝑏2, . . . , 𝑏𝑛).

INFO-CIRCLE Example 2.15

Xét hàm boolean 𝑓(𝑥, 𝑦) = (0, 1, 0, 1).

Ta thấy rằng:

• (0, 0) 4 (0, 1) và 𝑓(0, 0) = 0 6 1 = 𝑓(0, 1);

• (0, 0) 4 (1, 0) và 𝑓(0, 0) = 0 6 0 = 𝑓(1, 0);

• (0, 0) 4 (1, 1) và 𝑓(0, 0) = 0 6 1 = 𝑓(1, 1);

• (0, 1) và (1, 0) không so sánh được nên bỏ qua;

• (0, 1) 4 (1, 1) và 𝑓(0, 1) = 1 6 1 = 𝑓(1, 1);

• (1, 0) 4 (1, 1) và 𝑓(1, 0) = 0 6 1 = 𝑓(1, 1).

Vậy đây là hàm đơn điệu.

Disjunctive và Conjunctive Normal Form

Khi xử lý các mạch logic có ba toán tử chúng ta đặc biệt quan tâm là AND, OR, NOT. Điều này khác với
đại số boolean ở phần trước chỉ quan tâm phép XOR và AND - phép cộng và nhân trong F2.

Ở phần này kí hiệu:

• NOT của biến 𝑎 là ¬𝑎;

• AND của hai biến 𝑎 và 𝑏 là 𝑎 ∧ 𝑏. Chúng ta cũng có thể kí hiệu là 𝑎 · 𝑏 hoặc 𝑎𝑏 như đại số boolean ở
phần trước.

• OR của hai biến 𝑎 và 𝑏 là 𝑎 ∨ 𝑏. Chúng ta KHÔNG dùng kí hiệu 𝑎 + 𝑏 ở đây vì phép cộng đã được
dùng ở phần ANF.

Phép AND và OR có tính giao hoán, kết hợp.
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Một số luật logic

Sau đây là một số "hằng đẳng thức đáng nhớ" trong logic:

1. Luật bù:

• 𝑎 ∨ ¬𝑎 = 1;

• 𝑎 ∧ ¬𝑎 = 0.

2. Luật hấp thụ:

• 𝑥 ∨ (𝑥 ∧ 𝑦) = 𝑥;

• 𝑥 ∧ (𝑥 ∨ 𝑦) = 𝑥.

3. Luật đồng nhất:

• 𝑥 ∨ 0 = 𝑥;

• 𝑥 ∧ 1 = 𝑥.

4. Luật giao hoán:

• 𝑥 ∨ 𝑦 = 𝑦 ∨ 𝑥;

• 𝑥 ∧ 𝑦 = 𝑦 ∧ 𝑥.

5. Luật kết hợp:

• 𝑥 ∨ (𝑦 ∨ 𝑧) = (𝑥 ∨ 𝑦) ∨ 𝑧;

• 𝑥 ∧ (𝑦 ∧ 𝑧) = (𝑥 ∧ 𝑦) ∧ 𝑧.

6. Luật phân phối:

• 𝑥 ∨ (𝑦 ∧ 𝑧) = (𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑧);

• 𝑥 ∧ (𝑦 ∨ 𝑧) = (𝑥 ∧ 𝑦) ∨ (𝑥 ∧ 𝑧).

7. Luật De Morgan:

• ¬(𝑥 ∧ 𝑦) = ¬𝑥 ∨ ¬𝑦;

• ¬(𝑥 ∨ 𝑦) = ¬𝑥 ∧ ¬𝑦.

Tổng của tích

Nếu biểu thức boolean được biểu diễn ở dạng tổng của các tích thì ta gọi là disjunctive normal form (hay
DNF).

INFO-CIRCLE Example 2.16

(𝑎 ∧ ¬𝑏 ∧ ¬𝑐) ∨ (𝑎 ∧ 𝑏) ∨ (𝑏 ∧ ¬𝑐).

Ở đây, mỗi tích sẽ bao gồm các literal (hay đơn tử). Ví dụ với tích (𝑎 ∧ ¬𝑏 ∧ ¬𝑐) thì các literal sẽ là 𝑎, ¬𝑏
và ¬𝑐.

Mỗi tích sẽ được gọi là term (hay hạng tử). Trong ví dụ trên có ba term là (𝑎∧¬𝑏∧¬𝑐), (𝑎∧ 𝑏) và (𝑏∧¬𝑐).

Biểu thức boolean với 𝑛 biến 𝑥1, ..., 𝑥𝑛 ở dạng full disjunctive normal form (hay full DNF) mỗi term
của nó có đủ 𝑛 literal.
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Ở ví dụ trên thì các term 𝑎 ∧ 𝑏 và 𝑏 ∧ ¬𝑐 chỉ có hai literal nên không phải là full DNF.

INFO-CIRCLE Example 2.17 (Ví dụ về full DNF)

(𝑎 ∧ 𝑏) ∨ (𝑎 ∧ ¬𝑏) ∨ (¬𝑎 ∧ 𝑏).

Để chuyển một hàm boolean về dạng full DNF chúng ta có thể dùng bảng chân trị.

Đặt 𝑓(𝑥1, . . . , 𝑥𝑛) là hàm boolean cần đưa về dạng full DNF.

1. Nếu 𝑓 = 0 thì ta không xét.

2. Nếu 𝑓 = 1, với 𝑖 = 1, . . . , 𝑛 ta xây dựng term như sau:

• nếu 𝑥𝑖 = 0 thì literal là ¬𝑥𝑖;

• nếu 𝑥𝑖 = 1 thì literal là 𝑥𝑖.

INFO-CIRCLE Example 2.18

Sử dụng ví dụ ở trên

𝑓(𝑎, 𝑏, 𝑐) = (𝑎 ∧ ¬𝑏 ∧ ¬𝑐) ∨ (𝑎 ∧ 𝑏) ∨ (𝑏 ∧ ¬𝑐).

Bảng chân trị của 𝑓 sẽ có dạng

𝑎 𝑏 𝑐 𝑓

0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 1

Ở đây 𝑓 nhận giá trị 1 khi (𝑎, 𝑏, 𝑐) là các bộ (0, 1, 0), (1, 0, 0), (1, 1, 0) và (1, 1, 1).

• đối với (0, 1, 0) thì term tương ứng là ¬𝑎 ∧ 𝑏 ∧ ¬𝑐;

• đối với (1, 0, 0) thì term tương ứng là 𝑎 ∧ ¬𝑏 ∧ ¬𝑐;

• đối với (1, 1, 0) thì term tương ứng là 𝑎 ∧ 𝑏 ∧ ¬𝑐;

• đối với (1, 1, 1) thì term tương ứng là 𝑎 ∧ 𝑏 ∧ 𝑐.

Như vậy hàm 𝑓 có thể viết lại là

𝑓(𝑎, 𝑏, 𝑐) = (¬𝑎 ∧ 𝑏 ∧ ¬𝑐) ∨ (𝑎 ∧ ¬𝑏 ∧ ¬𝑐) ∨ (𝑎 ∧ 𝑏 ∧ ¬𝑐) ∨ (𝑎 ∧ 𝑏 ∧ 𝑐).
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Tích của các tổng

Nếu biểu thức boolean được biểu diễn ở dạng tích của các tổng thì ta gọi là conjunctive normal form
(hay CNF).

INFO-CIRCLE Example 2.19

(𝑎 ∨ ¬𝑏 ∨ ¬𝑐) ∧ (𝑎 ∨ 𝑏) ∧ (𝑏 ∨ ¬𝑐).

Tương tự, mỗi tổng sẽ bao gồm các literal (hay đơn tử). Ví dụ với tổng (𝑎 ∨ ¬𝑏 ∨ ¬𝑐) thì các literal sẽ là
𝑎, ¬𝑏 và ¬𝑐.

Mỗi tích sẽ được gọi là term (hay hạng tử). Trong ví dụ trên có ba term là (𝑎∨¬𝑏∨¬𝑐), (𝑎∨ 𝑏) và (𝑏∨¬𝑐).

Biểu thức boolean với 𝑛 biến 𝑥1, ..., 𝑥𝑛 ở dạng full conjunctive normal form (hay full CNF) mỗi term
của nó có đủ 𝑛 literal.

Ở ví dụ trên thì các term 𝑎 ∨ 𝑏 và 𝑏 ∨ ¬𝑐 chỉ có hai literal nên không phải là full CNF.

Tương tự, để chuyển một hàm boolean về dạng full CNF chúng ta có thể dùng bảng chân trị nhưng làm
ngược lại so với DNF.

Đặt 𝑓(𝑥1, . . . , 𝑥𝑛) là hàm boolean cần đưa về dạng full CNF.

1. Nếu 𝑓 = 1 thì ta không xét.

2. Nếu 𝑓 = 0, với 𝑖 = 1, . . . , 𝑛 ta xây dựng term như sau:

• nếu 𝑥𝑖 = 0 thì literal là 𝑥𝑖;

• nếu 𝑥𝑖 = 1 thì literal là ¬𝑥𝑖.

INFO-CIRCLE Example 2.20

Sử dụng ví dụ ở trên

𝑓(𝑎, 𝑏, 𝑐) = (𝑎 ∨ ¬𝑏 ∨ ¬𝑐) ∧ (𝑎 ∨ 𝑏) ∧ (𝑏 ∨ ¬𝑐).

Bảng chân trị của 𝑓 sẽ có dạng

𝑎 𝑏 𝑐 𝑓

0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 1

Ở đây 𝑓 nhận giá trị 0 khi (𝑎, 𝑏, 𝑐) là các bộ (0, 0, 0), (0, 0, 1), (0, 1, 1), và (1, 0, 1).

• đối với (0, 0, 0) thì term tương ứng là 𝑎 ∨ 𝑏 ∨ 𝑐;

• đối với (0, 0, 1) thì term tương ứng là 𝑎 ∨ 𝑏 ∨ ¬𝑐;
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• đối với (0, 1, 1) thì term tương ứng là 𝑎 ∨ ¬𝑏 ∨ ¬𝑐;

• đối với (1, 0, 1) thì term tương ứng là ¬𝑎 ∨ 𝑏 ∨ ¬𝑐.

Như vậy hàm 𝑓 có thể viết lại là

𝑓(𝑎, 𝑏, 𝑐) = (𝑎 ∨ 𝑏 ∨ 𝑐) ∧ (𝑎 ∨ 𝑏 ∨ ¬𝑐) ∧ (𝑎 ∨ ¬𝑏 ∨ ¬𝑐) ∧ (¬𝑎 ∨ 𝑏 ∨ ¬𝑐).

Chúng ta có thể sử dụng đoạn code sau của SageMath để tìm full CNF (các bạn có thể xem ở đây):

import sage.logic.propcalc as propcalc
s = propcalc.formula("(a | ~b | ~c) & (a | b) & (b | ~c)")
s.convert_cnf()
print(s)

Phương pháp bìa Karnaugh tìm biểu thức tối tiểu

Chúng ta đã thấy rằng từ một biểu thức DNF hoặc CNF thì tìm được biểu thức full DNF hoặc full CNF.

Tuy nhiên trong thực tế chúng ta quan tâm đến biểu thức ít term, và mỗi term có ít literal nhất có thể. Do
đó chúng ta cần một phương án rút gọn biểu thức boolean.

Đối với hàm ba hoặc bốn biến chúng ta có thể sử dụng bìa Karnaugh (hay Karnaugh map, карта
Карно).

Ở phần sau mình sẽ trình bày cách tìm tất cả biểu thức tối tiểu đối với DNF. Đối với CNF làm ngược lại.

Trường hợp ba biến

Giả sử ta có biểu thức boolean 𝑓(𝑥1, 𝑥2, 𝑥3).

Ta viết bảng gồm 2 hàng (ứng với 2 giá trị của 𝑥1 thuộc {0, 1}) và 4 cột (ứng với 4 giá trị 𝑥2𝑥3 thuộc
{00, 01, 10, 11}).

Pause-Circle Quan trọng

Hai ô kề nhau khác nhau đúng MỘT bit.

x2x3

x1

00 01 11 10

0

1

Hình 3.4: Bìa Karnaugh

Ở Hình 3.4, 𝑥2𝑥3 được viết theo thứ tự 00, 01, 11 rồi mới tới 10. Điều này đảm bảo với lưu ý ở trên là hai
ô kề nhau khác nhau đúng một bit.
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Tiếp theo, ta điền giá trị của hàm 𝑓 vào bảng. Ở đây, ô ở hàng 𝑥1 và ở cột 𝑥2𝑥3 sẽ là giá trị 𝑓(𝑥1, 𝑥2, 𝑥3).

x2x3

x1

00 01 11 10

0

1

1 11

1

0

0 0 0

Hình 3.5: Điền giá trị vào bìa Karnaugh

Lấy ví dụ DNF ở trên với bảng chân trị tương ứng:

𝑓(𝑥1, 𝑥2, 𝑥3) = (𝑥1 ∧ ¬𝑥2 ∧ ¬𝑥3) ∨ (𝑥1 ∧ 𝑥2) ∨ (𝑥2 ∧ ¬𝑥3).

𝑥1 𝑥2 𝑥3 𝑓

0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 1

Khi đó bìa Karnaugh sẽ là

x2x3

x1

00 01 11 10

0

1

1 11

1

Tiếp theo chúng ta xác định các tế bào, là các term với số lượng literal nhỏ nhất có thể.

Đối với dạng DNF, chúng ta quan tâm các ô có giá trị 1. Ta gom các ô có giá trị 1 kề nhau tạo thành hình
chữ nhật có 2𝑖 ô với 𝑖 = 0, 1, . . .

Ở hình trên có ba tế bào theo thứ tự là 𝑥1, 𝑥2 và 𝑥3 (Hình 3.6):

• 001 và 011;

• 011 và 010;
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• 011 và 111.

x2x3

x1

00 01 11 10

0

1

1 11

1

Hình 3.6: Các tế bào của biểu thức 𝑓

Mỗi tế bào sẽ tương ứng với term ở các vị trí giống nhau. Nói cách khác:

• tế bào màu đỏ 001 và 011 giống nhau ở bit đầu và bit thứ ba, tương ứng 𝑥1 và 𝑥3 nên term là ¬𝑥1∧𝑥3.
Ta đặt 𝑇1 = ¬𝑥1 ∧ 𝑥3;

• tế bào màu xanh lá 011 và 010 giống nhau ở bit đầu và bit thứ hai, tương ứng 𝑥1 và 𝑥2 nên term là
¬𝑥1 ∧ 𝑥2. Ta đặt 𝑇2 = ¬𝑥1 ∧ 𝑥2;

• tế bào màu vàng 011 và 111 giống nhau ở bit thứ hai và thứ ba, tương ứng 𝑥2 và 𝑥3 nên term là
𝑥2 ∧ 𝑥3. Ta đặt 𝑇3 = 𝑥2 ∧ 𝑥3.

Luôn nhớ rằng trong DNF thì giá trị 1 ta giữ nguyên (ví dụ 𝑥3) còn giá trị 0 thì ta đảo (ví dụ $neg x_1$).

Tiếp theo, ta xét các tế bào có số ô nhiều nhất trước. Ở đây cả ba tế bào đều có hai ô nên tương đương
nhau.

1. Chọn tế bào 𝑇1. Ta gạch bỏ tất cả ô của tế bào 𝑇1.

x2x3

x1

00 01 11 10

0

1

1

1

�1 �1

Hình 3.7: Bìa Karnaugh sau khi gạch bỏ 𝑇1

2. Trong các tế bào còn lại, ta chọn tế bào chưa bị gạch hết và có số ô cao nhất. Ở đây chúng ta có hai
phương án:

• chọn 𝑇2, ta gạch bỏ 𝑇2. Tiếp tục quá trình với 𝑇3, ta gạch bỏ 𝑇3. Khi đó công thức tối tiểu là
𝑇1 → 𝑇2 → 𝑇3;

• chọn 𝑇3, ta gạch bỏ 𝑇3. Tiếp tục quá trình với 𝑇2, ta gạch bỏ 𝑇2. Khi đó công thức tối tiểu là
𝑇1 → 𝑇3 → 𝑇2.

Như vậy ta có hai công thức tối tiểu là 𝑇1 → 𝑇2 → 𝑇3 và 𝑇1 → 𝑇3 → 𝑇2, nghĩa là:

𝑓(𝑥1, 𝑥2, 𝑥3) = (¬𝑥1 ∧ 𝑥3) ∨ (¬𝑥1 ∧ 𝑥2) ∨ (𝑥2 ∧ 𝑥3)
= (¬𝑥1 ∧ 𝑥3) ∨ (𝑥2 ∧ 𝑥3) ∨ (¬𝑥1 ∧ 𝑥2).
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Hai công thức hóa ra ... giống nhau. Đó là do biểu thức ban đầu chứ không phải tất cả trường hợp đều như
vậy.

Khoảng cách Hamming

INFO-CIRCLE Definition 2.30 (Khoảng cách Hamming giữa hai vector)

Với hai vector 𝑥, 𝑦 thuộc F𝑛
2 , đặt

𝑑(𝑥,𝑦) = wt(𝑥⊕ 𝑦)

là khoảng cách Hamming giữa hai vector 𝑥 và 𝑦. Trong đó wt(𝑧) là trọng số vector 𝑧.

INFO-CIRCLE Definition 2.31 (Khoảng cách Hamming từ vector tới tập vector)

Xét 𝑀 ⊆ F𝑛
2 . Khi đó với mọi 𝑥 ∈ F𝑛

2 , ta nói khoảng cách từ 𝑥 tới 𝑀 là

𝑑(𝑥,𝑀) = min
𝑦∈𝑀

𝑑(𝑥,𝑦).

INFO-CIRCLE Definition 2.32 (Khoảng cách Hamming giữa hai hàm boolean)

Xét hai hàm boolean 𝑛 biến là 𝑓(𝑥1, 𝑥2, . . . , 𝑥𝑛) và 𝑔(𝑥1, 𝑥2, . . . , 𝑥𝑛). Khi đó khoảng cách Hamming từ
hàm 𝑓 tới hàm 𝑔 là

𝑑(𝑓, 𝑔) = wt(𝑓 ⊕ 𝑔) =
∑︁
𝑥∈F𝑛

2

𝑓(𝑥)⊕ 𝑔(𝑥).

Nonlinearity của hàm boolean

Biến đổi Fourier

Với mỗi vector 𝑎 = (𝑎1, . . . , 𝑎𝑛) ∈ F𝑛
2 , ta kí hiệu ⟨𝑎,𝑥⟩ là hàm sau:

⟨𝑎,𝑥⟩ = 𝑎1𝑥1 ⊕ 𝑎2𝑥2 ⊕ . . .⊕ 𝑎𝑛𝑥𝑛. (3.4)

Mỗi hàm boolean 𝑓(𝑥) = 𝑓(𝑥1, 𝑥2, . . . , 𝑥𝑛) sẽ được biểu diễn dưới dạng duy nhất với

𝑓(𝑥) = 2−𝑛
∑︁
𝑎∈F𝑛

2

𝐹𝑓 (𝑎) · (−1)⟨𝑎,𝑥⟩, (3.5)

trong đó

𝐹𝑓 (𝑎) =
∑︁
𝑥∈F𝑛

2

𝑓(𝑥) · (−1)⟨𝑎,𝑥⟩. (3.6)

Khi đó, tập hợp {𝐹𝑓 (𝑎),𝑎 ∈ F𝑛
2} được gọi là phổ Fourier (hay spectre Fourier) của hàm boolean 𝑓 .

INFO-CIRCLE Remark 2.12
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Đầu tiên ta có nhận xét rằng, với vector 𝑧 cố định thì

∑︁
𝑎∈F𝑛

2

(−1)⟨𝑎,𝑧⟩ =

{︃
0, nếu 𝑧 ̸= 0

2𝑛, nếu 𝑧 = 0.
(3.7)

INFO-CIRCLE Chứng minh

Để chứng minh nhận xét này, ta thấy rằng nếu 𝑧 ̸= 0 thì có ít nhất một bit 𝑧𝑖 ̸= 0.

Ta chọn vector

Δ = (0, . . . , 0, 1, 0, . . . , 0)

với bit 1 nằm ở vị trí 𝑖.

Khi đó với mọi vector 𝑎 ∈ F𝑛
2 tồn tại duy nhất vector 𝑎′ ∈ F𝑛

2 sao cho 𝑎⊕ 𝑎′ = Δ.

Ta suy ra ⟨𝑎⊕ 𝑎′, 𝑧⟩ = ⟨Δ, 𝑧⟩ = 1 vì 𝑧𝑖 · 1 = 1, các vị trí còn lại 𝑧𝑗 · 0 = 0.

Lý do ta chọn vector Δ như vậy là vì

⟨𝑎⊕ 𝑎′, 𝑧⟩ = ⟨𝑎, 𝑧⟩ ⊕ ⟨𝑎′, 𝑧⟩ = 1,

tương đương với ⟨𝑎, 𝑧⟩ = 1⊕ ⟨𝑎′, 𝑧⟩.

Do đó ⟨𝑎, 𝑧⟩ và ⟨𝑎′, 𝑧⟩ là hai bit khác nhau, dẫn tới (−1)⟨𝑎,𝑧⟩ và (−1)⟨𝑎′,𝑧⟩ là hai số trái dấu nhau nên
tổng chúng là 0. Chúng ta có 2𝑛/2 cặp như vậy và tổng cuối cùng là 0.

Trong trường hợp 𝑧 = 0 thì ⟨𝑎, 𝑧⟩ = 0 với mọi 𝑎 ∈ F𝑛
2 . Do đó (−1)⟨𝑎,𝑧⟩ = (−1)0 = 1 với mọi vector 𝑎.

Hàm boolean 𝑛 biến có 2𝑛 vector 𝑎 nên tổng là 2𝑛 · 1 = 2𝑛.

Đẳng thức (3.7) đã được chứng minh. Ta quay lại bài toán.
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Với mọi vector 𝑥 ∈ F𝑛
2 , ta khai triển từ vế phải của (3.5) và từ (3.6):

2−𝑛
∑︁
𝑎∈F𝑛

2

𝐹𝑓 (𝑎) · (−1)⟨𝑎,𝑥⟩

=2−𝑛
∑︁
𝑎∈F𝑛

2

⎛⎝∑︁
𝑦∈F𝑛

2

𝑓(𝑦) · (−1)⟨𝑎,𝑦⟩
⎞⎠ · (−1)⟨𝑎,𝑥⟩

=2−𝑛
∑︁
𝑦∈F𝑛

2

𝑓(𝑦)
∑︁
𝑎∈F𝑛

2

(−1)⟨𝑎,𝑦⊕𝑥⟩.

Theo (3.7), nếu ta coi 𝑦 ⊕ 𝑥 = 𝑧 thì

∑︁
𝑎∈F𝑛

2

(−1)⟨𝑎,𝑦⊕𝑥⟩ =

{︃
0, nếu 𝑦 ⊕ 𝑥 ̸= 0

2𝑛, nếu 𝑦 ⊕ 𝑥 = 0,

nghĩa là trong tổng trên thì chỉ có 𝑦 thỏa 𝑦⊕𝑥 = 0 thì 𝑓(𝑦) không bị triệt tiêu. Nói cách khác là 𝑦 = 𝑥
và do đó tổng trên còn lại 2−𝑛(𝑓(𝑥) · 2𝑛) = 𝑓(𝑥) và ta có điều phải chứng minh.
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INFO-CIRCLE Example 2.21

Xét hàm boolean 𝑓(𝑥1, 𝑥2) = (1, 0, 0, 1).

Xét 𝑎 = (0, 0). Ta có:

Với 𝑥 = (0, 0),

𝑓(𝑥) = 1, ⟨𝑎,𝑥⟩ = 0 · 0 + 0 · 0 = 0.

Với 𝑥 = (0, 1),

𝑓(𝑥) = 0, ⟨𝑎,𝑥⟩ = 0 · 0 + 0 · 1 = 0.

Với 𝑥 = (1, 0),

𝑓(𝑥) = 0, ⟨𝑎,𝑥⟩ = 0 · 1 + 0 · 0 = 0.

Với 𝑥 = (1, 1),

𝑓(𝑥) = 1, ⟨𝑎,𝑥⟩ = 0 · 1 + 0 · 1 = 0.

Ta suy ra

𝐹𝑓 (𝑎) = 1 · (−1)0 + 0 · (−1)0 + 0 · (−1)0 + 1 · (−1)0 = 2

khi 𝑎 = (0, 0).

Tương tự, ta có các giá trị 𝐹𝑓 (𝑎) sau:

• với 𝑎 = (0, 1), 𝐹𝑓 (𝑎) = 𝐹𝑓 (0, 1) = 0;

• với 𝑎 = (1, 0), 𝐹𝑓 (𝑎) = 𝐹𝑓 (1, 0) = 0;

• với 𝑎 = (1, 1), 𝐹𝑓 (𝑎) = 𝐹𝑓 (1, 1) = 2.

Bây giờ ta đã có đủ 𝐹𝑓 (𝑎) với 𝑎 ∈ F2
2 nên ta có thể kiểm chứng với mọi 𝑥 ∈ F2

2 thỏa công thức (3.5).

Biến đổi Walsh-Hadamard

Với mỗi hàm boolean 𝑓(𝑥1, 𝑥2, . . . , 𝑥𝑛) = 𝑓(𝑥) ta định nghĩa một hàm tương ứng như sau:

𝑓*(𝑥) = (−1)𝑓(𝑥).

Ta định nghĩa ⟨𝑎,𝑥⟩ như trên.

Khi đó hàm 𝑓*(𝑥) sẽ có dạng

𝑓*(𝑥) = 2−𝑛
∑︁
𝑎∈F𝑛

2

𝑊𝑓 (𝑎)(−1)⟨𝑎,𝑥⟩, (3.8)

trong đó

𝑊𝑓 (𝑎) =
∑︁
𝑥∈F𝑛

2

(−1)𝑓(𝑥)⊕⟨𝑎,𝑥⟩. (3.9)

Tập hợp {𝑊𝑓 (𝑎),𝑎 ∈ F𝑛
2} được gọi là phổ Walsh (hay spectre Walsh) của hàm 𝑓(𝑥).

Các giá trị 𝑊𝑓 (𝑎) được gọi là hệ số Walsh.
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Tương tự như trên, ta khai triển vế phải của (3.8) và thay (3.9) vào

2−𝑛
∑︁
𝑎∈F𝑛

2

𝑊𝑓 (𝑎)(−1)⟨𝑎,𝑥⟩

=2−𝑛
∑︁
𝑎∈F𝑛

2

⎛⎝∑︁
𝑦∈F𝑛

2

(−1)𝑓(𝑦)⊕⟨𝑎,𝑦⟩

⎞⎠ (−1)⟨𝑎,𝑥⟩

=2−𝑛
∑︁
𝑦∈F𝑛

2

(−1)𝑓(𝑦)
∑︁
𝑎∈F𝑛

2

(−1)⟨𝑎,𝑦⊕𝑥⟩.

Cũng từ (3.7), tương tự như trên ta có

∑︁
𝑎∈F𝑛

2

(−1)⟨𝑎,𝑦⊕𝑥⟩ =

{︃
0, nếu 𝑦 ⊕ 𝑥 ̸= 0

2𝑛, nếu 𝑦 ⊕ 𝑥 = 0.

Do đó trong các 𝑦 ∈ F𝑛
2 thì chỉ có 𝑦 = 𝑥 không bị triệt tiêu nên kết quả là

2−𝑛 · (−1)𝑓(𝑥) · 2𝑛 = (−1)𝑓(𝑥) = 𝑓*(𝑥).

Các hệ số Walsh liên hệ với nhau bởi công thức

∑︁
𝑎∈F𝑛

2

𝑊𝑓 (𝑎)𝑊𝑓 (𝑎⊕ 𝑑) =

{︃
22𝑛, 𝑑 = 0

0, 𝑑 ̸= 0.

Trường hợp 𝑑 = 0 được gọi là đẳng thức Parcel:∑︁
𝑎∈F𝑛

2

(𝑊𝑓 (𝑎))
2 = 22𝑛.

Tính chất của biến đổi Walsh-Hadamard

1. 𝑊𝑓 (0) = 2𝑛 − 2wt(𝑓), và 𝑊𝑓 (0) = 0 khi và chỉ khi 𝑓 là hàm cân bằng.

2. Nếu 𝑔 = 𝑓 thì 𝑊𝑔(𝑎) = −𝑊𝑓 (𝑎) với mọi 𝑎 ∈ F𝑛
2 .

3. Nếu 𝑔(𝑥) = 𝑓(𝑥⊕ 𝑏) với vector 𝑏 nào đó, thì

𝑊𝑔(𝑎) =
∑︁
𝑥

(−1)𝑓(𝑥⊕𝑏)⊕⟨𝑎,𝑥⟩

=
∑︁
𝑥

(−1)𝑓(𝑥)⊕⟨𝑎,𝑥⊕𝑏⟩

= (−1)⟨𝑎,𝑏⟩𝑊𝑓 (𝑎).

4. Đặt 𝑓 ∈ ℱ𝑛, 𝑏 ∈ F𝑛
2 , 𝑔(𝑥) = 𝑓(𝑥)⊕ ⟨𝑏,𝑥⟩. Khi đó

𝑊𝑔(𝑎) =
∑︁
𝑥

(−1)𝑓(𝑥)⊕⟨𝑏,𝑥⟩⊕⟨𝑎,𝑥⟩

=
∑︁
𝑥

(−1)𝑓(𝑥)⊕⟨𝑏⊕𝑎,𝑥⟩

=𝑊𝑓 (𝑏⊕ 𝑎).
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5. Đặt 𝑓(𝑥) = 𝑐 là hằng số. Hàm 𝑐⊕ ⟨𝑎,𝑥⟩ là hàm tuyến tính với mọi 𝑎 ̸= 0. Hệ quả là 𝑊𝑓 (𝑎) = 0 với
mọi vector 𝑎 khác không, trừ khi

𝑊𝑓 (0) = 2𝑛 − 2wt(𝑓) =

{︃
−2𝑛, nếu 𝑐 = 1,

2𝑛, nếu 𝑐 = 0.

6. Đặt 𝑓(𝑥) = 𝑐 ⊕ ⟨𝑏,𝑥⟩ là hàm affine. Khi đó, theo tính chất 4 và 5 suy ra 𝑊𝑓 (𝑎) = 0 với mọi 𝑎 ̸= 0,
và 𝑊𝑓 (𝑏) = (−1)𝑐 · 2𝑛.

7. Đặt 𝑓(𝑥,𝑦) = 𝑔(𝑥) ⊕ ℎ(𝑦) với 𝑔 ∈ ℱ𝑛 và ℎ ∈ ℱ𝑚 và hai tập hợp biến 𝑥 và 𝑦 không giao nhau. Nói
cách khác 𝑓 là hàm boolean 𝑛+𝑚 biến. Khi đó với mọi 𝑎 ∈ F𝑛

2 và 𝑏 ∈ F𝑛
2 thì

𝑊𝑓 (𝑎𝑏) =
∑︁
𝑥,𝑦

(−1)𝑔(𝑥)⊕ℎ(𝑦)⊕⟨𝑎,𝑥⟩⊕⟨𝑏,𝑦⟩

=
∑︁
𝑥

(−1)𝑔(𝑥)⊕⟨𝑎,𝑥⟩
∑︁
𝑦

(−1)ℎ(𝑦)⊕⟨𝑏,𝑦⟩

=𝑊𝑔(𝑎) ·𝑊ℎ(𝑏).

8. Đặt 𝑓(𝑥1, . . . , 𝑥𝑛) giả phụ thuộc vào biến 𝑥𝑖. Khi đó 𝑊𝑓 (𝑎) = 0 với mọi vector 𝑎 mà 𝑎𝑖 = 1.

Nói cách khác, nếu đặt 𝑥′ = (𝑥1, . . . , 𝑥𝑖−1, 𝑥𝑖+1, . . . , 𝑥𝑛) và 𝑎′ = (𝑎1, . . . , 𝑎𝑖−1, 𝑎𝑖+1, . . . , 𝑎𝑛) và để ý rằng
⟨𝑎,𝑥⟩ = ⟨𝑎′,𝑥′⟩ ⊕ 𝑎𝑖𝑥𝑖. Khi đó nếu 𝑎𝑖 = 1 thì

𝑊𝑓 (𝑎) =
∑︁
𝑥

(−1)𝑓(𝑥)⊕⟨𝑎,𝑥⟩

=
∑︁
𝑥,

𝑥𝑖=0

(−1)𝑓(𝑥)⊕⟨𝑎′,𝑥′⟩ +
∑︁
𝑥,

𝑥𝑖=1

(−1)𝑓(𝑥)⊕⟨𝑎′,𝑥′⟩⊕1 = 0.

Liên hệ giữa hệ số Fourier và hệ số Walsh

INFO-CIRCLE Remark 2.13

Quan hệ giữa hệ số Fourier và hệ số Walsh là biểu thức sau

𝑊𝑓 (𝑎) = 2𝑛Δ(𝑎)− 2𝐹𝑓 (𝑎)

với

Δ(𝑎) =

{︃
1, nếu 𝑎 = 0

0, nếu 𝑎 ̸= 0.

INFO-CIRCLE Chứng minh

Ta có

𝑊𝑓 (𝑎) + 2𝐹𝑓 (𝑎) =
∑︁
𝑥∈F𝑛

2

(−1)𝑓(𝑥)⊕⟨𝑎,𝑥⟩ + 2
∑︁
𝑥∈F𝑛

2

𝑓(𝑥)(−1)⟨𝑎,𝑥⟩

=
∑︁
𝑥∈F𝑛

2

(−1)⟨𝑎,𝑥⟩[(−1)𝑓(𝑥) + 2𝑓(𝑥)].

Để ý rằng, nếu 𝑓(𝑥) = 0 thì

(−1)𝑓(𝑥) + 2𝑓(𝑥) = (−1)0 + 2 · 0 = 1,
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còn nếu 𝑓(𝑥) = 1 thì

(−1)𝑓(𝑥) + 2𝑓(𝑥) = (−1)1 + 2 · 1 = 1.

Nói cách khác biểu thức trên trở thành

𝑊𝑓 (𝑎) + 2𝐹𝑓 (𝑎) =
∑︁
𝑥∈F𝑛

2

(−1)⟨𝑎,𝑥⟩.

Từ (3.5) ta có

∑︁
𝑥∈F𝑛

2

(−1)⟨𝑎,𝑥⟩ =

{︃
0, nếu 𝑎 ̸= 0

2𝑛, nếu 𝑎 = 0.

Như vậy nếu đặt Δ(𝑎) =

{︃
1, nếu 𝑎 = 0

0, nếu 𝑎 ̸= 0
thì ta có điều phải chứng minh.

INFO-CIRCLE Remark 2.14

Khi 𝑎 = 0 thì với mọi 𝑥 ∈ F𝑛
2 ta đều có ⟨𝑎,𝑥⟩ = 0. Do đó

𝐹𝑓 (0) =
∑︁
𝑥∈F𝑛

2

𝑓(𝑥)(−1)⟨𝑎,𝑥⟩ =
∑︁
𝑥∈F𝑛

2

𝑓(𝑥)(−1)0 = wt(𝑓),

suy ra

𝑊𝑓 (0) = 2𝑛 − 2𝑤𝑡(𝑓)⇔ 𝑤𝑡(𝑓) = 2𝑛−1 − 1

2
𝑊𝑓 (0). (3.10)

Hàm Bent

Ta kí hiệu 𝒜 là tập hợp tất cả các hàm boolean affine với 𝑛 biến, nghĩa là

𝒜 = {𝑎0 ⊕ 𝑎1𝑥1 ⊕ · · · ⊕ 𝑎𝑛𝑥𝑛 | 𝑎0, 𝑎1, . . . , 𝑎𝑛 ∈ F2}.

INFO-CIRCLE Definition 2.33 (Nonlinearity của hàm boolean)

Nonlinearity của hàm boolean 𝑓 bất kì được định nghĩa là khoảng cách Hamming từ 𝑓 tới 𝒜, hay nói
cách khác 𝑁𝑓 = 𝑑(𝑓,𝒜).

INFO-CIRCLE Remark 2.15

Xét hàm 𝑓 với 𝑛 biến và phổ Walsh tương ứng của hàm 𝑓 là {𝑊𝑓 (𝑎),𝑎 ∈ F𝑛
2}. Khi đó

𝑁𝑓 = 2𝑛−1 − 1

2
max
𝑎∈F𝑛

2

|𝑊𝑓 (𝑎)|. (3.11)
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INFO-CIRCLE Remark 2.16

Từ đẳng thức Parcel ta có

2𝑛 ·
(︂
max
𝑎∈F𝑛

2

(𝑊𝑓 (𝑎))
2

)︂
>
∑︁
𝑎∈F𝑛

2

(𝑊𝑓 (𝑎))
2 = 22𝑛

⇔max
𝑎∈F𝑛

2

(𝑊𝑓 (𝑎))
2 >

22𝑛

2𝑛
= 2𝑛

⇔max
𝑎∈F𝑛

2

|𝑊𝑓 (𝑎)| > 2𝑛/2.

Từ nhận xét trên và từ định nghĩa nonlinearity ở trên ta có

𝑁𝑓 6 2𝑛−1 − 1

2
2𝑛/2.

Hàm 𝑓 khiến dấu bằng xảy ra được gọi là hàm Bent. Điều kiện cần và đủ để tồn tại hàm Bent 𝑓 có 𝑛 biến
là khi 𝑛 = 2𝑘, tức là 𝑛 chẵn.

Tính chất quan trọng của hàm Bent là với mọi vector 𝑎 thì

𝑊𝑓 (𝑎) = ±2𝑛/2.

INFO-CIRCLE Example 2.22

Với 𝑛 = 2, hàm 𝑓(𝑥1, 𝑥2) = 𝑥1 ⊕ 𝑥1𝑥2 là hàm Bent.

Ta có thể tính toán và thấy rằng 𝑊𝑓 (0, 0) = 2, 𝑊𝑓 (0, 1) = −2, 𝑊𝑓 (1, 0) = 2 và 𝑊𝑓 (1, 1) = 2.

3.1.3 Block cipher
Chương này nói về các loại mã khối.

SP network

SP network

Mạng SP (SP network) là một cách xây dựng thuật toán mã hóa bên cạnh Feistel.

Mạng SP thường sử dụng một S-box làm nhiệm vụ xáo trộn và một P-box làm nhiệm vụ hoán vị. Hai nhiệm
vụ có vẻ khá giống nhau, tuy nhiên S-box thường là một ánh xạ không tuyến tính và đôi khi làm giảm số
bit đầu ra so với đầu vào (S-box của DES), còn P-box thường làm việc hoán vị vị trí các bit đầu vào (P-box
của DES). Có thể thấy rằng P-box là ánh xạ tuyến tính (nhân với ma trận mà mỗi hàng và mỗi cột chứa
đúng một số 1, còn lại là 0).
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P

K0

S0 S1 S2 S3

K1

S0 S1 S2 S3

K2

C

Hình 3.8: Ví dụ SP network

P

K0

S0 S1 S2 S3

K1

S0 S1 S2 S3

K2

C

Hình 3.9: Ví dụ SP network
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Tính chất của SP network

Các thuật toán được xây dựng dựa trên SP network thường gồm hai phần:

1. Phần không tuyến tính (S-box).

2. Phần tuyến tính.

Đối với mỗi phép biến đổi của SP network đều cần có biến đối ngược của nó cho quá trình giải mã. Đây là
điểm khác nhau cơ bản đối với mô hình Feistel.

Một số thuật toán sử dụng SP network

Một số thuật toán sử dụng SP network: AES (tiêu chuẩn mã hóa Hoa Kì, định nghĩa trong FISP 197),
Kuznyechik (tiêu chuẩn mã hóa Nga, định nghĩa trong GOST 34.12.2015, version 128 bit).

AES

Phần này sử dụng tài liệu mô tả thuật toán AES của NIST [22].

AES biến đổi theo khối 128 bit, sử dụng mô hình mạng SPN.

Bốn phép biến đổi chính là Add Round Key, Substitute Bytes, Shift Rows và Mix Columns.

Quá trình giải mã sử dụng phép biến đổi ngược của bốn phép biến đổi trên là Inverse Sub Bytes, Inverse
Shift Rows, Inverse Mix Columns. Đối với Add Round Key bản thân là phép XOR nên phép biến đổi ngược
là chính nó.

AES hỗ trợ key với các kích thước: 128 bit, 192 bit và 256 bit.

Đối với kích thước khóa 128 bit, AES dùng hàm Expand Key để mở rộng khóa thành 44 words, mỗi word có
32 bits, với key 128 bit thành 11 cụm khóa con. Mỗi 4 words làm tham số cho một phép Add Round Key.

Mỗi block bản rõ 16 byte 𝑝0, 𝑝1, ..., 𝑝15 được tổ chức dưới dạng một ma trận 4× 4 (gọi là ma trận state)⎛⎜⎜⎝
𝑝0 𝑝1 𝑝2 𝑝3
𝑝4 𝑝5 𝑝6 𝑝7
𝑝8 𝑝9 𝑝10 𝑝11
𝑝12 𝑝13 𝑝14 𝑝15

⎞⎟⎟⎠ −→
⎛⎜⎜⎝
𝑠00 𝑠01 𝑠02 𝑠03
𝑠10 𝑠11 𝑠12 𝑠13
𝑠20 𝑠21 𝑠22 𝑠23
𝑠30 𝑠31 𝑠32 𝑠33

⎞⎟⎟⎠
1. Các phép biến đổi Add Round Key, Substitute Bytes, Shift Rows, Mix Columns được thực hiện trên

ma trận 4× 4 này.

2. Các phép tính số học trong AES được thực hiện trong GF(28) với đa thức tối giản là 𝑓(𝑥) = 𝑥8+𝑥4+
𝑥3 + 𝑥+ 1.

Substitute Bytes

Substitute Bytes

Ta sử dụng một bảng tra cứu 16× 16 (S-box).

1. Điền các số từ 0 tới 255 theo từng hàng.

2. Thay thế mối byte trong bảng bằng nghịch đảo trong GF(28). Quy ước (00)−1 = 00.

3. Với mỗi byte trong bảng, ta kí hiệu 8 bit là 𝑏7𝑏6𝑏5𝑏4𝑏3𝑏2𝑏1𝑏0. Thay thế mỗi 𝑏𝑖 bằng 𝑏′𝑖 như sau

𝑏′𝑖 = 𝑏𝑖 ⊕ 𝑏(𝑖+4) mod 8 ⊕ 𝑏(𝑖+5) mod 8 ⊕ 𝑏(𝑖+6) mod 8 ⊕ 𝑏(𝑖+7) mod 8 ⊕ 𝑐𝑖,

với 𝑐𝑖 là bit thứ 𝑖 của số 0x63.
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Việc tính trên tương đương với phép nhân trên ma trận GF(2) là 𝐵′ = 𝑋𝐵 + 𝐶⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑏′0
𝑏′1
𝑏′2
𝑏′3
𝑏′4
𝑏′5
𝑏′6
𝑏′7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑏0
𝑏1
𝑏2
𝑏3
𝑏4
𝑏5
𝑏6
𝑏7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
0
0
0
1
1
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Ma trận 𝑋 là ma trận khả nghịch, do đó phép biến đổi S-box là song ánh (one-to-one và onto mapping).

Dựa vào bảng S-box, Substitute Bytes thực hiện như sau: mỗi byte trong ma trận state 𝑆 dưới dạng thập
lục phân là 𝑥𝑦 sẽ được thay bằng giá trị ở hàng 𝑥 và cột 𝑦 của S-box.

Inverse Sub Bytes

Ta cần xây dựng bảng Inverse Sub Bytes (IS-box).

Việc xây dựng bảng này giống với bảng S-box ở bước 1 và 2. Tại bước 3:

𝑏𝑖 = 𝑏′(𝑖+2) mod 8 ⊕ 𝑏
′
(𝑖+5) mod 8 ⊕ 𝑏

′
(𝑖+7) mod 8 ⊕ 𝑑𝑖,

với 𝑑𝑖 là bit thứ 𝑖 của số 0x05.

Ý nghĩa

Bảng S-box dùng để chống lại known-plaintext và là bước duy nhất trong bốn bước không có quan hệ tuyến
tính.

Shift Rows

Shift Rows

Trong Shift Rows, các dòng của ma trận state được biến đổi như sau:

1. Dòng thứ nhất giữ nguyên.

2. Dòng 2 dịch vòng trái 1 ô.

3. Dòng 3 dịch vòng trái 2 ô.

4. Dòng 4 dịch vòng trái 3 ô.
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Inverse Shift Rows

Các dòng thứ 2, 3, 4 dịch phải tương ứng 1, 2, 3 ô.

Ý nghĩa

Xáo trộn các byte để tạo ra các cột cho Mix Columns.

Mix Columns

Mix Columns

Mix cols biến đổi từng cột của ma trận state một cách độc lập bằng phép nhân đa thức. Giả sử cột đầu tiên
của ma trận state viết dưới dạng đa thức là

𝑓(𝑧) = 𝑠00𝑧
3 + 𝑠10𝑧

2 + 𝑠20𝑧 + 𝑠30,

với 𝑧 ∈ GF(28).

Khi đó 𝑓(𝑧) sẽ được nhân với 𝑎(𝑧) = 3𝑧3 + 𝑧2 + 𝑧 + 2, lưu ý rằng tất cả hệ số, phép cộng và nhân thực hiện
trên GF(28), và sau đó modulo cho 𝑛(𝑧) = 𝑧4 + 1.

Bốn byte hệ số của kết quả sẽ thay thế cho bốn byte tương ứng trong cột. Nếu viết dưới dạng ma trận, ta
có ⎡⎢⎢⎣

𝑠′00
𝑠′10
𝑠′20
𝑠′30

⎤⎥⎥⎦ =

⎡⎢⎢⎣
02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

⎤⎥⎥⎦
⎡⎢⎢⎣
𝑠00
𝑠10
𝑠20
𝑠30

⎤⎥⎥⎦ .
Lưu ý rằng các số 01, 02, 03 tuy viết dưới dạng thập phân nhưng khi tính toán phải ở dạng GF(28). Việc
sử dụng 1, 2, 3 giúp tăng tốc độ tính toán vì 1 và 2 chỉ cần phép dịch bit, còn 3 là XOR của 1 và 2.

Inverse Mix Columns

Lúc này ma trận nghịch đảo có dạng ⎡⎢⎢⎣
0E 0B 0D 09
09 0E 0B 0D
0D 09 0E 0B
0B 0D 09 0E

⎤⎥⎥⎦ .

Ý nghĩa

Mỗi cột mới chỉ phụ thuộc cột ban đầu. Cùng với sự kết hợp Shift Rows sau một vài vòng biến đổi (cụ thể
là 2, các bạn có thể thử chứng minh), 128 bit kết quả phụ thuộc vào tất cả 128 bit ban đầu. Từ đó tạo ra
tính khuếch tán (diffusion).

Add Round Key

Add Round Key

128 bit của ma trận state được XOR với 128 bit của khóa con từng vòng (4 dword 32 bit). Phép biến đổi
ngược của Add Round Key là chính nó.
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Ý nghĩa

Sự kết hợp với khóa tạo ra tính làm rối (confusion).

Expand Key

Expand Key

Đầu vào của thao tác Expand Key là 16 bytes (4 words) của khóa, sinh ra một mảng 44 words (176 bytes)
sử dụng cho 11 vòng AES, mỗi vòng 4 words.

k0 k4 k8 k12

k1 k5 k9 k13

k2 k6 k10 k14

k3 k7 k11 k15

w0 w1 w2 w3 g

w4 w5 w6 w7

⊕ ⊕ ⊕ ⊕

Từ bốn word đầu vào 𝑤0𝑤1𝑤2𝑤3, lần lặp đầu sinh ra 𝑤4𝑤5𝑤6𝑤7, lần lặp thứ hai sinh ra 𝑤8𝑤9𝑤10𝑤11, ...

INFO-CIRCLE Algorithm 3.1

1. if 𝑖 mod 4 = 0

1. 𝑔 ← SubWord(RotWord(𝑤𝑖−1))⊕ Rcon[𝑖/4]

2. 𝑤𝑖 = 𝑤𝑖−4 ⊕ 𝑔

2. else

1. 𝑤𝑖 = 𝑤𝑖−4 ⊕ 𝑤𝑖−1

3. endif

Trong đó:

1. RotWord dịch vòng trái 1 byte, nghĩa là từ bốn byte 𝑏0𝑏1𝑏2𝑏3 trở thành 𝑏1𝑏2𝑏3𝑏0.

2. SubWord thay mỗi byte trong word bằng bảng S-box.

3. Rcon là một mảng hằng số gồm 10 words tương ứng với 10 vòng AES. 4 bytes của một phần tử Rcon[𝑗]
là RC[𝑗], 0, 0, 0 với RC[𝑗] là mảng 10 bytes như sau
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𝑗 1 2 3 4 5 6 7 8 9 10

RC[𝑗] 1 2 4 8 10 20 40 80 18 36

Ý nghĩa của Expand Key

Dùng để chống lại known-plaintext (giống Sub Bytes dùng S-box). Đặc điểm của Expand Key gồm:

1. Biết một số bit của khóa hay khóa con không thể tính được các bit còn lại.

2. KHÔNG THỂ tính ngược.

3. Khuếch tán: mỗi bit của khóa chính tác động lên tất cả khóa con.

Kết luận

Mã hóa AES đơn giản và có thể chạy trên các chip 8 bit.

AES cung cấp ba biến thể cho độ dài khóa là:

• 128 bits: 44 words 4 bytes cho 10 vòng (11 lần ARK);

• 192 bits: 52 words 4 bytes cho 12 vòng (13 lần ARK);

• 256 bits: 60 words 4 bytes cho 14 vòng (15 lần ARK).

Về phép Mix Columns

Sau đây mình sẽ nói về việc phép nhân trên đa thức có hệ số trong GF(28) lại tương đương với phép nhân
ma trận trong Mix Columns ở trên.

Giả sử ma trận trạng thái trước khi bước vào phép tính Mix Column của AES là⎛⎜⎜⎝
𝑐0 𝑐1 𝑐2 𝑐3
𝑐4 𝑐5 𝑐6 𝑐7
𝑐8 𝑐9 𝑐10 𝑐11
𝑐12 𝑐13 𝑐14 𝑐15

⎞⎟⎟⎠ .

Phép tính Mix Column lấy mỗi cột của ma trận trạng thái trên làm tham số cho đa thức với hệ số trong
GF(28) và nhân với đa thức 𝑐(𝑧) = 2 + 𝑧 + 𝑧2 + 3𝑧3 rồi modulo cho 𝑧4 + 1.

Giả sử với cột đầu tiên, ta viết hệ số theo thứ tự bậc tăng dần 𝑑(𝑧) = 𝑐0 + 𝑐4𝑧 + 𝑐8𝑧
2 + 𝑐12𝑧

3.

Tính trong GF(28):

𝑐(𝑧) · 𝑑(𝑧) = (2 + 𝑧 + 𝑧2 + 3𝑧3) · (𝑐0 + 𝑐4𝑧 + 𝑐8𝑧
2 + 𝑐12𝑧

3)

= 2𝑐0 + 2𝑐4𝑧 + 2𝑐8𝑧
2 + 2𝑐12𝑧

3 + 𝑐0𝑧 + 𝑐4𝑧
2 + 𝑐8𝑧

3 + 𝑐12𝑧
4

+ 𝑐0𝑧
2 + 𝑐4𝑧

3 + 𝑐8𝑧
4 + 𝑐12𝑧

5 + 3𝑐0𝑧
3 + 3𝑐4𝑧

4 + 3𝑐8𝑧
5 + 3𝑐12𝑧

6

= 2𝑐0 + (2𝑐4 + 𝑐0)𝑧 + (2𝑐8 + 𝑐4 + 𝑐0)𝑧
2 + (2𝑐12 + 𝑐8 + 𝑐4 + 3𝑐0)𝑧

3

+ (𝑐12 + 𝑐8 + 3𝑐4)𝑧
4 + (𝑐12 + 3𝑐8)𝑧

5 + 3𝑐12𝑧
6.

Trong GF(28) thì mọi phần tử đều có tính chất 2𝑥𝑛 = 0, tương đương với 𝑥𝑛 = −𝑥𝑛. Do đó

𝑧6 (mod 𝑧4 + 1) ≡ −𝑧2 ≡ 𝑧2

𝑧5 (mod 𝑧4 + 1) ≡ −𝑧 ≡ 𝑧
𝑧4 (mod 𝑧4 + 1) ≡ −1 ≡ 1.
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Suy ra

𝑐(𝑧) · 𝑑(𝑧) = 2𝑐0 + (2𝑐4 + 𝑐0)𝑧 + (2𝑐8 + 𝑐4 + 𝑐0)𝑧
2 + (2𝑐12 + 𝑐8 + 𝑐4 + 3𝑐0)𝑧

3

+ (𝑐12 + 𝑐8 + 3𝑐4) + (𝑐12 + 3𝑐8)𝑧 + 3𝑐12𝑧
2

= (𝑐12 + 𝑐8 + 3𝑐4 + 2𝑐0) + (𝑐12 + 3𝑐8 + 2𝑐4 + 𝑐0)𝑧

+ (3𝑐12 + 2𝑐8 + 𝑐4 + 𝑐0)𝑧
2 + (2𝑐12 + 𝑐8 + 𝑐4 + 3𝑐0)𝑧

3.

Như vậy xét hệ số lần lượt trước 1, 𝑧, 𝑧2 và 𝑧3 thì tương đương với phép nhân ma trận⎛⎜⎜⎝
2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

⎞⎟⎟⎠ ·
⎛⎜⎜⎝
𝑐0
𝑐4
𝑐8
𝑐12

⎞⎟⎟⎠ .

Đây chính là kết quả cần tìm.

Kuznyechik

Kuznyechik là một thuật toán mã hóa khối, đối xứng như AES. Kuznyechik tiếng Nga là Кузнечик, có nghĩa
là châu chấu. Tuy nhiên trong văn bản quốc tế thì chúng ta giữ nguyên tên gọi là hệ mã Kuznyechik.

Mã khối Kuznyechik biến đổi trên khối 128 bit, độ dài khóa là 256 bit, biến đổi trên 9 vòng. Kuznyechik sử
dụng mô hình SPN tương tự như AES, trở thành chuẩn mã hóa của Nga và được định nghĩa trong GOST
R 34.12-2015.

Một điểm đặc biệt là quá trình biến đổi qua các vòng sử dụng mạng SPN, tuy nhiên thuật toán sinh khóa
con cho các vòng sử dụng mô hình Feistel.

Phần này tham khảo chính từ [23].

Mã hóa

Gọi 𝑘𝑖 là khóa con của vòng thứ 𝑖, 𝑖 = 0, 1, . . . , 9. Ta có các động tác biến đổi sau:

Phép biến đổi 𝑋

Hàm 𝑋 : F128
2 → F128

2 biến đổi trên block 128 bits.

Ta chia block đầu vào thành 16 cụm 8 bit, kí hiệu

𝑎 = 𝑎0‖𝑎1‖ . . . ‖𝑎14‖𝑎15

với ký tự ‖ chỉ việc nối các chuỗi bit (concatenate). Tương tự 𝑘𝑖 cũng được chia thành 16 cụm 8 bits. Khi
đó,

𝑋(𝑘𝑖, 𝑎) = 𝑘𝑖,0 ⊕ 𝑎0‖𝑘𝑖,1 ⊕ 𝑎1‖ . . . ‖𝑘𝑖,14 ⊕ 𝑎14‖𝑘𝑖,15 ⊕ 𝑎15. (3.12)

Nói cách khác, chúng ta xor 128 bit của khối đầu vào và 128 bit của khóa con 𝑘𝑖.

Phép biến đổi 𝑆

Hàm 𝑆 : F128
2 → F128

2 .

Block đầu vào tiếp tục được chia thành 16 cụm 8 bits. Mỗi cụm sẽ đi qua một bảng tra cứu SBox (gọi là
bảng 𝜋). Sau đó ta nối các kết quả với nhau.

𝑆(𝑎) = 𝜋(𝑎0)‖𝜋(𝑎1)‖ . . . ‖𝜋(𝑎14)‖𝜋(𝑎15). (3.13)

Bảng 𝜋 được định nghĩa sẵn và không tuyến tính, nên đây là bước không tuyến tính của thuật toán.
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Phép biến đổi 𝐿

Hàm 𝐿 : F128
2 → F128

2 .

Block đầu vào vẫn được chia thành 16 cụm 8 bit. Tuy nhiên ở đây mỗi cụm 8 bit biểu diễn một đa thức
trong trường GF(28) với đa thức tối giản là 𝑔(𝑥) = 𝑥8 +𝑥7 +𝑥6 +𝑥+1. Những phép tính cộng và nhân sau
đây cũng được thực hiện trên trường GF(28) này.

𝜆(𝑎) = 148𝑎15 + 32𝑎14 + 133𝑎13 + 16𝑎12

+ 194𝑎11 + 192𝑎10 + 𝑎9 + 251𝑎8

+ 𝑎7 + 192𝑎6 + 194𝑎5 + 16𝑎4

+ 133𝑎3 + 32𝑎2 + 148𝑎1 + 𝑎0.

(3.14)

Tiếp theo, ta định nghĩa hàm Λ : F128
2 → F128

2 như sau

𝑎 = 𝑎0‖𝑎1‖ . . . ‖𝑎14‖𝑎15 → 𝑎1‖𝑎2‖ . . . ‖𝑎15‖𝜆(𝑎) = Λ(𝑎).

a0 a1 a2 · · · a14 a15

Λ

a1 a2 a3 · · · a15 λ(a)

Hình 3.10: Hàm 𝜆

Lưu ý rằng sau khi tính toán trên hàm 𝜆, đa thức trên GF(28) được chuyển trở lại thành cụm 8 bit sau đó
mới nối vào dãy 𝑎1, 𝑎2, ..., 𝑎15 như mô tả ở Hình 3.10.

Cuối cùng, hàm 𝐿 ban đầu là thực hiện hàm Λ 16 lần.

𝐿(𝑎) = Λ(. . .Λ(𝑎) . . .)⏟  ⏞  
16 lần

.

Như vậy, phép biến đổi trên vòng thứ 𝑖 với khóa con 𝑘𝑖 là

𝑅(𝑘𝑖, 𝑎) = 𝐿(𝑆(𝑋(𝑎))) (3.15)

với 𝑖 = 0, 1, . . . , 8.

Ở vòng thứ 10 ta XOR với khóa con 𝑘9 nữa: 𝑋(𝑘9, 𝑎).

Thuật toán sinh khóa con

Để sinh khóa con cho 10 lần XOR, thuật toán Kuznyechik dùng mô hình Feistel. Đầu tiên ta định nghĩa
hàm 𝐹 (𝑐, 𝑎). Với 𝑐 bất kì thuộc F128

2 và 𝑎 = 𝑎0‖𝑎1 thuộc F256
2 . Hàm 𝐹 (𝑐, 𝑎) biến phần tử thuộc F128

2 × F256
2

thành phần tử thuộc F256
2 bằng đẳng thức

𝐹 (𝑐, 𝑎) = 𝑎1‖𝑎0 ⊕𝑅(𝑐, 𝑎1)

với hàm 𝑅 được định nghĩa ở phương trình (3.15).
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L0 = k0

R

R0 = k1c0

L1

R

R1c1

. . . . . .

L7

R

R7c7

L8 = k2 R8 = k3

Hình 3.11: Biến đổi từ khóa 𝑘0‖𝑘1 thành 𝑘2‖𝑘3

Với khóa đầu vào là 𝑘 ∈ F256
2 , mình kí hiệu ở dạng ghép hai chuỗi 128 bits 𝑘 = 𝑘0‖𝑘1 với 𝑘0, 𝑘1 ∈ F128

2 là
những khóa con mở đầu. Khi đó các khóa con cho 10 phép XOR là 𝑘0, 𝑘1, ..., 𝑘9.

Thuật toán sinh khóa con được sử dụng như sau

𝑘2𝑖+2‖𝑘2𝑖+3 = 𝐹 (𝑐8𝑖+7, . . . , 𝐹 (𝑐8𝑖, 𝑘2𝑖‖𝑘2𝑖+1)),

với 𝑖 = 0, 1, 2, 3. Thuật toán có thể mô tả ở Hình 3.11.

Theo đó, các số 𝑐0, 𝑐1, ..., 𝑐7 được sử dụng để sinh khóa 𝑘2‖𝑘3 từ 𝑘0‖𝑘1. Tương tự, 𝑐8, 𝑐9, ..., 𝑐15 được dùng
để sinh khóa 𝑘4‖𝑘5 từ khóa 𝑘2‖𝑘3. Các số 𝑐0, 𝑐1, ..., 𝑐31 được định nghĩa trong tiêu chuẩn.

So sánh Kuznyechik với AES

Điểm giống nhau là cả hai thuật toán đều có phần tuyến tính và phần không tuyến tính. Về phần tuyến
tính, đối với AES là các động tác Shift Rows, Mix Columns và Add Round Key, còn đối với Kuznyechik là
hàm 𝑋 và 𝐿 bên trên. Về phần không tuyến tính đều là việc sử dụng một bảng tra cứu SBox của riêng
thuật toán đó.

Điểm khác nhau đầu tiên là cách xây dựng ma trận tính toán. Nếu ta xem xét Shift Rows và Mix Columns
dưới dạng phép nhân ma trận trên GF(28) thì ta thấy rằng ma trận chứa nhiều số 0 nhất có thể. Điều này
giúp tăng tốc độ tính toán. Về phần Kuznyechik, phép tính ở hàm 𝜆 cũng thực hiện trên GF(28) nhưng
không chứa bất kì số 0 nào. Điều này làm tăng độ phức tạp tính toán nhưng cũng làm tăng tính an toàn.

Điểm khác nhau tiếp theo là việc sinh khóa con. AES sử dụng thuật toán sinh khóa con từng vòng từ toàn
bộ 256 bit ban đầu. Trong khi Kuznyechik sử dụng mô hình Feistel, theo đó với 256 bit ban đầu được sử
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dụng cho hai vòng đầu, cứ mỗi hai khóa con sẽ sinh ra hai khóa con tiếp theo. Như vậy thuật toán sinh
khóa con ít phức tạp hơn AES (Kuznyechik cần 5 lần sinh khóa còn AES 14 lần).

PRESENT

PRESENT là mã khối lightweight, nghĩa là được thiết kế cho các thiết bị có bộ xử lý nhỏ gọn, tập trung
vào độ dài khóa không quá lớn (tối đa 128 bits) nhưng vẫn đảm bảo an toàn và có thể thực hiện trên các
thiết bị có bộ xử lý 8 bit (ví dụ embedded systems).

Phần này mình tham khảo trong tài liệu về xây dựng PRESENT cipher ở [24].

Mô tả thuật toán

PRESENT gồm 32 động tác addRoundKey, duyệt qua 31 vòng.

INFO-CIRCLE Algorithm 3.2

1. generateRoundKeys()

2. for 𝑖 = 1 to 31 do

1. addRoundKey(STATE, 𝐾𝑖)

2. sBoxLayer(STATE)

3. pLayer(STATE)

3. end for

4. addRoundKey(STATE, 𝐾32)

PRESENT sử dụng mạng SP để mã hóa. Kích thước khối là 64 bits. PRESENT hỗ trợ hai kích thước khóa
là 80 và 128 bits. Trong [24], các tác giả khuyến nghị sử dụng khóa 80 bits cho phù hợp với cài đặt phần
cứng. Điều này dễ hiểu vì kích thước khóa lớn thì vấn đề lưu trữ trên bộ nhớ và tính toán sẽ chiếm nhiều
không gian, ngoài ra tốc độ tính toán sẽ bị giảm vì khả năng của CPU không lớn.

addRoundKey

Giả sử round key ở vòng thứ 𝑖 là

𝐾𝑖 = 𝜅𝑖63 . . . 𝜅
𝑖
0,

với 1 6 𝑖 6 32, cùng với STATE hiện tại là 𝑏63 . . . 𝑏0, khi đó addRoundKey chính là phép XOR bit

𝑏𝑗 → 𝑏𝑗𝜅
𝑖
𝑗

với 0 6 𝑗 6 63.

sBoxLayer

PRESENT sử dụng S-box biến đổi 4 bits thành 4 bits, nghĩa là 𝑆 : F4
2 → F4

2. S-box được cho bởi bảng sau.

𝑥 0 1 2 3 4 5 6 7 8 9 A B C D E F
𝑆[𝑥] C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

STATE được biểu diễn ở dạng 𝑏63 . . . 𝑏0 sẽ được chia thành 16 đoạn, mỗi đoạn 4 bits và từng đoạn sẽ đi qua
S-box. Sau đó các đoạn được nối lại theo thứ tự thành khối có 64 bits mới.
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pLayer

Hoán vị bit (bit permutation) được thực hiện theo bảng sau với bit thứ 𝑖 của STATE sẽ trở thành bit thứ
𝑃 (𝑖) của kết quả.

𝑖 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
𝑃 (𝑖) 0 16 32 48 1 17 33 49 2 18 34 50 3 19 35 51

𝑖 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
𝑃 (𝑖) 4 20 36 52 5 21 37 53 6 22 38 54 7 23 39 55

𝑖 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
𝑃 (𝑖) 8 24 40 56 9 25 41 57 10 26 42 58 11 27 43 59

𝑖 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
𝑃 (𝑖) 12 28 44 60 13 29 45 61 14 30 46 62 15 31 47 63

Thực ra, việc hoán vị bit tương ứng với một phép nhân ma trận. Ma trận này có tính chất là trên mỗi hàng
và mỗi cột có duy nhất một phần tử 1, các phần tử còn lại bằng 0. Ví dụ với 4 bit,⎛⎜⎜⎝

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞⎟⎟⎠
⎛⎜⎜⎝
𝑏3
𝑏2
𝑏1
𝑏0

⎞⎟⎟⎠ =

⎛⎜⎜⎝
𝑏2
𝑏3
𝑏0
𝑏1

⎞⎟⎟⎠ .

Phép nhân ma trận tương ứng với bảng hoán vị

𝑖 0 1 2 3
𝑃 (𝑖) 1 0 3 2

key schedule

Ở phần này chúng ta xem xét phiên bản khóa 80 bits của PRESENT.

Giả sử khóa đầu vào được lưu trong thanh ghi 𝐾 và được biểu diễn ở dạng 𝑘79𝑘78 . . . 𝑘0.

Tại vòng thứ 𝑖, khóa 𝐾𝑖 là 64 bits ngoài cùng của 𝐾, nghĩa là ở vòng thứ 𝑖 ta có

𝐾𝑖 = 𝜅63 . . . 𝜅0 = 𝑘79𝑘78 . . . 𝑘16.

Sau khi trích xuất round key 𝐾𝑖, thanh ghi 𝐾 sẽ được cập nhật theo các bước sau

1. [𝑘79𝑘78 . . . 𝑘1𝑘0] = [𝑘18𝑘17 . . . 𝑘20𝑘19] - dịch vòng trái 61 vị trí.

2. [𝑘79𝑘78𝑘77𝑘76] = 𝑆[𝑘79𝑘78𝑘77𝑘76] - dùng S-box biến đổi 4 bits thành 4 bits.

3. Gọi round_counter là 𝑖 ở dạng 5 bits, khi đó

[𝑘19𝑘18𝑘17𝑘16𝑘15] = [𝑘19𝑘18𝑘17𝑘16𝑘15]⊕ round_counter.
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Mô hình Feistel

Mô tả mô hình Feistel

Trong mô hình Feistel, mỗi block đầu vào được chia thành hai nửa trái phải có số bit bằng nhau.

Một cách hình thức, giả sử plaintext đầu vào là 𝑃 có 2𝑛 bit, thì 𝑃 được chia thành nửa trái 𝐿0 và 𝑅0, mỗi
nửa có 𝑛 bits.

Mỗi hệ mã Feistel có một hàm 𝐹 (𝑅𝑖−1,𝐾𝑖) nhận đầu vào là nửa phải ở vòng thứ (𝑖− 1) và khóa 𝐾𝑖 ở vòng
thứ 𝑖. Hàm 𝐹 được gọi là round function.

Ở mỗi vòng 𝑖 = 1, 2, . . ., hai nửa trái phải mới sẽ được tính theo công thức

𝐿𝑖 = 𝑅𝑖−1, 𝑅𝑖 = 𝐿𝑖−1 ⊕ 𝐹 (𝑅𝑖−1,𝐾𝑖),

trong đó:

• 𝐿𝑖−1 và 𝑅𝑖−1 là nửa trái và nửa phải ở vòng thứ (𝑖− 1);

• 𝐿𝑖 và 𝑅𝑖 là nửa trái và nửa phải ở vòng thứ 𝑖;

• 𝐾𝑖 là khóa con được dùng ở vòng 𝑖;

• 𝐹 là round function.

L0 R0

F K1

R1L1

… …

Li−1 Ri−1

F Ki

RiLi

Hình 3.12: Mô hình Feistel
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Nếu thuật toán kết thúc sau 𝑟 vòng (với 𝑟 khóa con) thì ciphertext tương ứng sẽ là 𝐶 = 𝐿𝑟‖𝑅𝑟.

Tính chất của mô hình Feistel

Mô hình Feistel không đòi hỏi round function 𝐹 phải khả nghịch. Giả sử ciphertext là 𝐶 = 𝐿𝑟‖𝑅𝑟. Khi đó
dựa trên công thức mã hóa ở trên thì có thể dễ dàng suy ra công thức giải mã là

𝑅𝑖−1 = 𝐿𝑖, 𝐿𝑖−1 = 𝑅𝑖 ⊕ 𝐹 (𝑅𝑖,𝐾𝑖),

với 𝑖 = 𝑟 − 1, . . . , 0.

Plaintext nhận được sẽ là 𝑃 = 𝐿0‖𝑅0.

Một số thuật toán sử dụng mô hình Feistel

Mô hình Feistel chuẩn

Mô hình Feistel chuẩn là mô hình ở trên. Các thuật toán sử dụng mô hình Feistel chuẩn có thể kể đến là:
DES, Magma (tiêu chuẩn mã hóa Nga, định nghĩa trong GOST 34.12.2015, version 64 bit), CAST-128 (tiêu
chuẩn mã hóa Canada).

Mô hình Feistel tổng quát

Mô hình Feistel tổng quát (generalized Feistel model) có nhiều biến thể. Trong đó khối đầu vào không được
chia thành hai nửa trái phải mà có thể được chia thành bốn phần 𝑃 = 𝑋0‖𝑋1‖𝑋2‖𝑋3, mỗi phần có số bit
bằng nhau.

Sau đó, ở mỗi vòng, bốn phần ở vòng 𝑖 nhận được từ bốn phần ở vòng (𝑖− 1), thông thường là từ việc giữ
lại ba phần (nhưng ở vị trí khác) và XOR phần còn lại với một round function lấy tham số là ba phần kia
cùng với khóa con ở vòng 𝑖. Ví dụ

𝑋
(𝑖)
0 = 𝑋

(𝑖−1)
1 ,

𝑋
(𝑖)
1 = 𝑋

(𝑖−1)
2 ,

𝑋
(𝑖)
2 = 𝑋

(𝑖−1)
3 ,

𝑋
(𝑖)
3 = 𝑋

(𝑖−1)
0 ⊕ 𝐹 (𝑋(𝑖−1)

1 , 𝑋
(𝑖−1)
2 , 𝑋

(𝑖−1)
3 ,𝐾𝑖),

trong đó:

• 𝑋
(𝑖)
0 , 𝑋(𝑖)

1 , 𝑋(𝑖)
2 , 𝑋(𝑖)

3 là bốn phần ở vòng thứ 𝑖;

• 𝑋
(𝑖−1)
0 , 𝑋(𝑖−1)

1 , 𝑋(𝑖−1)
2 , 𝑋(𝑖−1)

3 là bốn phần ở vòng thứ (𝑖− 1);

• 𝐾𝑖 là khóa con ở vòng thứ 𝑖;

• 𝐹 là round function nhận bốn đầu vào gồm ba phần ở vòng thứ (𝑖− 1) và khóa con ở vòng thứ 𝑖.

Lưu ý rằng trên đây chỉ trình bày một dạng biến thể của mô hình Feistel tổng quát.

Một số thuật toán sử dụng mô hình Feistel tổng quát: SM4 (tiêu chuẩn mã hóa mạng không dây của Trung
Quốc).

Magma

Hệ mật mã Magma được chính phủ Xô Viết chọn làm chuẩn mã hóa. Cũng giống như hệ mật mã DES,
Magma sử dụng mô hình Feistel cho các vòng mã hóa, được định nghĩa trong GOST 34.12-2015, trước đây
gọi là GOST 28147-89.

Phần này tham khảo chính từ [25].
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Độ dài khóa là 256 bits. Độ dài khối là 64 bits. Magma biến đổi trên 32 vòng để cho ra ciphertext.

Magma thực hiện biến đổi trên 32 vòng Feistel. Khối đầu vào 64 bits được chia thành hai nửa trái phải, mỗi
nửa 32 bits.

Key schedule

Khóa 256 bit được chia thành 8 cụm khóa con, mỗi khóa con 32 bit.

Nếu ta kí hiệu 256 bit của khóa là 𝑘0𝑘1 . . . 𝑘254𝑘255 thì ta có các khóa con là

𝑘0 . . . 𝑘31⏟  ⏞  
𝐾0

𝑘32 . . . 𝑘63⏟  ⏞  
𝐾1

. . . 𝑘224 . . . 𝑘255⏟  ⏞  
𝐾7

.

Từ vòng 1 tới 24 sử dụng lần lượt các khóa 𝐾0, 𝐾1, ..., 𝐾7 rồi lặp lại thứ tự đó.

Từ vòng 25 tới 32 sử dụng theo thứ tự ngược lại, từ 𝐾7, 𝐾6, ..., 𝐾0.

L0

rot11 SBOX

R0K0

L1

rot11 SBOX

R1K1

. . . . . .29 vòng

L31

rot11 SBOX

R31K0

L32 R32

Hình 3.13: Mô hình mã khối Magma

Round function

Như ta đã biết, trong mô hình Feistel, mỗi khối plaintext được chia thành hai nửa trái phải (𝐿0, 𝑅0). Sau
đó ở mỗi vòng biến đổi thì

𝐿𝑖+1 = 𝑅𝑖, 𝑅𝑖+1 = 𝐿𝑖 ⊕ 𝑓(𝑅𝑖,𝐾𝑖),

với 𝑖 = 0, 1, . . . và 𝐾𝑖 là khóa con ở vòng 𝑖.
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Hàm 𝑓 của Magma khá đơn giản, bao gồm ba động tác là cộng modulo 232, SBox và xoay 11 bits.

Đối với việc cộng modulo 232, ta xem block 𝑅𝑖 và 𝐾𝑖 như những số nguyên 32 bit, cộng chúng lại và modulo
232, nghĩa là (𝑅𝑖 +𝐾𝑖) mod 232.

Đặt 𝑇𝑖 = (𝑅𝑖 +𝐾𝑖) mod 232. Như vậy 𝑇𝑖 có 32 bits. Ta chia 32 bits này thành 8 cụm 4 bits. Ứng với mỗi
cụm 4 bits chúng ta cho qua một hoán vị. Như vậy cần 8 hoán vị (SBox). SBox được sử dụng chung cho
tất cả vòng.

Theo wiki thì SBox có thể bí mật. Tuy nhiên việc mã hóa và giải mã cần sử dụng SBox giống nhau. Do đó
thiết bị mã hóa và giải mã có cùng cơ chế pseudo-random để sinh ra SBox giống nhau.

SBox được quy định theo tiêu chuẩn chính phủ Nga là

sbox = [
[0xC, 0x4, 0x6, 0x2, 0xA, 0x5, 0xB, 0x9, 0xE, 0x8, 0xD, 0x7, 0x0, 0x3, 0xF, 0x1],
[0x6, 0x8, 0x2, 0x3, 0x9, 0xA, 0x5, 0xC, 0x1, 0xE, 0x4, 0x7, 0xB, 0xD, 0x0, 0xF],
[0xB, 0x3, 0x5, 0x8, 0x2, 0xF, 0xA, 0xD, 0xE, 0x1, 0x7, 0x4, 0xC, 0x9, 0x6, 0x0],
[0xC, 0x8, 0x2, 0x1, 0xD, 0x4, 0xF, 0x6, 0x7, 0x0, 0xA, 0x5, 0x3, 0xE, 0x9, 0xB],
[0x7, 0xF, 0x5, 0xA, 0x8, 0x1, 0x6, 0xD, 0x0, 0x9, 0x3, 0xE, 0xB, 0x4, 0x2, 0xC],
[0x5, 0xD, 0xF, 0x6, 0x9, 0x2, 0xC, 0xA, 0xB, 0x7, 0x8, 0x1, 0x4, 0x3, 0xE, 0x0],
[0x8, 0xE, 0x2, 0x5, 0x6, 0x9, 0x1, 0xC, 0xF, 0x4, 0xB, 0x0, 0xD, 0xA, 0x3, 0x7],
[0x1, 0x7, 0xE, 0xD, 0x0, 0x5, 0x8, 0x3, 0x4, 0xF, 0xA, 0x6, 0x9, 0xC, 0xB, 0x2],

]

Nếu 𝑇𝑖 được viết dưới dạng 32 bits là 𝑡31𝑡30 . . . 𝑡1𝑡0 thì SBox tương ứng của nó là

𝑡31 . . . 𝑡28⏟  ⏞  
𝑆7

𝑡27 . . . 𝑡24⏟  ⏞  
𝑆6

. . . 𝑡7 . . . 𝑡4⏟  ⏞  
𝑆1

𝑡3 . . . 𝑡0⏟  ⏞  
𝑆0

Nói cách khác, 𝑡4𝑖+3𝑡4𝑖+2𝑡4𝑖+1𝑡4𝑖 dùng 𝑆7−𝑖 với 𝑖 = 0, 1, 2, . . . , 7.

Cuối cùng, việc xoay trái 11 bits (rot11) chỉ đơn giản là đưa 11 bit đầu về cuối và đưa 21 bit cuối lên đầu.

Để giải mã ta vẫn sử dụng round function như lúc mã hóa, chỉ cần viết với thứ tự ngược lại là được. Như
vậy

𝑅𝑖 = 𝐿𝑖+1, 𝐿𝑖 = 𝑅𝑖+1 ⊕ 𝑓(𝐿𝑖+1,𝐾𝑖)

do 𝑅𝑖 = 𝐿𝑖+1. Lưu ý rằng khóa con lúc này là 0 tới 7 cho 8 vòng đầu, và 7 về 0 (rồi lặp lại) cho 24 vòng sau.

SMS4

SM4 (trước đây là SMS4) là thuật toán mã hóa khối của Trung Quốc để bảo vệ mạng không dây. Thuật
toán được phát triển vào năm 2006.

Phần này mình dịch từ [19] hoặc bản dịch tiếng Anh là [26].

Input, output và độ dài khóa của SMS4 đều là 128 bit. Thuật toán gồm 32 vòng.

Plaintext 128 bit sẽ được chia thành 4 phần độ dài 32 bit (gọi là word). Giả sử plaintext là 𝑃 có 128 bit sẽ
được biểu diễn thành

𝑃 = (𝑋0, 𝑋1, 𝑋2, 𝑋3).

Từ khóa ban đầu là 𝐾, thuật toán sinh khóa sinh ra các khóa 𝐾0, ..., 𝐾31. Mỗi khóa con độ dài 32 bit.

SMS4 sử dụng mô hình Feistel tổng quát (hay generalized Feistel model).
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Mã hóa

Ở vòng thứ 𝑖, với 𝑖 = 0, 1, . . . , 31, ta tính word mới 𝑋𝑖+4 theo công thức

𝑋𝑖+4 = 𝑋𝑖 ⊕ 𝑇 (𝑋𝑖+1 ⊕𝑋𝑖+2 ⊕𝑋𝑖+3 ⊕𝐾𝑖).

Hình 3.14: Một vòng SMS4

Ciphertext sẽ là viết ngược của bốn word ở vòng cuối cùng, nói cách khác là

𝐶 = (𝑋35, 𝑋34, 𝑋33, 𝑋32).

Round function

Biến đổi 𝑇 gồm hai phần là hoán vị (không tuyến tính) 𝜏 và hoán vị (tuyến tính) 𝐿. Nói cách khác là
𝑇 (·) = 𝐿(𝜏(·)).

Hoán vị không tuyến tính có dạng

𝜏(𝑋) = 𝜏(𝑎0, 𝑎1, 𝑎2, 𝑎3) = (SBox(𝑎0), SBox(𝑎1), SBox(𝑎2), SBox(𝑎3)),

với 𝑎𝑖 là các byte của 𝑋, nghĩa là 𝑋 có 32 bits sẽ được chia thành bốn khối độ dài 8 bits là 𝑎0, 𝑎1, 𝑎2 và 𝑎3.

Bảng S-box có thể xem ở một trong hai tài liệu trên.

Hoán vị tuyến tính có dạng

𝐿(𝑋) = 𝑋 ⊕ (𝑋≪ 2)⊕ (𝑋≪ 10)⊕ (𝑋≪ 18)⊕ (𝑋≪ 24),

trong đó≪ là phép dịch vòng bit sang trái.

Thuật toán sinh khóa con

Khóa 𝐾 ban đầu (128 bit) được chia thành bốn word

𝐾 = (𝑀𝐾0,𝑀𝐾1,𝑀𝐾2,𝑀𝐾3).

Các khóa con 𝐾0,𝐾1, . . . ,𝐾31 được sinh ra theo quy tắc sau. Với mỗi 𝑖 = 0, 1, . . . , 31 thì

𝐾𝑖 = 𝐻𝐾𝑖+4 = 𝐻𝐾𝑖 ⊕ 𝑇 ′(𝐻𝐾𝑖+1 ⊕𝐻𝐾𝑖+2 ⊕𝐻𝐾𝑖+3 ⊕ 𝐶𝐾𝑖),
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với 𝐻𝐾𝑖 =𝑀𝐾𝑖 ⊕ 𝐹𝐾𝑖 với 𝑖 = 0, 1, 2, 3. Trong đó 𝐹𝐾 là một mảng được định nghĩa sẵn

𝐹𝐾0 = (a3b1bac6), 𝐹𝐾1 = (56aa3350),
𝐹𝐾2 = (677d9197), 𝐹𝐾3 = (b27022dc).

Hàm 𝑇 ′ khác với hàm 𝑇 ở trên, thay vì dùng 𝐿 thì dùng 𝐿′ có dạng

𝐿′(𝑋) = 𝑋 ⊕ (𝑋≪ 13)⊕ (𝑋≪ 23).

𝐶𝐾 cũng là một mảng cố định. 𝐶𝐾𝑖 với 𝑖 = 0, 1, . . . , 31 là bảng sau

00070e15, 1c232a31, 383f464d, 545b6269,
70777e85, 8c939aa1, a8afb6bd, c4cbd2d9,
e0e7eef5, fc030a11, 181f262d, 343b4249,
50575e65, 6c737a81, 888f969d, a4abb2b9,
c0c7ced5, dce3eaf1, f8ff060d, 141b2229,
30373e45, 4c535a61, 686f767d, 848b9299,
a0a7aeb5, bcc3cad1, d8dfe6ed, f4fb0209,
10171e25, 2c333a41, 484f565d, 646b7279.

Giải mã

Để giải mã ta dùng round function ở trên nhưng theo thứ tự ngược lại.

ARX

ARX là cách gọi chung của những mô hình mã hóa khối chỉ sử dụng ba toán tử Addition (A, phép cộng
modulo 2𝑛), Rotation (R, dịch vòng bit), và XOR (X, toán tử xor).

Giả sử ta có hai số nguyên 𝑎 và 𝑏 có 𝑛 bit.

Khi đó, nếu ta biểu diễn 𝑎 ∈ Z2𝑛 dưới dạng nhị phân

𝑎 = 𝑎0 + 2𝑎1 + 22𝑎2 + · · ·+ 2𝑛−1𝑎𝑛−1

thì số nguyên 𝑎 cũng tương ứng với vector

(𝑎0, 𝑎1, 𝑎2, . . . , 𝑎𝑛−1) ∈ F𝑛
2 .

Phép cộng modulo 2𝑛 giữa hai số nguyên 𝑎 và 𝑏 được định nghĩa là

𝑎� 𝑏 = (𝑎+ 𝑏) mod 2𝑛.

Thông thường 𝑛 cố định và là lũy thừa của 2. Ví dụ trong hệ mã Magma thì 𝑛 = 32.

Với số nguyên dương 𝑟 cố định, phép dịch vòng trái và phải 𝑟 bit lần lượt là

𝑎≪ 𝑟 = (𝑎𝑟, 𝑎𝑟+1, . . . , 𝑎𝑛−1, 𝑎0, 𝑎1, . . . , 𝑎𝑟−1),

𝑎≫ 𝑟 = (𝑎𝑛−𝑟, 𝑎𝑛−𝑟+1, . . . , 𝑎𝑛−1, 𝑎0, 𝑎1, . . . , 𝑎𝑛−𝑟−1).

Đối với phép XOR thì ta thực hiện phép cộng modulo 2 theo từng vị trí trong vector

𝑎⊕ 𝑏 = (𝑎0 ⊕ 𝑏0, 𝑎1 ⊕ 𝑏1, . . . , 𝑎𝑛−1 ⊕ 𝑏𝑛−1).

Dưới góc độ phá mã vi sai, phép dịch vòng bit và phép XOR là hai biến đổi tuyến tính, và phép cộng modulo
2𝑛 là biến đổi không tuyến tính. Do đó phép cộng modulo 2𝑛 có thể loại bỏ sự có mặt của S-box trong thuật
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toán, phù hợp với các thiết bị lightweight vì không phải dùng bộ nhớ để lưu trữ S-box và các chip hiện này
đều hỗ trợ thực hiện các phép tính ARX.

Nhược điểm của ARX là có nhiều phần chưa được nghiên cứu rộng rãi, chẳng hạn, mặc dù phép cộng modulo
2𝑛 là biến đổi không tuyến tính nhưng có quan hệ gì với phép XOR hay không. Nói cách khác, có nhiều
điểm chưa rõ ràng đối với các toán tử ARX ở thời điểm hiện tại (2025).

Một số thuật toán lightweight sử dụng ARX: họ SPECK/SIMON.

3.1.4 Stream cipher
Chương này nói về mã dòng.

Linear Feedback Shift Register

Linear Feedback Shift Register (LFSR) là một ứng dụng quan trọng của hàm boolean để sinh ra một chuỗi
các giá trị (giả ngẫu nhiên, pseudorandom).

Linear Feedback Shift Register

Xét hàm boolean 𝑛 biến 𝑓(𝑥0, 𝑥1, . . . , 𝑥𝑛−1). Khi đó với các giá trị (bit) khởi tạo 𝑥0, 𝑥1, ..., 𝑥𝑛−1 thuộc F2,
ta có thể sinh ra bit ở các vị trí tiếp theo

𝑥𝑛 = 𝑓(𝑥0, 𝑥1, . . . , 𝑥𝑛−1).

Tương tự:

𝑥𝑛+1 = 𝑓(𝑥1, 𝑥2, . . . , 𝑥𝑛), 𝑥𝑛+2 = 𝑓(𝑥2, 𝑥3, . . . , 𝑥𝑛+1), 𝑥𝑛+3 = 𝑓(𝑥3, 𝑥4, . . . , 𝑥𝑛+2), . . .

Tổng quát, để sinh bit thứ 𝑛+ 𝑖 thì đầu vào sẽ là các bit 𝑥𝑖, 𝑥𝑖+1, ..., 𝑥𝑖+𝑛−1.

𝑥𝑛+𝑖 = 𝑓(𝑥𝑖, 𝑥𝑖+1, . . . , 𝑥𝑖+𝑛−1).

Theo Hình 3.15, kết quả của hàm 𝑓 sẽ được nối vào sau của dãy bit. Theo đó dãy bit sẽ luôn có dạng 𝑥0,
𝑥1, ..., 𝑥𝑛, ...

x0 x1 . . . xn−1

f

Hình 3.15: Feedback Shift Register

Thông qua hàm 𝑓 , các vector trong F𝑛
2 sẽ chuyển trạng thái lẫn nhau theo công thức

(𝑥𝑛−1, 𝑥𝑛−2, . . . , 𝑥1, 𝑥0)→ (𝑥𝑛, 𝑥𝑛−1, . . . , 𝑥2, 𝑥1).
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INFO-CIRCLE Example

Xét hàm boolean 𝑓(𝑥3, 𝑥2, 𝑥1, 𝑥0) = 𝑥3𝑥2 ⊕ 𝑥0. Bảng chân trị của hàm 𝑓 là

𝑓(𝑥3, 𝑥2, 𝑥1, 𝑥0) = (0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0).

Ví dụ, với (0, 0, 0, 1), ta có 𝑓(0, 0, 0, 1) = 1 nên (0, 0, 0, 1) biến đổi thành (1, 0, 0, 0). Như vậy chúng ta có
các chuyển đổi đối với hàm 𝑓 được thể hiện thành 4 chu trình ở các hình bên dưới.

(0, 0, 0, 0)

Hình 3.16: Chu trình thứ nhất của 𝑓

(0, 0, 0, 1)(1, 0, 0, 0)

(0, 1, 0, 0) (0, 0, 1, 0)

Hình 3.17: Chu trình thứ hai của 𝑓

(0, 0, 1, 1)

(1, 0, 0, 1)

(1, 1, 0, 0)
(1, 1, 1, 0)

(1, 1, 1, 1)

(0, 1, 1, 1)

(1, 0, 1, 1)
(1, 1, 0, 1)

(0, 1, 1, 0)

Hình 3.18: Chu trình thứ ba của 𝑓

(0, 1, 0, 1)

(1, 0, 1, 0)

Hình 3.19: Chu trình thứ tư của 𝑓

Ta thấy rằng tập các vector 𝑥 = (𝑥𝑖, 𝑥𝑖+1, . . . , 𝑥𝑖+𝑛−1) có 2𝑛 trường hợp. Do đó sẽ có một lúc nào đó (số 𝑖
nào đó) mà vector 𝑥 trở lại đúng vector ban đầu. Như vậy tồn tại 𝑖 sao cho

(𝑥0, 𝑥1, . . . , 𝑥𝑛−1) = (𝑥𝑖, 𝑥𝑖+1, . . . , 𝑥𝑖+𝑛−1).

Từ đó dãy bit tiếp theo được sinh ra sẽ giống hệt trước đó nên số 𝑖 nhỏ nhất thỏa mãn đẳng thức được gọi
là chu kì của Feedback Shift Register.
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Trong các hàm boolean thì hàm boolean tuyến tính được quan tâm nhiều nhất để sinh ra chuỗi bit Feedback
Shift Register. Do đó từ đây ta tập trung vào các hàm boolean tuyến tính và Linear Feedback Shift Register.

Nhắc lại, hàm boolean tuyến tính là hàm boolean có dạng

𝑓(𝑥0, 𝑥1, . . . , 𝑥𝑛−1) = 𝑎0𝑥0 ⊕ 𝑎1𝑥1 ⊕ . . .⊕ 𝑎𝑛−1𝑥𝑛−1.

Trong đó 𝑎𝑖 ∈ F2 là các hệ số cho trước. Ta định nghĩa đa thức đặc trưng cho hàm boolean tuyến tính như
sau.

INFO-CIRCLE Definition (Đa thức đặc trưng)

Xét hàm boolean tuyến tính

𝑓(𝑥0, 𝑥1, . . . , 𝑥𝑛−1) = 𝑎0𝑥0 ⊕ 𝑎1𝑥1 ⊕ . . .⊕ 𝑎𝑛−1𝑥𝑛−1.

Khi đó đa thức đặc trưng tương ứng với hàm 𝑓 là đa thức có hệ số trong F2

𝑃 (𝑥) = 𝑎0 + 𝑎1𝑥+ . . .+ 𝑎𝑛−1𝑥
𝑛−1 + 𝑥𝑛.

Do hàm boolean tuyến tính có tính chất là $f(bm{0}) = 0$ nên chu kì tối đa có thể đạt được là $2^n - 1$.
Ta có một vài định nghĩa sau để một LFSR đạt được chu kì tối đa.

INFO-CIRCLE Definition (Đa thức primitive)

Xét đa thức

𝑃 (𝑥) = 𝑎0 + 𝑎1𝑥+ . . .+ 𝑎𝑛−1𝑥
𝑛−1 + 𝑥𝑛

thuộc F2𝑛 . Ta đã biết trường F2𝑛 có 2𝑛− 1 phần tử khác không. Đặt 𝑝 = 2𝑛− 1. Đa thức 𝑃 (𝑥) được gọi
là primitive khi với mọi ước nguyên tố 𝑞 của 𝑝 thì:

𝑥𝑠 ̸≡ 1 mod 𝑃 (𝑥), với 𝑠 = 𝑝

𝑞
=

2𝑛 − 1

𝑞
.

INFO-CIRCLE Definition (Đa thức đặc trưng với chu kì cực đại)

Đa thức

𝑃 (𝑥) = 𝑎0 + 𝑎1𝑥+ . . .+ 𝑎𝑛−1𝑥
𝑛−1 + 𝑥𝑛

được gọi là đa thức đặc trưng với chu kì cực đại nếu đa thức đó tối giản và là đa thức primitive.

INFO-CIRCLE Example

Xét đa thức 𝑓(𝑥) = 𝑥4 + 𝑥3 + 1. Ta có thể xác định xem đa thức này có sinh ra LFSR với chu kì tối đa
hay không mà không cần tìm đồ thị chuyển trạng thái của LFSR.

Đầu tiên ta chứng minh 𝑓(𝑥) là đa thức tối giản. Thật vậy, giả sử ngược lại, 𝑓(𝑥) là tích của hai đa thức
bậc nhỏ hơn 4. Hai trường hợp có thể xảy ra là 𝑓(𝑥) chia hết cho đa thức tối giản bậc 1 hoặc bậc 2.
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Các đa thức tối giản bậc 1 là 𝑥 và 𝑥+ 1. Ta có thể kiểm chứng rằng 𝑓(𝑥) không chia hết cho bất kì đa
thức nào ở trên. Tương tự, đa thức tối giản bậc 2 (trong F24) là 𝑥2 + 𝑥+ 1 và 𝑓(𝑥) cũng không chia hết
cho đa thức này. Như vậy ta có thể kết luận rằng 𝑓(𝑥) là đa thức tối giản.

Trong F24 có 24 − 1 = 15 phần tử khác 0. Các ước nguyên tố của 15 là 3 và 5. Ta thấy rằng

𝑥3 ̸≡ 1 và 𝑥5 = 𝑥 · 𝑥4 = 𝑥 · (𝑥3 + 1) = 𝑥4 + 𝑥 = 𝑥3 + 𝑥+ 1 ̸≡ 1.

Như vậy 𝑓(𝑥) là đa thức primitive.

Như vậy ta có thể kết luận rằng đa thức 𝑓(𝑥) sinh ra LFSR với chu kì tối đa.

Thuật toán Berlekamp-Massey

Thuật toán Berlekamp-Massey là thuật toán tìm đa thức sinh có chu kì ngắn nhất sinh ra một dãy LFSR
cho trước.

Bài toán ở đây là, giả sử chúng ta có một dãy bit

𝑢0, 𝑢1, . . . , 𝑢𝑙−1

là một dãy bit được sinh giả ngẫu nhiêu (pseudorandom). Làm thế nào từ đoạn bit này ta xây dựng được
đa thức đặc trưng của LFSR mà sinh ra tất cả các bit sau đó? Hơn nữa 𝑙 phải nhỏ nhất có thể.

Nhắc lại, đa thức đặc trưng là đa thức có dạng

𝑃 (𝑥) = 𝑎0 + 𝑎1𝑥+ . . .+ 𝑎𝑛−1𝑥
𝑛−1 + 𝑎𝑛𝑥

𝑛

thì hàm boolean tuyến tính sinh ra bit tiếp theo sẽ có dạng

𝑥𝑛 = 𝑓(𝑥0, 𝑥1, . . . , 𝑥𝑛−1) = 𝑎0𝑥0 ⊕ 𝑎1𝑥1 ⊕ . . .⊕ 𝑎𝑛−1𝑥𝑛−1.

Tổng quát, công thức để sinh ra bit thứ 𝑛+ 𝑖 sẽ là

𝑥𝑛+𝑖 = 𝑓(𝑥𝑖, 𝑥𝑖+1, . . . , 𝑥𝑛+𝑖−1) = 𝑎0𝑥𝑖 ⊕ 𝑎1𝑥𝑖+1 ⊕ . . .⊕ 𝑎𝑛−1𝑥𝑛+𝑖−1

với 𝑖 = 0, 1, . . .

INFO-CIRCLE Algorithm (Thuật toán Berlekamp-Massey)

Đầu vào là dãy bit 𝑢0, 𝑢1, ..., 𝑢𝑙−1.

Đầu ra là đa thức đặc trưng bậc nhỏ nhất mà sinh ra toàn bộ dãy bit trên, bắt đầu từ các bit 𝑢0, 𝑢1, ...
nhất định.

Bước -1. Gọi 𝑛0 là vị trí đầu tiên mà 𝑢𝑛0
= 1 (các bit được đánh số từ 0). Khi đó đặt 𝑃−1(𝑥) = 1 và

𝑘−1 = 1. Nếu 𝑃−1(𝑥) sinh ra toàn bộ dãy bit thì ta dừng thuật toán. Ngược lại thì tiếp tục bước 1.

Bước 0. Đặt 𝑃0(𝑥) = 𝑥𝑛0+1 ⊕ 𝑃−1(𝑥) với 𝑛0 là vị trí bit 1 đầu tiên và đặt 𝑘0 = deg𝑃0(𝑥) = 𝑛0 + 1.

Ở mỗi bước từ đây trở đi, gọi 𝑚 là số sao cho

𝑘−1 = 𝑘0 = . . . = 𝑘𝑚−1 < 𝑘𝑚 = 𝑘𝑠+2 = . . .

Bước 𝑛. Để tìm 𝑃𝑛(𝑥) ta tính 𝑎 = 𝑚− 𝑘𝑚−1 và 𝑏 = 𝑛− 𝑘𝑛−1.

1. Nếu 𝑎 > 𝑏 thì
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𝑃𝑛(𝑥) = 𝑃𝑛−1(𝑥)⊕ 𝑥𝑎−𝑏𝑃𝑚−1(𝑥).

2. Nếu 𝑎 < 𝑏 thì

𝑃𝑛(𝑥) = 𝑥𝑏−𝑎𝑃𝑛−1(𝑥)⊕ 𝑃𝑚−1.

Trong quá trình tìm 𝑃𝑛(𝑥), khi nào bậc 𝑘𝑛 của 𝑃𝑛(𝑥) thỏa mãn điều kiện số 𝑚 thì ta cập nhật lại số 𝑚.

Ở mỗi bước, nếu 𝑃𝑛(𝑥) sinh ra toàn bộ dãy bit thì ta dừng thuật toán.

Để xem cách hoạt động của thuật toán Berlekamp-Massey ta sẽ giải ví dụ sau.

Xét dãy bit 111100100.

Đặt 𝑛0 = 0, 𝑃−1(𝑥) = 1 và 𝑘−1 = 0.

Theo 𝑃−1(𝑥) = 1 thì 1 → 1 → 1 → 1, nghĩa là bit đầu thành bit thứ hai, bit thứ hai thành bit thứ ba và
thứ ba thành thứ tư. Từ đó suy ra

𝑃0(𝑥) = 𝑃1(𝑥) = 𝑃2(𝑥) = 𝑃3(𝑥) = 𝑥0+1 ⊕ 1 = 𝑥⊕ 1.

Do 𝑘−1 < 𝑘0 = 𝑘1 = 𝑘2 = 𝑘3 (0 < 1) nên 𝑚 = 0.

Để tìm 𝑃4(𝑥), ta có 𝑎 = 𝑚− 𝑘𝑚−1 = 0− 0 = 0 và 𝑏 = 𝑛− 𝑘𝑛−1 = 4− 1 = 3. Do 𝑎 < 𝑏 nên

𝑃4(𝑥) = 𝑥3𝑃3(𝑥)⊕ 𝑃−1(𝑥) = 𝑥3 · (𝑥⊕ 1)⊕ 1 = 𝑥4 ⊕ 𝑥3 ⊕ 1.

Do 𝑘4 > 𝑘3 (4 > 1) nên 𝑚 = 4.

1 x x2 x3

1 1 1 1 f

1 1 1 0 f

1 1 0 1

Hình 3.20: LFSR tương ứng 𝑃4(𝑥)

Trong hình trên, hàng đầu từ trái sang phải là 𝑢0, 𝑢1, 𝑢2, 𝑢3. Hàng thứ hai từ trái sang phải là 𝑢1, 𝑢2, 𝑢3, 𝑢4.
Hàng thứ ba là 𝑢2, 𝑢3, 𝑢4, 𝑢5, nhưng 𝑢5 = 0 theo dãy ban đầu nên LFSR sinh ra 1 là chưa đúng, thuật toán
chuyển sang bước tiếp theo.

Để tìm 𝑃5(𝑥), ta có 𝑎 = 𝑚− 𝑘𝑚−1 = 4− 1 = 3 và 𝑏 = 𝑛− 𝑘𝑛−1 = 5− 4 = 1. Suy ra

𝑃5(𝑥) = 𝑃4(𝑥)⊕ 𝑥2𝑃3(𝑥) = 𝑥4 ⊕ 𝑥3 ⊕ 1⊕ 𝑥2 · (𝑥⊕ 1) = 𝑥4 ⊕ 𝑥2 ⊕ 1.

Theo 𝑃5(𝑥) = 𝑥4 ⊕ 𝑥2 ⊕ 1 thì LFSR sẽ hoạt động như hình dưới đây. Cũng theo hình dưới thì 𝑃6(𝑥) =
𝑃5(𝑥) = 𝑥4 ⊕ 𝑥2 ⊕ 1.
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1 x x2 x3

1 1 1 1 f

1 1 1 0 f

1 1 0 0 f

1 0 0 1 f

0 0 1 1 f

Hình 3.21: LFSR tương ứng 𝑃5(𝑥) và 𝑃6(𝑥)

Để tìm 𝑃7(𝑥), ta có 𝑎 = 𝑚− 𝑘𝑚−1 = 3 và 𝑏 = 𝑛− 𝑘𝑛−1 = 7− 4 = 3. Do 𝑎 > 𝑏 nên

𝑃7(𝑥) = 𝑃6(𝑥)⊕ 𝑃3(𝑥) = 𝑥4 ⊕ 𝑥2 ⊕ 1⊕ 𝑥⊕ 1 = 𝑥4 ⊕ 𝑥2 ⊕ 𝑥.

Khi đó LFSR sẽ được sinh như hình.

1 x x2 x3

1 1 1 1 f

1 1 1 0 f

1 1 0 0 f

1 0 0 1 f

0 0 1 0 f

0 1 0 1

Hình 3.22: LFSR tương ứng 𝑃7(𝑥)

Để tìm 𝑃8(𝑥), 𝑎 = 3 và 𝑏 = 8− 4 = 4. Do 𝑎 < 𝑏 nên

𝑃8(𝑥) = 𝑥𝑃7(𝑥)⊕ 𝑃3(𝑥) = 𝑥5 ⊕ 𝑥3 ⊕ 𝑥2 ⊕ 𝑥⊕ 1.

Lúc này LFSR sẽ là

1 x x2 x3 x4

1 1 1 1 0 f

1 1 1 0 0 f

1 1 0 0 1 f

1 0 0 1 0 f

0 0 1 0 0 f

Hình 3.23: LFSR tương ứng 𝑃8(𝑥)

328 Chapter 3. Mật mã học cũng khó



Math Book

Như vậy đa thức sinh ra dãy bit ban đầu là 𝑥5 ⊕ 𝑥3 ⊕ 𝑥2 ⊕ 𝑥⊕ 1. Thuật toán Berlekamp-Massey tìm ra đa
thức đặc trưng với độ phức tạp là 8 (tìm tới 𝑃8(𝑥)).

Ví dụ trên có thể được kiểm tra bởi chương trình Python ở đây.

3.1.5 Message Authentication Code
Điểm yếu của các hệ mật mã đối xứng là ở tính không từ chối. Bên nhận ciphertext không có cách nào xác
minh được bên gửi, cũng như bên gửi hoàn toàn có thể chối bỏ rằng mình đã gửi ciphertext đi.

Để giải quyết vấn đề này người ta đã nghĩ ra một phương án là Message Authentication Code (viết
tắt là MAC, tiếng Nga là имитовставка). Một số tài liệu tiếng Việt mình đọc thì MAC được dịch là mã
chứng thực thông điệp.

Khi đó, MAC gồm ba thành phần:

1. Thuật toán tạo khóa bí mật 𝐾.

2. Thuật toán tạo ra tag 𝑇 là thông tin chứng thực từ khóa bí mật 𝐾 và thông điệp 𝑀 , nói cách khác là
𝑇 = MAC(𝐾,𝑀).

3. Thuật toán kiểm tra: với 𝑇 , 𝐾 và 𝑀 , thuật toán trả về chấp nhận hoặc bác bỏ. Bên nhận sẽ tính toán
𝑇 ′ = MAC(𝐾,𝑀) và so sánh với 𝑇 . Nếu 𝑇 ≡ 𝑇 ′ thì chấp nhận thông tin không bị sửa đổi và được gửi
từ một bên sở hữu khóa bí mật 𝐾.

Bên gửi

Thông điệp
M

T = MAC(M,K)

Khóa bí mật
K

Bên nhận

Thông điệp
M

T

Khóa bí mật
K

kênh truyền mở

kênh truyền mở

trao đổi khóa

T ′ = MAC(M,K)
T ≡ T ′?

Chấp nhận Bác bỏ

Đúng

Sai

Hình 3.24: Sơ đồ tạo MAC

Nhìn chung, MAC giống với quy trình tạo chữ ký điện tử.

Hash-based Message Authentication Code (HMAC)

HMAC là một cách tiếp cận để xây dựng MAC dựa trên hàm băm nên có tên gọi hash-based MAC.
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MK

ipad

H

K

opad

H

HMACK(M)

Hình 3.25: Hash-based message authentication code

HMAC được định nghĩa trong RFC 2104 [27] bởi công thức

HMAC(𝐾,𝑀) = 𝐻 ((𝐾 ′ ⊕ 𝑜𝑝𝑎𝑑) ‖𝐻 (𝐾 ′ ⊕ 𝑖𝑝𝑎𝑑) ‖𝑀) ,

trong đó:

• 𝐻 là một hàm băm mật mã;

• 𝑀 là thông điệp cần chứng thực;

• 𝐾 là khóa bí mật;

• 𝐾 ′ là khóa với độ dài cố định được tạo từ khóa bí mật 𝐾;

• 𝑜𝑝𝑎𝑑 là một dãy các byte 0x5c, viết tắt của outer padding;

• 𝑖𝑝𝑎𝑑 là một dãy các byte 0x36, viết tắt của inner padding.

Độ dài cố định (block-size) ở mô tả trên phụ thuộc vào hàm băm mật mã 𝐻.

Mô hình HMAC cho phép chứng thực thông điệp nhưng không cho phép mã hóa (encrypt). Một ý
tưởng cho việc này là chúng ta mã hóa trước rồi chứng thực bản mã nhận được. Đây là cách tiếp cận
Encrypt-then-MAC và được ứng dụng khá rộng rãi, ví dụ như ở [28]. Chúng ta cũng có thể làm ngược
lại, chứng thực bản rõ trước và sau đó mã hóa, gọi là MAC-then-encrypt. Tuy nhiên MAC-then-encrypt
không được sử dụng nhiều.

Một ứng dụng tiêu biểu của Encrypt-then-MAC là cơ chế GCM (Galois/Counter Mode) được sử dụng rộng
rãi khi đi kèm với thuật toán AES. Trước tiên chúng ta sẽ xem xét bài toán tổng quát hơn là Authentication
Encryption (tạm dịch là mã hóa có chứng thực).
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Authentication Encryption

Đầu tiên ta thống nhất các kí hiệu sau.

Kí hiệu Ý nghĩa
𝑃 bản rõ (plaintext)
𝐾 khóa cho thuật toán mã hóa đối xứng
𝐾 ′ khóa dùng để tạo MAC
Enc𝐾(𝑃 ) hàm mã hóa đối xứng bản rõ 𝑃 với khóa bí mật 𝐾
𝐶 bản mã (ciphertext) khi mã hóa bản rõ 𝑃 với khóa bí mật 𝐾

𝐶 = Enc𝐾(𝑃 )
𝐴 thông tin để chứng thực (Authentication Data)

Authentication Encryption (AE)

Authentication Encryption (hay AE) có thể biểu diễn bởi hàm

𝑇 = MAC(𝐾 ′, 𝐶),

khi đó MAC được tạo bởi khóa 𝐾 ′, bản mã 𝐶.

Thông thường, 𝐾 ′ sẽ được sinh ra từ 𝐾 hoặc cả hai đều được sinh từ một mật khẩu (password) hoặc
passphrase nào đó.

Authentication Encryption with Associated Data (AEAD)

Tương tự với AE nhưng lúc này chúng ta thêm một đoạn thông tin gọi là Associated Data hoặc
Authentication Data. Lúc này MAC sẽ được tính bởi công thức

𝑇 = MAC(𝐾 ′, 𝐶,𝐴),

với 𝐴 là thông tin chứng thực (authentication data).

Hiện nay trong các giao thức mật mã thì AEAD là bắt buộc đi kèm với thuật toán mã hóa đối xứng.

Ở TLS v1.3 thì đối với thuật toán AES có hai phương án AEAD là GCM (Galois/Counter Mode) và CCM
(CBC-MAC). Đối với các cipher suites sử dụng các thuật toán tiêu chuẩn GOST (Liên bang Nga) sử dụng
phương án AEAD là MGM (Multilinear Galois Mode). Chúng ta cần lưu ý rằng các AEAD được định
nghĩa trong các khuyến nghị (recommendation) chứ không phải trong các tiêu chuẩn [29, 30, 31]. Nói cách
khác, khi phát triển sản phẩm mật mã thì đây không phải quy định bắt buộc nhưng về mặt an toàn thì
chúng ta nên áp dụng vì những mode khác luôn có khuyết điểm (ECB, CBC, v.v.).

Phần sau mình sẽ trình bày cách tính MAC dựa trên GCM, CCM và MGM.

Các loại AEAD

Sơ lược về mã hóa với bộ đếm (counter)

Cả ba phương án AEAD sau đây đều sử dụng CTR (Counter Mode) để mã hóa. Sau đó việc việc tính toán
MAC được thực hiện theo những cách khác nhau.

Cơ chế mã hóa với bộ đếm như hình sau.
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Counter1

EncK

P1

C1

Counter2

EncK

P2

C2

Counter3

EncK

P3

C3

Counter4

EncK

P4

C4

incr incr incr

Hình 3.26: Mã hóa theo mode CTR

Bắt đầu với giá trị Counter1, các counter sau đó được tạo ra khi tăng dần bộ đếm với hàm incr nào đó:

Counter𝑖+1 = incr(Counter𝑖)

với 𝑖 = 1, 2, . . .

Khi đó, nếu 𝑃1, 𝑃2, ..., 𝑃𝑛 là các khối bản rõ thì các khối bản mã tương ứng 𝐶1, 𝐶2, ..., 𝐶𝑛 được tính bởi

𝐶𝑖 = 𝑃𝑖 ⊕ Enc𝐾(Counter𝑖).

Hàm incr là một hàm tăng nào đó, không nhất thiết là cộng 1.

Điều quan trọng khi chúng ta sử dụng CTR là không được sử dụng lại Counter1, các bạn có thể tìm về lỗ
hổng reuse nonce. Nếu sử dụng lại counter thì chúng ta sẽ bị tấn công dạng known-plaintext.

Galois/Counter Mode (GCM)

Đây là dạng AEAD được sử dụng rộng rãi nhất hiện nay (ít ra là mình thấy vậy :v).

GCM sử dụng CTR để mã hóa và sử dụng các phép tính trên trường Galois để tạo MAC nên có tên gọi là
Galois/Counter Mode.
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Counter0

EncK

Counter1

EncK

Counter2

EncK

incr incr

C1 C2

multH

multH

P1 P2

multHAD

multH

T

len(A)‖len(C)

Bắt đầu với Counter0, hay còn gọi là nonce, các giá trị bộ đếm tiếp theo được tính bởi việc tăng giá trị
trước đó bởi hàm incr. Việc mã hóa sử dụng CTR giống như đã trình bày ở trên.

Để tính MAC, giả sử chúng ta có 𝑚 khối associated data là 𝐴1, 𝐴2, ..., 𝐴𝑚 và 𝑛 khối bản mã 𝐶1, 𝐶2, ...,
𝐶𝑛. Khi đó các khối 𝐴𝑖 và 𝐶𝑗 có 128 bit được biểu diễn thành các đa thức trong GF(2128) với đa thức tối
giản là 𝑥128 + 𝑥7 + 𝑥2 + 𝑥+ 1.

Đặt

𝐴 = 𝐴1‖𝐴2‖ · · · ‖𝐴𝑚, 𝐶 = 𝐶1‖𝐶2‖ · · · ‖𝐶𝑛.

Đặt 𝐻 = Enc𝐾(0128). Đây là phần tử trường Galois dùng để tạo MAC nên có thể nói 𝐻 chính là 𝐾 ′ ở phần
mô tả MAC bên trên.

MAC 𝑇 sẽ được tính bởi công thức

𝑇 = 𝐴1𝐻
𝑛+𝑚+2 ⊕𝐴2𝐻

𝑛+𝑚+1 ⊕ · · ·𝐴𝑚𝐻
𝑛+3

⊕ 𝐶1𝐻
𝑛+2 ⊕ 𝐶2𝐻

𝑛+1 ⊕ · · · ⊕ 𝐶𝑛𝐻
2

⊕ 𝐿𝐻 ⊕ Enc𝐾(Counter0),

với 𝐿 = len(𝐴)‖len(𝐶), nghĩa là độ dài cả đoạn 𝐴 là len(𝐴) sẽ được biểu diễn bằng dãy 64 bit và tương tự,
độ dài cả đoạn 𝐶 là len(𝐶) sẽ được biểu diễn bằng dãy 64 bit. Khi nối hai đoạn đó lại ta có khối 𝐿 có 128
bit.

Ở hình minh họa ở trên thì 𝑚 = 1 và 𝑛 = 2 (có một khối AD và hai khối bản mã).
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CBC-MAC

EncK EncK EncK EncK

IV A1 P1 P2

EncK EncK EncK

C1 C2 U

ctr+1 ctr+2 ctr

64

T

Hình 3.27: Mã hóa theo CCM

Việc mã hóa cũng sử dụng bộ đếm CTR, ở đây là ctr+ 𝑖 với 𝑖 = 1, 2, . . . còn ctr thì dùng để tính MAC sau.

Tương tự, ta giả sử có 𝑚 khối AD và 𝑛 khối bản mã. Khi đó với một IV (có công thức tạo nhưng mình
không nói ở đây) thì đầu tiên ta đặt 𝐵0 = Enc𝐾(IV), ta tính

𝐵𝑖 = Enc𝐾(𝐴𝑖 ⊕𝐵𝑖−1)

với 𝑖 = 1, 2, . . . ,𝑚. Phần này là CBC dành cho AD.

Ta tiếp tục tính CBC cho các bản rõ 𝑃1, 𝑃2, ..., 𝑃𝑛 bằng

𝐵𝑖+𝑚 = Enc𝐾(𝑃𝑖 ⊕𝐵𝑖+𝑚−1)

với 𝑖 = 1, 2, . . . , 𝑛.

Tag 𝑇 sẽ là 𝐵𝑛+𝑚 và MAC là 64 bit cao nhất (MSB) của Enc𝐾(ctr)⊕ 𝑇 , nghĩa là

𝑈 = MSB64(Enc𝐾(ctr)⊕ 𝑇 ).

Ở đây MAC được tạo bởi CBC nên có tên gọi là CBC-MAC.

Multilinear Galois Mode (MGM)

Đây là AEAD sử dụng cho các GOST cipher suite cho TLS v1.3 và là mở rộng của GCM. Ở đây thay vì
chúng ta chỉ nhân với một phần tử 𝐻 như GCM mà là một dãy 𝐻1, 𝐻2, ... nên có tên gọi là multilinear
Galois.
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0‖nonce EncK Y1

EncK

P1

C1

Y2

EncK

P2

C2

incr

H1 H2 H3 H4

A len(A)‖len(C)

EncK

MSBS

T

Hình 3.28: Mã hóa theo MGM

Đối với MGM chúng ta cần một đoạn 127 bit gọi là nonce và sẽ sử dụng để mã hóa lẫn tính MAC.

Để mã hóa, đặt 𝑌1 = Enc𝐾(0‖nonce). Đây là điểm khởi đầu của bộ đếm. Khi đó các phần tử bộ đếm được
được sinh bởi quy tắc

𝑌𝑖+1 = incr𝑟(𝑌𝑖), 𝑖 = 1, 2, . . . , 𝑛.

Bản mã sẽ là

𝐶𝑖 = Enc𝐾(𝑌𝑖)⊕ 𝑃𝑖, 𝑖 = 1, 2, . . . , 𝑛.

Tiếp theo, đặt 𝑍1 = Enc𝐾(1‖nonce) và

𝑍𝑖+1 = incr𝑙(𝑍𝑖), 𝑖 = 1, 2, . . . , 𝑛+𝑚+ 1.
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1‖nonce

EncK

Z1

EncK

H1

Z2

EncK

H2

Z3

EncK

H3

Z4

EncK

H4

incr incr incr

Hình 3.29: Quá trình sinh dãy (𝐻𝑖)

Chúng ta tính một dãy 𝐻1, 𝐻2, ... theo quy tắc sau (Hình 3.29)

𝐻𝑖 = Enc𝐾(𝑍𝑖), 𝑖 = 1, 2, . . . , 𝑛+𝑚+ 1.

Dãy 𝐻𝑖 sẽ được dùng dùng để tính MAC. Gọi

𝒯 = 𝐴1𝐻1 ⊕𝐴2𝐻2 ⊕ · · · ⊕𝐴𝑚𝐻𝑚 ⊕ 𝐶1𝐻𝑚+1 ⊕ · · ·𝐶𝑛𝐻𝑛+𝑚 ⊕ 𝐿𝐻𝑛+𝑚+1,

với 𝐿 = len(𝐴)‖len(𝐶) như GCM. Một điều lưu ý ở đây là MGM có thể sử dụng cho thuật toán với độ dài
khối là 64 bit (Magma) và 128 bit (Kuznyechik). Khi đó, nếu độ dài khối là 64 bit thì đa thức tối giản là
𝑥64 + 𝑥4 + 𝑥3 + 𝑥+ 1 và nếu độ dài khối là 128 bit thì đa thức tối giản là 𝑥128 + 𝑥7 + 𝑥2 + 𝑥+ 1.

Khi đó, MAC là 64 bit cao (MSB) của kết quả Enc𝐾(𝒯 ), nghĩa là

𝑇 = MSB64(Enc𝐾(𝒯 )).

Hàm incr𝑙 và incr𝑟 hoạt động theo nguyên tắc, giả sử chúng ta có một số 128 bit là 𝐿‖𝑅, trong đó 𝐿 và 𝑅
đều có 64 bit. Khi đó

• incr𝑙(𝐿‖𝑅) = 𝐿′‖𝑅 với 𝐿′ = (𝐿+ 1) mod 264;

• incr𝑟(𝐿‖𝑅) = 𝐿‖𝑅′ với 𝑅′ = (𝑅+ 1) mod 264.

Ở đây 𝐿′ (hoặc 𝑅′) được biểu diễn bởi dãy 64 bit và gắn vào 𝑅 (hoặc 𝐿) ban đầu để có một dãy 128 bit.

3.2 Phá mã

3.2.1 Phá mã vi sai
Phá mã vi sai (differential cryptanalysis) đã làm chuẩn mã hóa DES không còn đủ an toàn.

Trong các chuẩn mã hóa hiện đại về sau, khả năng kháng phá mã vi sai và phá mã tuyến tính trở thành
tiêu chuẩn đánh giá độ an toàn của thuật toán mã hóa.
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Nhập môn phá mã vi sai

Phần này mình tham khảo ở [32]. Bạn này viết khá nhiều bài nhập môn cryptanalysis trên block cipher nên
rất tốt để tham khảo.

Differential (vi sai)

INFO-CIRCLE Definition 1.63

Gọi F𝑛
2 và F𝑚

2 là hai không gian vector trên F2 với số chiều lần lượt là 𝑛 và 𝑚. Gọi 𝑆 là ánh xạ từ F𝑛
2

tới F𝑚
2 . Với mỗi vector 𝑎, 𝑏 ∈ F𝑛

2 , ta nói input differential của 𝑆 là 𝛿 = 𝑎⊕ 𝑏 và output differential
của 𝑆 là Δ = 𝑆(𝑎)⊕ 𝑆(𝑏), trong đó ⊕ là phép XOR.

Trên thực tế, nếu trường được xét không phải F2 mà là một trường F bất kì thì input differential là 𝑏−𝑎 và
output differential là 𝑆(𝑏)− 𝑆(𝑎). Trong mật mã chúng ta thường hay làm việc trên các không gian vector
nhị phân nên phép trừ cũng chính là phép cộng (XOR) trên F2.

Ánh xạ 𝑆 thường được sử dụng trong S-box là ánh xạ không tuyến tính, nghĩa là chúng ta không có tính
chất 𝑆(𝑎 ⊕ 𝑏) = 𝑆(𝑎) ⊕ 𝑆(𝑏). Tuy nhiên khi phân tích phân bố của 𝛿 = 𝑎 ⊕ 𝑏 và Δ = 𝑆(𝑎) ⊕ 𝑆(𝑏) ta có
thể trích ra các thông tin phục vụ tấn công. Do sử dụng các thông tin thống kê từ differential nên cách tấn
công này được gọi là differential attack (hay phá mã vi sai).

Toy cipher

1. Độ dài khối là 4 bits.

2. Độ dài khóa là 8 bits.

Mình gọi plaintext 4 bits là 𝑃 và khóa 8 bits là 𝐾 = 𝐾0‖𝐾1, trong đó 𝐾0 và 𝐾1 có 4 bits và ‖ là toán tử
ghép chuỗi.

S-box của toy cipher là ánh xạ F4
2 tới F4

2 theo bảng sau.

𝑥 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

𝑆(𝑥) 3 14 1 10 4 9 5 6 8 11 15 2 13 12 0 7

Quá trình mã hóa mỗi khối plaintext 4 bit 𝑃 thành ciphertext 𝐶 cũng 4 bit là:

𝑃 → 𝑃 ⊕𝐾0 → 𝑆(𝑃 ⊕𝐾0)→ 𝑆(𝑃 ⊕𝐾0)⊕𝐾1 = 𝐶.

P

K0

SBox

K1

C

Hình 3.30: Sơ đồ toy cipher

Phân tích vi sai

Tiếp theo chúng ta phân tích sự phân bố vi sai của S-box và biểu diễn thành bảng.
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Trong bảng này, phần tử ở hàng 𝑖 và cột 𝑗 thể hiện số lượng cặp (𝑎, 𝑏) ∈ F4
2 × F4

2 sao cho 𝑎 ⊕ 𝑏 = 𝑖 và
𝑆(𝑎⊕ 𝑏) = 𝑗.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 2 0 4 0 0 0 2 0 0 0 2 0 6 0 0
2 0 2 2 0 2 0 0 2 0 2 0 2 0 2 0 2
3 0 0 2 0 2 0 0 0 0 2 4 0 4 0 0 2
4 0 0 0 0 2 4 0 6 0 0 0 0 2 0 0 2
5 0 0 2 0 2 0 2 2 2 0 4 0 0 0 0 2
6 0 0 2 2 0 2 2 0 4 0 0 0 2 0 2 0
7 0 0 0 2 0 2 0 0 2 0 0 4 0 0 2 4
8 0 2 0 0 0 6 0 0 2 2 0 2 0 0 2 0
9 0 0 2 2 2 2 4 0 4 0 0 0 0 0 0 0
10 0 2 0 0 2 0 0 0 2 2 2 0 4 0 2 0
11 0 4 2 2 0 0 0 0 0 4 2 2 0 0 0 0
12 0 2 4 0 2 0 0 0 0 0 2 0 2 2 2 0
13 0 2 0 2 0 0 2 2 0 2 2 0 0 0 0 4
14 0 0 0 2 0 0 2 0 0 2 0 4 2 4 0 0
15 0 0 0 0 2 0 4 2 0 0 0 0 0 2 6 0

Chúng ta quan tâm tới những hàng có nhiều giá trị 0 và có một phần tử lớn nhất.

Cụ thể thì ở bảng này:

1. Nếu input differential là 0 thì output differential là 0 với xác suất 16/16 = 1.

2. Nếu input differential là 1 thì output differential là 13 với xác suất 6/16.

3. Nếu input differential là 4 thì output differential là 7 với xác suất 6/16.

4. Nếu input differential là 8 thì output differential là 5 với xác suất 6/16.

5. Nếu input differential là 15 thì output differential là 14 với xác suất 6/16.

Khi input differential là 0, nói cách khác là 𝑎 ⊕ 𝑏 = 0, tương đương với 𝑎 = 𝑏. Suy ra 𝑆(𝑎) = 𝑆(𝑏) nên
output differential luôn là 0 = 𝑆(𝑎)⊕ 𝑆(𝑏). Tính chất này không hữu dụng.

Tiếp theo, giả sử ta mã hóa plaintext 𝑃1 và nhận được ciphertext tương ứng là 𝐶1.

Tương tự ta mã hóa plaintext 𝑃 ′
1 và nhận được ciphertext tương ứng là 𝐶 ′

1.

Theo cấu trúc cipher, 𝑃1 ⊕𝐾0 và 𝑃 ′
1 ⊕𝐾0 sẽ là các đầu vào của S-box. Do đó input differential là

𝛿 = (𝑃1 ⊕𝐾0)⊕ (𝑃 ′
1 ⊕𝐾0) = 𝑃1 ⊕ 𝑃 ′

1.

Điều này có nghĩa là input differential không phụ thuộc vào khóa và đây là tính chất quan trọng cho phá
mã vi sai.

Theo quan sát số 2 về bảng phân bố vi sai ở trên, nếu input differential là 1 thì output differential là 13 với
xác suất 6/16.

Giả sử ta chọn các plaintext 𝑃1 và 𝑃 ′
1 sao cho 𝑃1 ⊕ 𝑃 ′

1 = 1.

Đặt 𝐼1 = 𝑆(𝑃1 ⊕𝐾0) và 𝐼 ′1 = 𝑆(𝑃 ′
1 ⊕𝐾0). Khi đó output differential của S-box là 𝐼1 ⊕ 𝐼 ′1 và bằng 13 với

xác suất 6/16.

Để ý rằng 𝐶1 = 𝐼1 ⊕𝐾1 và 𝐶 ′
1 = 𝐼 ′1 ⊕𝐾1 nên

𝐶1 ⊕ 𝐶 ′
1 = (𝐼1 ⊕𝐾1)⊕ (𝐼 ′1 ⊕𝐾1) = 𝐼1 ⊕ 𝐼 ′1
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chính là output differential.

INFO-CIRCLE Remark 1.15

Nếu hai plaintext 𝑃1 và 𝑃 ′
1 thỏa mãn 𝑃1 ⊕ 𝑃 ′

1 = 1 thì hai ciphertext tương ứng 𝐶1 và 𝐶 ′
1 sẽ cho giá trị

𝐶1 ⊕ 𝐶 ′
1 = 13 với xác suất 6/16.

Nói cách khác, trung bình 16 cặp plaintext mà 𝑃1 ⊕ 𝑃 ′
1 = 16 thì sẽ có 6 cặp cho kết quả 𝐶1 ⊕ 𝐶 ′

1 = 13.

Chosen plaintext

Dựa vào nhận xét trên, chiến thuật phá mã vi sai thực hiện như sau:

1. Chọn ngẫu nhiên plaintext 𝑃1 và tính 𝑃 ′
1 = 𝑃1 ⊕ 1.

2. Mã hóa 𝑃1 thu được 𝐶1, mã hóa 𝑃 ′
1 thu được 𝐶 ′

1.

3. Nếu 𝐶1 ⊕ 𝐶 ′
1 = 13 thì ta đã tìm được một cặp plaintext "tốt". Nếu không thì ta quay lại bước 1.

Xác suất 6/16 đảm bảo rằng việc tìm kiếm sẽ không mất thời gian vì xác suất này khá lớn so với phần còn
lại. :)))

Khi chúng ta đã tìm được cặp plaintext (𝑃1, 𝑃
′
1) mà 𝐶1⊕𝐶 ′

1 = 13, chúng ta đã sẵn sàng khôi phục khóa con
𝐾0.

Đầu tiên, ta liệt kê tất cả cặp (𝑎, 𝑏) ∈ F4
2 × F4

2 sao cho 𝑎⊕ 𝑏 = 1 và 𝑆(𝑎)⊕ 𝑆(𝑏) = 13. Các cặp đó là

𝒮0 = {(0, 1), (1, 0), (4, 5), (5, 4), (10, 11), (11, 10)}.

Do phép XOR có tính đối xứng nên tập 𝒮0 cũng có những cặp đối xứng. Do đó ta chỉ cần lấy phần tử đầu
của mỗi cặp và đặt

𝒜 = {0, 1, 4, 5, 10, 11}.

Mỗi phần tử 𝑎 ∈ 𝒜 có tính chất 𝑆(𝑎)⊕ 𝑆(𝑎⊕ 1) = 13.

Theo cấu trúc của toy cipher thì 𝑆(𝑃1 ⊕𝐾0)⊕ 𝑆(𝑃 ′
1 ⊕𝐾0) = 13.

Như vậy 𝑎 = 𝑃1 ⊕𝐾0 và 𝑎 ⊕ 1 = 𝑃 ′
1 ⊕𝐾0. Từ đây ta tìm được các khả năng có thể có của khóa con 𝐾0

ứng với mỗi giá trị 𝑎.

Với mỗi giá trị 𝐾0, ta tính được 𝐾1 = 𝐶1 ⊕ 𝑆(𝑃1 ⊕𝐾0). Do 𝒜 có 6 phần tử nên ta sẽ có 6 trường hợp khóa
𝐾 = 𝐾0‖𝐾1.

Để tìm ra khóa ta có thể thử mã hóa 𝑃1 với từng khóa. Nếu kết quả là 𝐶1 thì ta đã khôi phục đúng khóa.

Differential cryptanalysis ở toy cipher đã giảm số lượng khóa cần thử từ 28 = 256 trường hợp xuống còn 6
trường hợp.

Phá mã vi sai trên TinyDES

Mô tả TinyDES

TinyDES là một phiên bản thu nhỏ của chuẩn mã hóa DES. TinyDES là mã hóa khối theo mô hình Feistel,
kích thước khối là 8 bit, kích thước khóa cũng là 8 bit. Mỗi vòng khóa con có độ dài 6 bit.
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Li Ri

Expand

SBox

PBox

Ri+1Li+1

KLi KRi

left shift left shift

Compress

KLi+1 KRi+1

Hình 3.31: Một vòng TinyDES

Mã TinyDES khá đơn giản. Theo mô hình Feistel, khối đầu vào 8 bit được chia thành hai nửa trái phải 4
bit. Nửa phải sẽ đi qua các hàm Expand, SBox và PBox, sau đó XOR với nửa trái để được nửa phải mới.
Còn nửa trái mới là nửa phải cũ. Tóm lại công thức mô hình Feistel là:

𝐿𝑖+1 = 𝑅𝑖, 𝑅𝑖+1 = 𝐿𝑖 ⊕ 𝐹 (𝑅𝑖,𝐾𝑖+1)

với 𝑖 = 1, 2, 3 tương ứng 3 vòng với đầu vào của khối là (𝐿0, 𝑅0).

Chúng ta cần các động tác sau:

1. Expand: mở rộng và hoán vị 𝑅𝑖 từ 4 bits lên 6 bits. Giả sử 4 bits của 𝑅𝑖 là 𝑏0𝑏1𝑏2𝑏3 thì kết quả sau
khi Expand là 𝑏2𝑏3𝑏1𝑏2𝑏1𝑏0.

2. SBox: gọi 6 bits đầu vào là 𝑏0𝑏1𝑏2𝑏3𝑏4𝑏5. Khi đó ta tra cứu theo bảng SBox với 𝑏0𝑏5 chỉ số hàng,
𝑏1𝑏2𝑏3𝑏4 chỉ số cột. Nói cách khác bảng SBox có 4 hàng, 16 cột. Kết quả của SBox là một số 4 bit.

3. PBox: là hàm hoán vị 4 bits 𝑏0𝑏1𝑏2𝑏3 thành 𝑏2𝑏0𝑏3𝑏1.

Như vậy, hàm 𝐹 của mô hình Feistel đối với mã TinyDES là:

𝐹 (𝑅𝑖,𝐾𝑖) = PBox(SBox(Expand(𝑅𝑖)⊕𝐾𝑖+1)).

Để sinh khóa con cho 3 vòng, khóa ban đầu được chia thành hai nửa trái phải lần lượt là 𝐾𝐿0 và 𝐾𝑅0.
TinyDES thực hiện như sau:

1. Vòng 1: 𝐾𝐿0 và 𝐾𝑅0 được dịch vòng trái 1 bit để được 𝐾𝐿1 và 𝐾𝑅1;

2. Vòng 2: 𝐾𝐿1 và 𝐾𝑅1 được dịch vòng trái 2 bit để được 𝐾𝐿2 và 𝐾𝑅2;

3. Vòng 3: 𝐾𝐿2 và 𝐾𝑅2 được dịch vòng trái 1 bit để được 𝐾𝐿3 và 𝐾𝑅3.

Khi đó, khóa 𝐾𝑖 ở vòng thứ 𝑖 (với 𝑖 = 1, 2, 3) là hoán vị và nén 8 bits của 𝐾𝐿𝑖 và 𝐾𝑅𝑖 lại thành 6 bits.

Đặt 8 bits khi ghép 𝐾𝐿𝑖‖𝐾𝑅𝑖 là 𝑘0𝑘1𝑘2𝑘3𝑘4𝑘5𝑘6𝑘7, kết quả là 6 bits 𝑘5𝑘1𝑘3𝑘2𝑘7𝑘0.

INFO-CIRCLE tinydes.py
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# tindeys.py

sbox = [
0xE, 0x4, 0xD, 0x1, 0x2, 0xF, 0xB, 0x8, 0x3, 0xA, 0x6, 0xC, 0x5, 0x9, 0x0, 0x7,
0x0, 0xF, 0x7, 0x4, 0xE, 0x2, 0xD, 0x1, 0xA, 0x6, 0xC, 0xB, 0x9, 0x5, 0x3, 0x8,
0x4, 0x1, 0xE, 0x8, 0xD, 0x6, 0x2, 0xB, 0xF, 0xC, 0x9, 0x7, 0x3, 0xA, 0x5, 0x0,
0xF, 0xC, 0x8, 0x2, 0x4, 0x9, 0x1, 0x7, 0x5, 0xB, 0x3, 0xE, 0xA, 0x0, 0x6, 0xD

]

def Xor(a: list[int], b: list[int]) -> list[int]:
return [x^y for x, y in zip(a, b)]

def Expand(R: list[int]) -> list[int]:
return [R[2], R[3], R[1], R[2], R[1], R[0]]

def SBox(R: list[int]) -> list[int]:
row = int("".join(map(str, [R[0], R[5]])), 2)
col = int("".join(map(str, R[1:5])), 2)

return list(map(int, format(sbox[row*16 + col], "04b")))

def PBox(R: list[int]) -> list[int]:
return [R[2], R[0], R[3], R[1]]

def PBox_inv(R: list[int]) -> list[int]:
return [R[1], R[3], R[0], R[2]]

def Compress(K: list[int], round: int) -> list[int]:
left, right = K[:4], K[4:]
if round == 0 or round == 2:

left = left[1:] + left[:1]
right = right[1:] + right[:1]

elif round == 1:
left = left[2:] + left[:2]
right = right[2:] + right[:2]

Ki = left + right
return left, right, [Ki[5], Ki[1], Ki[3], Ki[2], Ki[7], Ki[0]]

def encrypt_block(plaintext: list[int], key: list[int]) -> list[int]:
keys = [key]
left, right = key[:4], key[4:]
for i in range(3):

left, right, key = Compress(left + right, i)
keys.append(key)

3.2. Phá mã 341



Math Book

left, right = plaintext[:4], plaintext[4:]
for i in range(3):

left, right = right, Xor(left, PBox(SBox(Xor(Expand(right), keys[i+1]))))

return left + right

#print(encrypt_block([0, 1, 0, 1, 1, 1, 0, 0], [1, 0, 0, 1, 1, 0, 1, 0]))

Phá mã vi sai trên TinyDES

Giả sử 𝑋1 và 𝑋2 là hai khối input có cùng số bit.

Ta định nghĩa vi sai của 𝑋1 và 𝑋2 là 𝑋 = 𝑋1 ⊕𝑋2.

Xét các phép biến đổi trong TinyDES

Phép XOR key

Gọi 𝐾 là khóa con ở vòng nào đó trong thuật toán. Khi đó nếu đặt 𝑌1 = 𝑋1 ⊕𝐾 và 𝑌2 = 𝑋2 ⊕𝐾 thì vi sai
của output là 𝑌 = 𝑌1⊕ 𝑌2 = 𝑋1⊕𝑋2. Như vậy 𝐾 không tác động lên vi sai và đây là tính chất quan trọng
để chúng ta phá mã vi sai.

Phép PBox

Phép PBox bảo toàn số bit (hoán vị 4 bits thành 4 bits) và cách xây dựng hoán vị là một biến đổi tuyến
tính. Việc hoán vị 4 bits 𝑏0𝑏1𝑏2𝑏3 thành 𝑏2𝑏0𝑏3𝑏1 tương đương với phép nhân ma trận⎛⎜⎜⎝

0 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0

⎞⎟⎟⎠ ·
⎛⎜⎜⎝
𝑏0
𝑏1
𝑏2
𝑏3

⎞⎟⎟⎠ =

⎛⎜⎜⎝
𝑏2
𝑏0
𝑏3
𝑏1

⎞⎟⎟⎠
Do đó nếu đặt 𝑌1 = PBox(𝑋1) và 𝑌2 = PBox(𝑋2) thì

𝑌1 ⊕ 𝑌2 = PBox(𝑋1)⊕ PBox(𝑋2) = PBox(𝑋1 ⊕𝑋2).

Như vậy nếu vi sai input là cố định thì vi sai output cũng cố định do tính tuyến tính.

Phép Expand

Tương tự, phép Expand cũng là biến đổi tuyến tính và nếu đặt 𝑌1 = Expand(𝑋1) và 𝑌2 = Expand(𝑋2) thì

𝑌1 ⊕ 𝑌2 = Expand(𝑋1)⊕ Expand(𝑋2) = Expand(𝑋1 ⊕𝑋2).

Cũng tương tự, nếu vi sai input là cố định thì vi sai output cũng cố định.

Phép SBox

Phép SBox là một biến đổi không tuyến tính với input 6 bits và output 4 bits.

Đặt 𝑌1 = SBox(𝑋1) và 𝑌2 = SBox(𝑋2).

Với mỗi 𝑋 = 𝑋1 ⊕ 𝑋2 cố định thì cứ một giá trị 𝑋1 sẽ có duy nhất một giá trị 𝑋2 cho ra vi sai 𝑋. Tuy
nhiên vi sai output 𝑌1 ⊕ 𝑌2 phân bố không đều nhau.
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Thực hiện bruteforce đơn giản trên SBox với vi sai input 𝑋 = 𝑋1 ⊕𝑋2 có 6 bits, ta tìm được sự phân bố vi
sai output 𝑌 = 𝑌1 ⊕ 𝑌2.

Chúng ta mong muốn rằng trên một hàng có càng ít phần tử khác 0 càng tốt. Từ đó sự phân bố xác suất
sẽ dễ kiểm soát hơn.

INFO-CIRCLE check_sbox.py

# check_sbox.py

import tinydes

def int_to_vec6(n: int) -> list[int]:
return list(map(int, format(n, "06b")))

def int_to_vec8(n: int) -> list[int]:
return list(map(int, format(n, "08b")))

def vec_to_int(v: list[int]) -> int:
return int("".join(map(str, v)), 2)

# Know about distribution of differential input-output
dist = []
for _ in range(2**6):

X = int_to_vec6(_)
row = [0] * 16
for __ in range(2**6):

X1 = int_to_vec6(__)
X2 = tinydes.Xor(X, X1)
Y1 = tinydes.SBox(X1)
Y2 = tinydes.SBox(X2)
Y = tinydes.Xor(Y1, Y2)
row[vec_to_int(Y)] += 1

dist.append(row)

for i, row in enumerate(dist):
print(f'Row = {row}')
print(f'Row {i} has {row.count(0)} zero elements')
print(f'Element that has maximal probability is {row.index(max(row))} with prob

→˓{max(row)}')
print()

Sau khi xem bảng phân phối vi sai input và output ta có thể thấy được rằng:

1. Nếu vi sai input 𝑋 = 0 thì chắc chắn vi sai output 𝑌 = 0.

2. Nếu vi sai input 𝑋 = 16 thì có 9 vi sai output 𝑌 khác 0.

3. Nếu vi sai input 𝑋 = 52 thì có 8 vi sai output 𝑌 khác 0.

Dựa trên nhận xét này, chúng ta sẽ tấn công trên các 𝑋1, 𝑋2 mà 𝑋 = 𝑋1 ⊕𝑋2 ∈ {16, 52}.
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Xét hai hàng 16 và 52, ta thấy rằng:

1. Nếu vi sai input 𝑋 = 16 thì vi sai output 𝑌 = 7 là cao nhất với xác suất 14/64.

2. Nếu vi sai input 𝑋 = 52 thì vi sai output 𝑌 = 2 là cao nhất với xác suất 16/64.

Hàm 𝐹

Như vậy, phép XOR key, phép PBox và phép Expand cho xác suất đều nhau với các cặp vi sai (𝑋,𝑌 ). Trong
khi đó thì SBox lại cho xác suất các cặp vi sai (𝑋,𝑌 ) không đều nhau.

Đặt 𝑌1 = 𝐹 (𝑋1) và 𝑌2 = 𝐹 (𝑋2).

Đi từ trong ra ngoài (Expand, tới SBox, tới PBox và cuối cùng là 𝐹 ) ta thấy rằng:

• vi sai input của hàm 𝐹 chính là vi sai input của Expand;

• vi sai output của Expand là vi sai input của SBox (không phụ thuộc vào khóa);

• vi sai output của SBox là vi sai input của PBox;

• vi sai output của PBox là vi sai output của hàm 𝐹 .

Ta có thể đưa ra nhận xét về xác suất vi sai output 𝑌 = 𝑌1 ⊕ 𝑌2 từ vi sai 𝑋 = 𝑋1 ⊕𝑋2 như sau:

1. Nếu vi sai input của 𝐹 là 0 ⇒ vi sai output của Expand là 0 ⇒ vi sai output của SBox chắc chắn là 0
⇒ vi sai output của PBox chắc chắn là 0 ⇒ vi sai output của hàm 𝐹 chắc chắn là 0.

2. Nếu vi sai input của 𝐹 là 1⇒ vi sai output của Expand là 16⇒ vi sai output của SBox là 7 với xác suất
14/64⇒ vi sai output của PBox là 11 với xác suất là 14/64⇒ hàm 𝐹 là 11 với xác suất 14/64 = 7/32.

3. Nếu vi sai input của 𝐹 là 3 ⇒ vi sai output của Expand là 52 ⇒ vi sai output của SBox là 2 với xác
suất 16/64 ⇒ vi sai output của PBox là 8 với xác suất 16/64 ⇒ hàm 𝐹 là 8 với xác suất 16/64 = 1/4.

Nói chung, chúng ta chọn output của Expand (input cho SBox) giống với xác suất cao nhất với phân tích
SBox ở trên kia.

Chosen plaintext

Differential attack là một dạng chosen plaintext, trong đó chúng ta tận dụng các xác suất ở trên.

Chosen plaintext phần một

Do tính chất vi sai, chúng ta sẽ mong muốn tìm những cặp (plaintext, ciphertext) (𝑃1, 𝐶1) và (𝑃2, 𝐶2) nào
đó mà vi sai input 𝑃1 ⊕ 𝑃2 và vi sai output 𝐶1 ⊕ 𝐶2 có thể tối ưu xác suất trên.

Giả sử chúng ta xét trường hợp 3 ở trên, khi vi sai input của 𝐹 là 3 thì vi sai output của 𝐹 là 8 với xác suất
1/4. Đây là xác suất lớn nhất nên ta mong muốn trong 3 vòng của TinyDES sẽ tận dụng được càng nhiều
càng tốt.

Chúng ta đi từ dưới lên. Đặt

𝐿3 = 𝑅2, 𝑅3 = 𝐿2 ⊕ 𝐹 (𝑅2,𝐾3),

và

𝐿′
3 = 𝑅′

2, 𝑅′
3 = 𝐿′

2 ⊕ 𝐹 (𝑅′
2,𝐾3).

Chọn 𝑅2⊕𝑅′
2 = 3 thì 𝐹 (𝑅2,𝐾3)⊕𝐹 (𝑅′

2,𝐾3) = 8 với xác suất 1/4. Vì là bước cuối nên ta hy vọng ciphertext
cuối cùng sẽ càng ít phức tạp càng tốt. Do đó có thể lựa chọn 𝐿2 = 𝐿′

2 = 0 để bảo toàn vi sai sau khi vòng
3 kết thúc.

Ở vòng 3, xác suất để vi sai input bằng 3 và vi sai output bằng 8 là 1/4.
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Tiếp theo, đặt:

𝐿2 = 𝑅1, 𝑅2 = 𝐿1 ⊕ 𝐹 (𝑅1,𝐾2),

và

𝐿′
2 = 𝑅′

1, 𝑅′
2 = 𝐿′

1 ⊕ 𝐹 (𝑅′
1,𝐾2).

Do 𝐿2 = 𝑅1 nên 𝑅1 = 0. Tương tự 𝑅′
1 = 𝐿′

2 = 0. Điều đáng chú ý là 𝑅1 ⊕ 𝑅′
1 = 0, nghĩa là vi sai input

bằng 0, nên vi sai output 𝐹 (𝑅1,𝐾2)⊕ 𝐹 (𝑅′
1,𝐾2) chắc chắn bằng 0 (xác suất bằng 1).

Ở vòng 2, xác suất để vi sai input bằng 0 và vi sai output bằng 0 là 1.

Ta lại có

𝑅2 ⊕𝑅′
2 = 3 = 𝐿1 ⊕ 𝐹 (𝑅1,𝐾2)⊕ 𝐿′

1 ⊕ 𝐹 (𝑅′
1,𝐾2) = 𝐿1 ⊕ 𝐿′

1,

do vi sai output hàm 𝐹 chắc chắn bằng 0. Do đó 𝐿1 ⊕ 𝐿′
1 = 3.

Tuy nhiên, 𝐿1 = 𝑅0 và 𝐿′
1 = 𝑅′

0 nên 𝐿1 ⊕ 𝐿′
1 = 𝑅0 ⊕ 𝑅′

0 = 3. Do đó vi sai output của hàm 𝐹 là
𝐹 (𝑅0,𝐾1)⊕ 𝐹 (𝑅′

0,𝐾1) = 8 có xác suất 1/4.

Ở vòng 1, xác suất để vi sai input bằng 3 và vi sai output bằng 8 là 1/4.

Cuối cùng,

𝑅1 ⊕𝑅′
1 = 𝐿0 ⊕ 𝐹 (𝑅0,𝐾1)⊕ 𝐿′

0 ⊕ 𝐹 (𝑅′
0,𝐾1) = 𝐿0 ⊕ 𝐿′

0 ⊕ 8,

mà ta nhớ lại ở trên 𝑅1 ⊕𝑅′
1 = 0 nên suy ra 𝐿0 ⊕ 𝐿′

0 = 8.

Tổng kết lại, ta chọn vi sai input (𝐿,𝑅) = (8, 3) thì xác suất để vi sai output bằng (3, 8) là (1/4)×1×(1/4) =
1/16. Đây là xác suất cao nhất có thể sau khi TinyDES chạy đủ 3 vòng.

Chosen plaintext phần hai

Tương tự, chúng ta xét trường hợp 2 ở trên, khi vi sai input của 𝐹 là 1 thì vi sai output của 𝐹 là 11 với xác
suất 7/32. Ta cũng mong muốn sau 3 vòng của TinyDES sẽ tận dụng được càng nhiều càng tốt.

Chúng ta lại đi dưới lên. Đặt

𝐿3 = 𝑅2, 𝑅3 = 𝐿2 ⊕ 𝐹 (𝑅2,𝐾3)

và

𝐿′
3 = 𝑅′

2, 𝑅′
3 = 𝐿′

2 ⊕ 𝐹 (𝑅′
2,𝐾3).

Chọn 𝑅2 ⊕𝑅′
2 = 1 thì 𝐹 (𝑅2,𝐾3)⊕ 𝐹 (𝑅′

2,𝐾3) = 11 với xác suất 7/32. Vì là bước cuối cùng nên ta cũng hy
vọng ciphertext sẽ càng ít phức tạp càng tốt. Do đó ta chọn 𝐿2 = 𝐿′

2 = 0.

Ở vòng 3, xác suất để vi sai input bằng 1 và vi sai output bằng 11 là 7/32.

Tiếp theo, đặt

𝐿2 = 𝑅1, 𝑅2 = 𝐿1 ⊕ 𝐹 (𝑅1,𝐾2),

và

𝐿′
2 = 𝑅′

1, 𝑅′
2 = 𝐿′

1 ⊕ 𝐹 (𝑅′
1,𝐾2).

Do 𝐿2 = 𝑅1 nên 𝑅1 = 0. Tương tự 𝑅′
1 = 0. Suy ra 𝑅1⊕𝑅′

1 = 0 và vi sai output 𝐹 (𝑅1,𝐾2)⊕𝐹 (𝑅′
1,𝐾2) = 0

với xác suất bằng 1 (chắc chắn xảy ra).
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Ở vòng 2, xác suất để vi sai input bằng 0 và vi sai output bằng 0 là 1.

Ta lại có:

𝑅2 ⊕𝑅′
2 = 𝐿1 ⊕ 𝐹 (𝑅1,𝐾2)⊕ 𝐿′

1 ⊕ 𝐹 (𝑅′
1,𝐾2) = 𝐿1 ⊕ 𝐿′

1,

do vi sai output của hàm 𝐹 chắc chắn bằng 0. Do đó 𝐿1 ⊕ 𝐿′
1 = 1.

Tuy nhiên 𝐿1 = 𝑅0 và 𝐿′
1 = 𝑅′

0 nên 𝑅0 ⊕ 𝑅′
0 = 𝐿1 ⊕ 𝐿′

1 = 1. Do đó vi sai output của hàm 𝐹 ở vòng 1 là
𝐹 (𝑅0,𝐾1)⊕ 𝐹 (𝑅′

0,𝐾1) = 11 với xác suất 7/32.

Ở vòng 1, xác suất để vi sai input bằng 1 và vi sai output bằng 11 là 7/32.

Cuối cùng, do

𝑅1 ⊕𝑅′
1 = 𝐿0 ⊕ 𝐹 (𝑅0,𝐾1 ⊕ 𝐿′

0 ⊕ 𝐹 (𝑅′
0,𝐾1)),

mà 𝑅1 ⊕𝑅′
1 = 0 và 𝐹 (𝑅0,𝐾1)⊕ 𝐹 (𝑅′

0,𝐾1) = 11 nên 𝐿0 ⊕ 𝐿′
0 = 11.

Tổng kết lại, ta chọn vi sai input (𝐿,𝑅) = (11, 1) thì xác suất để vi sai output bằng (1, 11) là (7/32)× 1×
(7/32) ≈ 0.048. Đây cũng là xác suất cao nhất có thể sau khi TinyDES chạy đủ 3 vòng.

Final attack

Như vậy, đối với TinyDES chúng ta phá mã vi sai như sau:

1. Tìm một số lượng cặp plaintext, ciphertext (𝑃1, 𝐶1), (𝑃2, 𝐶2), ... cho tới khi tìm được 𝑃𝑖 ⊕ 𝑃𝑗 = 0x83
và 𝐶𝑖 ⊕ 𝐶𝑗 = 0x38.

2. Tìm một số lượng cặp plaintext, ciphertext (𝑃 ′
1, 𝐶

′
1), (𝑃 ′

2, 𝐶
′
2), ... cho tới khi tìm được 𝑃 ′

𝑖 ⊕𝑃 ′
𝑗 = 0xB1

và 𝐶 ′
𝑖 ⊕ 𝐶 ′

𝑗 = 0x1B.

Sau khi đã tìm được một số lượng cặp plaintext, ciphertext thỏa vi sai trên, nhớ lại hàm 𝐹 ở vòng 3, do

𝐿3 = 𝑅2, và 𝑅3 = 𝐿2 ⊕ 𝐹 (𝑅2,𝐾3) = 𝐿2 ⊕ 𝐹 (𝐿3,𝐾3) = 𝐹 (𝐿3,𝐾3),

theo cách chọn 𝐿2 = 0 ở trên, dễ thấy rằng chúng ta có thể tìm được các 𝐾3 thỏa mãn hàm 𝐹 ở vòng 3.

Để làm điều đó thì ta tính 𝑂 = Expand(𝐿3), và do SBox(𝑂 ⊕𝐾3) = PBox−1(𝑅3) cũng tính được nên có thể
tìm các giá trị 𝑂 ⊕ 𝐾3 mà khi đi qua SBox cho kết quả bằng PBox−1(𝑅3). Sau đó XOR lại cho 𝑂 thì sẽ
tìm được các giá trị có thể của 𝐾3. Lưu ý rằng SBox làm giảm 6 bits còn 4 bits nên sẽ có nhiều giá trị khác
nhau cho cùng giá trị SBox.

Thực hiện trên hai trường hợp vi sai input-output là (0x83, 0x38) và (0xB1, 0x1B) ta có tập các giá trị có
thể xảy ra của 𝐾3.

Theo thuật toán sinh khóa con thì với khóa 𝐾 8 bits ban đầu, đặt là 𝑘0𝑘1𝑘2𝑘3𝑘4𝑘5𝑘6𝑘7, thì khóa con 𝐾3

là 𝑘5𝑘1𝑘3𝑘2𝑘7𝑘0. Trong 𝐾3 không có 𝑘4 và 𝑘6 nên chúng ta sẽ bruteforce hai bit này tới khi tìm được đúng
khóa 𝐾 mà tương ứng với cặp (𝑃𝑖, 𝐶𝑖).

INFO-CIRCLE find_key.py

# find_key.py

import tinydes
from itertools import product

def int_to_vec6(n: int) -> list[int]:
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return list(map(int, format(n, "06b")))

def int_to_vec8(n: int) -> list[int]:
return list(map(int, format(n, "08b")))

def vec_to_int(v: list[int]) -> int:
return int("".join(map(str, v)), 2)

def recover_key(k: list[int]) -> list[int]:
return [k[5], k[1], k[3], k[2], 0, k[0], 0, k[4]]

key = [1, 0, 0, 1, 1, 0, 1, 0]

ptx = []
ctx = []

pt, ct = [0, 1, 0, 1, 1, 1, 0, 0], [1, 0, 0, 1, 1, 0, 1, 0]

candidates = []
K3 = []

for _ in range(24):
pt = int_to_vec8(_)
ct = tinydes.encrypt_block(pt, key)
pt_ = tinydes.Xor(int_to_vec8(0x83), pt)
ct_ = tinydes.encrypt_block(pt_, key)
if tinydes.Xor(ct_, ct) == list(map(int, format(0x38, "08b"))):

ptx.append(pt_)
ctx.append(ct_)
candidates.append((pt, pt_))
break

for pt1, pt2 in candidates:
o1, o2 = tinydes.PBox_inv(pt1[4:]), tinydes.PBox_inv(pt2[4:])
q1, q2 = tinydes.Expand(pt1[:4]), tinydes.Expand(pt2[:4])
for i in range(len(tinydes.sbox)):

if tinydes.sbox[i] == vec_to_int(o1):
row, col = i // 16, i % 16
idx = [row // 2] + list(map(int, format(col, "04b"))) + [row % 2]
K3.append(tinydes.Xor(q1, idx))

if tinydes.sbox[i] == vec_to_int(o2):
row, col = i // 16, i % 16
idx = [row // 2] + list(map(int, format(col, "04b"))) + [row % 2]
K3.append(tinydes.Xor(q2, idx))

candidates = []

for _ in range(24):
pt = int_to_vec8(_)
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ct = tinydes.encrypt_block(pt, key)
pt_ = tinydes.Xor(int_to_vec8(0xb1), pt)
ct_ = tinydes.encrypt_block(pt_, key)
if tinydes.Xor(ct_, ct) == list(map(int, format(0x1b, "08b"))):

ptx.append(pt_)
ctx.append(ct_)
candidates.append((pt, pt_))
break

for pt1, pt2 in candidates:
o1, o2 = tinydes.PBox_inv(pt1[4:]), tinydes.PBox_inv(pt2[4:])
q1, q2 = tinydes.Expand(pt1[:4]), tinydes.Expand(pt2[:4])
for i in range(len(tinydes.sbox)):

if tinydes.sbox[i] == vec_to_int(o1):
row, col = i // 16, i % 16
idx = [row // 2] + list(map(int, format(col, "04b"))) + [row % 2]
K3.append(tinydes.Xor(q1, idx))

if tinydes.sbox[i] == vec_to_int(o2):
row, col = i // 16, i % 16
idx = [row // 2] + list(map(int, format(col, "04b"))) + [row % 2]
K3.append(tinydes.Xor(q2, idx))

for k3 in set([vec_to_int(k) for k in K3]):
k = recover_key(int_to_vec6(k3))
for k4, k6 in product(range(2), repeat=2):

k[4], k[6] = k4, k6
if tinydes.encrypt_block(pt, k) == ct:

print(f"Recover key: {k}")

Difference và differential

Ở phần này, kí hiệu � là phép cộng modulo 2𝑛, � là phép trừ modulo 2𝑛, và ⊕ là toán tử bitwise-XOR.

Nếu số nguyên 𝑎 có 𝑛 bit và biểu diễn dưới dạng

𝑎 = 𝑎0 + 2𝑎1 + 22𝑎2 + · · ·+ 2𝑛−1𝑎𝑛−1

thì số nguyên 𝑎 tương đương với vector

(𝑎0, 𝑎1, 𝑎2, . . . , 𝑎𝑛−1) ∈ F𝑛
2 .

Như vậy, phần tử 𝑎 ∈ Z2𝑛 tương đương phần tử (𝑎0, 𝑎1, . . . , 𝑎𝑛−1) ∈ F𝑛
2 và các bạn cần lưu ý rằng phép �

và � thực hiện trên Z2𝑛 , còn phép XOR thực hiện trên F𝑛
2 .

Cụ thể hơn, giả sử

𝑎 = 𝑎0 + 2𝑎1 + 22𝑎2 + · · ·+ 2𝑛−1𝑎𝑛−1,

𝑏 = 𝑏0 + 2𝑏1 + 22𝑏2 + · · ·+ 2𝑛−1𝑏𝑛−1,

thì ta có
𝑎� 𝑏 = 𝑎+ 𝑏 mod 2𝑛, 𝑎� 𝑏 = 𝑎− 𝑏 mod 2𝑛,

𝑎⊕ 𝑏 = 𝑐 = 𝑐0 + 2𝑐1 + · · · 2𝑛−1𝑐𝑛−1, với 𝑐𝑖 = 𝑎𝑖 ⊕ 𝑏𝑖.

Ví dụ, với 𝑛 = 4, xét các số nguyên 4 bit là 𝑎 = 9 và 𝑏 = 11. Khi đó

𝑎� 𝑏 = 4, 𝑎� 𝑏 = 14, 𝑎⊕ 𝑏 = 2.
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Difference (hiệu)

Giả sử ta có hàm 𝑓 : Z2𝑛 → Z2𝑚 , khi đó với hai phần tử 𝑎, 𝑏 ∈ Z2𝑛 thì ta nói

• 𝑏� 𝑎 là hiệu đầu vào;

• 𝑓(𝑏)� 𝑓(𝑎) là hiệu đầu ra.

Dưới góc độ phá mã, với 𝛿 ∈ Z2𝑛 và Δ ∈ Z2𝑚 cố định, ta xem xét có bao nhiêu cặp 𝑎, 𝑏 ∈ Z2𝑛 mà

𝑏� 𝑎 = 𝛿, 𝑓(𝑏)� 𝑓(𝑎) = Δ.

Chuyển vế ta có các đẳng thức trên tương với

𝑏 = 𝑎� 𝛿 =⇒ 𝑓(𝑏) = 𝑓(𝑎� 𝛿) = 𝑓(𝑎)�Δ.

Nói cách khác, ta xem xét xác suất

adp𝑓 (𝛿 ↦→ Δ) = Pr [𝑓(𝑎� 𝛿) = 𝑓(𝑎)�Δ]

với mọi 𝑎 ∈ Z2𝑛 .

Tổng quát, nếu ta xét 𝑘 hiệu đầu vào 𝛼0, 𝛼1, ..., 𝛼𝑘−1 và hiệu đầu ra 𝛼𝑘 thì ta quan tâm xác suất

adp𝑓 (𝛼0, 𝛼1, . . . , 𝛼𝑘−1 ↦→ 𝛼𝑘) = Pr [𝑓(𝑥0 � 𝛼0, 𝑥1 � 𝛼1, . . . , 𝑥𝑘−1 � 𝛼𝑘−1) = 𝑓(𝑥0, 𝑥1, . . . , 𝑥𝑘−1)� 𝛼𝑘] .

INFO-CIRCLE Example 1.33

Xét hàm 𝑓(𝑥, 𝑦) = 𝑥⊕ 𝑦 với 𝑥, 𝑦 ∈ Z2𝑛 . Với 𝛼, 𝛽 và 𝛾 thuộc Z2𝑛 ta xem xét

adp𝑓 (𝛼, 𝛽 ↦→ 𝛾) = Pr [(𝑥� 𝛼)⊕ (𝑦 � 𝛽) = (𝑥⊕ 𝑦)� 𝛾] .

Differential (vi sai)

Giả sử ta có hàm 𝑓 : Z2𝑛 → Z2𝑚 , khi đó với hai phần tử 𝑎, 𝑏 ∈ Z2𝑛 thì ta nói

• 𝑏⊕ 𝑎 là vi sai đầu vào;

• 𝑓(𝑏)⊕ 𝑓(𝑎) là vi sai đầu ra.

Ở đây cần lưu ý rằng, vi sai bản chất là phép trừ, nhưng trên F𝑛
2 thì phép trừ cũng chính là phép cộng ⊕.

Tương tự, dưới góc độ phá mã, với 𝛿 ∈ Z2𝑛 và Δ ∈ Z2𝑚 cố định, ta xem xét có bao nhiêu cặp 𝑎, 𝑏 ∈ Z2𝑛 mà

𝑏⊕ 𝑎 = 𝛿, 𝑓(𝑏)⊕ 𝑓(𝑎) = Δ.

Chuyển vế ta có các đẳng thức trên tương với

𝑏 = 𝑎⊕ 𝛿 =⇒ 𝑓(𝑏) = 𝑓(𝑎⊕ 𝛿) = 𝑓(𝑎)⊕Δ.

Nói cách khác, ta xem xét xác suất

xdp𝑓 (𝛿 ↦→ Δ) = Pr [𝑓(𝑎⊕ 𝛿) = 𝑓(𝑎)⊕Δ]

với mọi 𝑎 ∈ Z2𝑛 .
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Tổng quát, nếu ta xét 𝑘 hiệu đầu vào 𝛼0, 𝛼1, ..., 𝛼𝑘−1 và hiệu đầu ra 𝛼𝑘 thì ta quan tâm xác suất

adp𝑓 (𝛼0, 𝛼1, . . . , 𝛼𝑘−1 ↦→ 𝛼𝑘) = Pr [𝑓(𝑥0 ⊕ 𝛼0, 𝑥1 ⊕ 𝛼1, . . . , 𝑥𝑘−1 ⊕ 𝛼𝑘−1) = 𝑓(𝑥0, 𝑥1, . . . , 𝑥𝑘−1)⊕ 𝛼𝑘] .

INFO-CIRCLE Example 1.34

Xét hàm 𝑓(𝑥, 𝑦) = 𝑥� 𝑦 với 𝑥, 𝑦 ∈ Z2𝑛 . Với 𝛼, 𝛽 và 𝛾 thuộc Z2𝑛 ta xem xét

xdp𝑓 (𝛼, 𝛽 ↦→ 𝛾) = Pr [(𝑥⊕ 𝛼)� (𝑦 ⊕ 𝛽) = (𝑥� 𝑦)⊕ 𝛾] .

Một số lưu ý và nhận xét

Một số nguyên 𝑛 bit cũng có thể xem xét dưới dạng vector 𝑛 phần tử, do đó cho phép chúng ta xem xét hai
dạng vi sai theo phép XOR và theo phép cộng modulo 2𝑛.

Ở đây, adp là viết tắt của addition differential probability (xác suất vi sai theo phép cộng) và xdp là viết tắt
của xor differential probability (xác suất vi sai theo phép xor).

Trong nhiều thuật toán mã khối, các phép biến đổi có thể sử dụng phép XOR lẫn phép cộng modulo 2𝑛, do
đó việc nghiên cứu mối liên hệ giữa các toán tử trên nhằm đưa ra đánh giá vi sai nào đạt được xác suất
mong muốn là việc quan trọng. Tuy nhiên hiện chưa có nhiều nghiên cứu cho việc này, ví dụ như phép cộng
modulo 2𝑛 sẽ có xác suất như thế nào đối với vi sai là phép XOR, và ngược lại.

Lý do đơn giản nhất của ứng dụng vi sai là loại bỏ sự có mặt của khóa trong mỗi vòng.

Ví dụ thứ nhất, rất phổ biến, là hệ mã DES. Nếu ta xét một S-box vòng thì biến đổi trên nửa phải có dạng

𝐹 (𝑅,𝐾) = SBox(𝑅⊕𝐾)

với 𝑅 là nửa phải đầu vào và 𝐾 là khóa ở vòng hiện tại, thì ta có vi sai đầu vào là

𝛿 = 𝑅⊕𝑅′ = (𝑅⊕𝐾)⊕ (𝑅′ ⊕𝐾)

và vi sai đầu ra là

Δ = SBox(𝑅⊕𝐾)⊕ SBox(𝑅′ ⊕𝐾).

Ở đây, vi sai đầu vào không phụ thuộc vào khóa 𝐾.

Ví dụ thứ hai là round function của hệ mã Magma. Nếu ta lấy S-box của Magma có dạng

𝐹 (𝑅,𝐾) = SBox(𝑅�𝐾)

thì vi sai đầu vào là

𝛿 = 𝑅′ �𝑅 = (𝑅′ �𝐾)� (𝑅�𝐾)

và vi sai đầu ra là

Δ = SBox(𝑅′ �𝐾)� SBox(𝑅�𝐾).

Ở đây ta cũng có vi sai đầu vào không phụ thuộc vào khóa 𝐾 nhưng đối với toán tử hiệu �, không phải
hiệu ⊕.
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3.2.2 Phá mã tuyến tính
Phá mã tuyến tính (linear cryptanalysis) đã làm chuẩn mã hóa DES không còn đủ an toàn.

Trong các chuẩn mã hóa hiện đại về sau, khả năng kháng phá mã vi sai và phá mã tuyến tính trở thành
tiêu chuẩn đánh giá độ an toàn của thuật toán mã hóa.

Phá mã tuyến tính trên TinyDES

Mô tả TinyDES

Trong phần mô tả phá mã vi sai mình đã sử dụng TinyDES để làm ví dụ. Ở đây mình tiếp tục sử dụng
TinyDES để ví dụ cho phá mã tuyến tính. Nhằm gợi nhớ cấu trúc của TinyDES thì mình xin chép lại.

TinyDES là một phiên bản thu nhỏ của chuẩn mã hóa DES. TinyDES là mã hóa khối theo mô hình Feistel,
kích thước khối là 8 bit, kích thước khóa cũng là 8 bit. Mỗi vòng khóa con có độ dài 6 bit.

Li Ri

Expand

SBox

PBox

Ri+1Li+1

KLi KRi

left shift left shift

Compress

KLi+1 KRi+1

Hình 3.32: Một vòng TinyDES

Mã TinyDES khá đơn giản. Theo mô hình Feistel, khối đầu vào 8 bit được chia thành hai nửa trái phải 4
bit. Nửa phải sẽ đi qua các hàm Expand, SBox và PBox, sau đó XOR với nửa trái để được nửa phải mới.
Còn nửa trái mới là nửa phải cũ. Tóm lại công thức mô hình Feistel là:

𝐿𝑖+1 = 𝑅𝑖, 𝑅𝑖+1 = 𝐿𝑖 ⊕ 𝐹 (𝑅𝑖,𝐾𝑖+1)

với 𝑖 = 1, 2, 3 tương ứng 3 vòng với đầu vào của khối là (𝐿0, 𝑅0).

Chúng ta cần các động tác sau:

1. Expand: mở rộng và hoán vị 𝑅𝑖 từ 4 bits lên 6 bits. Giả sử 4 bits của 𝑅𝑖 là 𝑏0𝑏1𝑏2𝑏3 thì kết quả sau
khi Expand là 𝑏2𝑏3𝑏1𝑏2𝑏1𝑏0.

2. SBox: gọi 6 bits đầu vào là 𝑏0𝑏1𝑏2𝑏3𝑏4𝑏5. Khi đó ta tra cứu theo bảng SBox với 𝑏0𝑏5 chỉ số hàng,
𝑏1𝑏2𝑏3𝑏4 chỉ số cột. Nói cách khác bảng SBox có 4 hàng, 16 cột. Kết quả của SBox là một số 4 bit.

3. PBox: là hàm hoán vị 4 bits 𝑏0𝑏1𝑏2𝑏3 thành 𝑏2𝑏0𝑏3𝑏1.
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Như vậy, hàm 𝐹 của mô hình Feistel đối với mã TinyDES là:

𝐹 (𝑅𝑖,𝐾𝑖) = PBox(SBox(Expand(𝑅𝑖)⊕𝐾𝑖+1)).

Để sinh khóa con cho 3 vòng, khóa ban đầu được chia thành hai nửa trái phải lần lượt là 𝐾𝐿0 và 𝐾𝑅0.
TinyDES thực hiện như sau:

1. Vòng 1: 𝐾𝐿0 và 𝐾𝑅0 được dịch vòng trái 1 bit để được 𝐾𝐿1 và 𝐾𝑅1;

2. Vòng 2: 𝐾𝐿1 và 𝐾𝑅1 được dịch vòng trái 2 bit để được 𝐾𝐿2 và 𝐾𝑅2;

3. Vòng 3: 𝐾𝐿2 và 𝐾𝑅2 được dịch vòng trái 1 bit để được 𝐾𝐿3 và 𝐾𝑅3.

Khi đó, khóa 𝐾𝑖 ở vòng thứ 𝑖 (với 𝑖 = 1, 2, 3) là hoán vị và nén 8 bits của 𝐾𝐿𝑖 và 𝐾𝑅𝑖 lại thành 6 bits.

Đặt 8 bits khi ghép 𝐾𝐿𝑖‖𝐾𝑅𝑖 là 𝑘0𝑘1𝑘2𝑘3𝑘4𝑘5𝑘6𝑘7, kết quả là 6 bits 𝑘5𝑘1𝑘3𝑘2𝑘7𝑘0.

INFO-CIRCLE tinydes.py

# tindeys.py

sbox = [
0xE, 0x4, 0xD, 0x1, 0x2, 0xF, 0xB, 0x8, 0x3, 0xA, 0x6, 0xC, 0x5, 0x9, 0x0, 0x7,
0x0, 0xF, 0x7, 0x4, 0xE, 0x2, 0xD, 0x1, 0xA, 0x6, 0xC, 0xB, 0x9, 0x5, 0x3, 0x8,
0x4, 0x1, 0xE, 0x8, 0xD, 0x6, 0x2, 0xB, 0xF, 0xC, 0x9, 0x7, 0x3, 0xA, 0x5, 0x0,
0xF, 0xC, 0x8, 0x2, 0x4, 0x9, 0x1, 0x7, 0x5, 0xB, 0x3, 0xE, 0xA, 0x0, 0x6, 0xD

]

def Xor(a: list[int], b: list[int]) -> list[int]:
return [x^y for x, y in zip(a, b)]

def Expand(R: list[int]) -> list[int]:
return [R[2], R[3], R[1], R[2], R[1], R[0]]

def SBox(R: list[int]) -> list[int]:
row = int("".join(map(str, [R[0], R[5]])), 2)
col = int("".join(map(str, R[1:5])), 2)

return list(map(int, format(sbox[row*16 + col], "04b")))

def PBox(R: list[int]) -> list[int]:
return [R[2], R[0], R[3], R[1]]

def PBox_inv(R: list[int]) -> list[int]:
return [R[1], R[3], R[0], R[2]]

def Compress(K: list[int], round: int) -> list[int]:
left, right = K[:4], K[4:]
if round == 0 or round == 2:

left = left[1:] + left[:1]
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right = right[1:] + right[:1]
elif round == 1:

left = left[2:] + left[:2]
right = right[2:] + right[:2]

Ki = left + right
return left, right, [Ki[5], Ki[1], Ki[3], Ki[2], Ki[7], Ki[0]]

def encrypt_block(plaintext: list[int], key: list[int]) -> list[int]:
keys = [key]
left, right = key[:4], key[4:]
for i in range(3):

left, right, key = Compress(left + right, i)
keys.append(key)

left, right = plaintext[:4], plaintext[4:]
for i in range(3):

left, right = right, Xor(left, PBox(SBox(Xor(Expand(right), keys[i+1]))))

return left + right

#print(encrypt_block([0, 1, 0, 1, 1, 1, 0, 0], [1, 0, 0, 1, 1, 0, 1, 0]))

Phá mã tuyến tính trên TinyDES

Trong các phép biến đổi trên TinyDES thì chỉ có SBox là không tuyến tính. Tuy nhiên nếu chỉ xét một số
bit nhất định giữa đầu vào và đầu ra thì ta có quan hệ tuyến tính.

Nhắc lại, một biến đổi 𝑓 : F𝑛
2 → F𝑚

2 gọi là tuyến tính nếu với mọi 𝑥1,𝑥2 ∈ F𝑛
2 ta đều có

𝑓(𝑥1 ⊕ 𝑥2) = 𝑓(𝑥1)⊕ 𝑓(𝑥2).

Ta sẽ xét các phép biến đổi trong TinyDES.

Phép XOR key

Gọi 𝐾 là khóa con ở vòng nào đó trong thuật toán. Khi đó nếu đặt 𝑌1 = 𝑋1 ⊕𝐾 và 𝑌2 = 𝑋2 ⊕𝐾 thì ta có
𝑌1 ⊕ 𝑌2 = 𝑋1 ⊕𝑋2. Như vậy phép XOR là biến đổi tuyến tính.

Phép PBox

Phép PBox bảo toàn số bit (hoán vị 4 bits thành 4 bits) và cách xây dựng hoán vị là một biến đổi tuyến
tính. Việc hoán vị 4 bits 𝑏0𝑏1𝑏2𝑏3 thành 𝑏2𝑏0𝑏3𝑏1 tương đương với phép nhân ma trận⎛⎜⎜⎝

0 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0

⎞⎟⎟⎠ ·
⎛⎜⎜⎝
𝑏0
𝑏1
𝑏2
𝑏3

⎞⎟⎟⎠ =

⎛⎜⎜⎝
𝑏2
𝑏0
𝑏3
𝑏1

⎞⎟⎟⎠ .

Do đó nếu đặt 𝑌1 = PBox(𝑋1) và 𝑌2 = PBox(𝑋2) thì

𝑌1 ⊕ 𝑌2 = PBox(𝑋1)⊕ PBox(𝑋2) = PBox(𝑋1 ⊕𝑋2).
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Phép Expand

Tương tự, phép Expand cũng là biến đổi tuyến tính và nếu đặt 𝑌1 = Expand(𝑋1) và 𝑌2 = Expand(𝑋2) thì

𝑌1 ⊕ 𝑌2 = Expand(𝑋1)⊕ Expand(𝑋2) = Expand(𝑋1 ⊕𝑋2).

Phép SBox

Phép SBox là một biến đổi không tuyến tính với input 6 bits và output 4 bits.

Đặt 𝑦 = SBox(𝑥) với 𝑥 = (𝑥0, 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) ∈ F6
2 và 𝑦 = (𝑦0, 𝑦1, 𝑦2, 𝑦3) ∈ F4

2.

Gọi 𝑎 = (𝑎0, 𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5) ∈ F6
2 với biểu diễn thập phân là các số từ 1 tới 63, nghĩa là trừ vector không.

Tương tự, gọi 𝑏 = (𝑏0, 𝑏1, 𝑏2, 𝑏3) ∈ F4
2 với biểu diễn thập phân là các số từ 1 tới 15, ta cũng không xét vector

không.

Tích vô hướng là một biểu diễn tuyến tính giữa 𝑎 và 𝑥:

⟨𝑎,𝑥⟩ = 𝑎0𝑥0 ⊕ 𝑎1𝑥1 ⊕ 𝑎2𝑥2 ⊕ 𝑎3𝑥3 ⊕ 𝑎4𝑥4 ⊕ 𝑎5𝑥5 ⊕ 𝑎6𝑥6.

Tương tự, quan hệ tuyến tính giữa 𝑏 và 𝑦 là

⟨𝑏,𝑦⟩ = 𝑏0𝑦0 ⊕ 𝑏1𝑦1 ⊕ 𝑏2𝑦2 ⊕ 𝑏3𝑦3.

Lúc này ta sẽ quan tâm xem với các vector 𝑎 và 𝑏 nào sẽ khiến nhiều bit của 𝑦 phụ thuộc tuyến tính vào
các bit của 𝑥, cụ thể là khi ⟨𝑥,𝑎⟩ = ⟨𝑦, 𝑏⟩.

Với hai vector 𝑎 ∈ F6
2 và 𝑏 ∈ F4

2, gọi 𝑆(𝑎, 𝑏) là số lượng cặp vector (𝑥,𝑦) sao cho

⟨𝑥,𝑎⟩ = ⟨𝑦, 𝑏⟩.

Bảng dưới liệt kê các giá trị 𝑆(𝑎, 𝑏)− 32 với hàng đầu là các vector 𝑏 từ 1 tới 15, và cột đầu là các vector 𝑎
từ 1 tới 32.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 −2 6 2 2 4 −4 2 6 0 −4 0 −4 −6 −18
3 0 −2 6 −2 6 0 0 −2 2 4 0 0 4 2 −2
4 −4 −6 2 −2 2 0 0 4 −4 −6 −2 6 −2 −4 0
5 4 −2 −2 −2 2 −4 12 4 4 −2 −6 −2 6 0 4
6 4 0 0 8 4 4 −4 2 −2 6 −2 2 6 2 2
7 4 −4 −4 4 0 4 −4 −10 2 −2 6 2 6 −2 −2
8 −2 −2 0 −2 8 −4 −6 2 4 0 −2 −4 2 −6 12
9 2 2 0 −6 0 4 −10 2 0 4 6 −8 2 2 0
10 2 −8 6 0 −2 4 −2 4 6 −4 2 4 2 0 2
11 −2 4 6 −8 2 0 −2 8 −2 4 6 8 −6 0 −2
12 2 0 2 0 6 0 6 −2 0 2 −4 6 −4 2 0
13 −2 8 −2 −4 −2 4 −2 6 −4 2 −8 2 12 6 0
14 −2 2 0 2 4 0 2 −4 −2 −6 4 2 0 −4 2
15 −6 −6 −4 10 0 0 −2 0 6 −2 4 −2 −8 8 2
16 2 −2 4 −2 0 −4 −6 −2 0 0 −2 −4 6 6 4
17 −2 2 4 −2 −4 0 10 2 0 0 10 0 6 6 0
18 −6 −4 2 0 2 0 6 4 2 4 6 0 6 4 −10
19 −2 0 −6 −4 −6 0 2 −4 −2 0 6 −4 −2 4 2

continues on next page
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Bảng 3.3 – continued from previous page
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

20 −2 0 −2 0 −2 8 −2 −2 0 6 0 2 4 2 4
21 2 0 2 0 −6 0 2 2 −8 2 0 −2 −4 −2 −4
22 −2 −2 −4 −6 0 4 2 0 −2 −2 4 2 0 4 2
23 2 6 8 6 0 0 2 0 2 6 0 −2 0 0 2
24 0 0 0 0 4 0 −4 0 −4 4 0 4 4 0 −8
25 0 8 0 4 0 4 0 4 −8 −8 4 −4 −4 0 0
26 4 2 −2 2 2 0 0 6 2 −4 0 0 0 2 2
27 4 2 6 2 2 8 0 6 −6 −4 0 −8 0 2 2
28 4 2 2 −2 6 0 −4 0 4 2 2 −2 −2 0 4
29 −4 6 6 2 2 −8 4 −4 0 −6 2 6 6 4 0
30 0 4 0 0 −4 0 0 2 6 −2 −2 −2 −2 −2 2
31 0 −8 −4 0 4 4 4 2 −2 2 2 −2 −2 2 −2
32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

INFO-CIRCLE check_sbox.py

# check_sbox.py

from tinydes import SBox

S = [[0 for _ in range(15)] for __ in range(63)]

for a in range(1, 64):
va = list(map(int, f"{a:06b}"))[::-1]
for b in range(1, 16):

vb = list(map(int, f"{b:04b}"))[::-1]
for x in range(64):

vx = list(map(int, f"{x:06b}"))[::-1]
vy = SBox(vx)
u = sum(i * j for i, j in zip(va, vx)) % 2
v = sum(i * j for i, j in zip(vb, vy)) % 2
if u == v:

S[a - 1][b - 1] += 1

print(S)

Sau khi xem bảng phân phối 𝑆(𝑎, 𝑏) thì chúng ta quan tâm một số giá trị.

Xét 𝑆(16, 15) = 14, tương ứng với vector 𝑎 = (0, 1, 0, 0, 0, 0) và 𝑏 = (1, 1, 1, 1), thì

𝑥1 = 𝑦0 ⊕ 𝑦1 ⊕ 𝑦2 ⊕ 𝑦3

với xác suất 14/64.

Ngược lại ta cũng có

𝑥1 ̸= 𝑦0 ⊕ 𝑦1 ⊕ 𝑦2 ⊕ 𝑦3

với xác suất 1− 14/64.
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Ta kí hiệu mối quan hệ này là

𝑦[0, 1, 2, 3] = 𝑥[1].

Hàm 𝐹

Xét 𝑦 = 𝐹 (𝑥,𝑘) là round function của TinyDES, trong đó

• 𝑥 = (𝑥0, 𝑥1, 𝑥2, 𝑥3) ∈ F4
2 là đầu vào cho round function (nửa phải);

• 𝑘 = (𝑘0, 𝑘1, 𝑘2, 𝑘3, 𝑘4, 𝑘5, 𝑘6) ∈ F6
2 là khóa con ở vòng nào đó;

• 𝑦 = (𝑦0, 𝑦1, 𝑦2, 𝑦3) ∈ F4
2 là đầu ra của round function.

Ta có các động tác biến đổi sau.

Hàm Expand:

(𝑥0, 𝑥1, 𝑥2, 𝑥3)
Expand−−−−→ (𝑥2, 𝑥3, 𝑥1, 𝑥2, 𝑥1, 𝑥0).

Hàm XOR key:

(𝑥2, 𝑥3, 𝑥1, 𝑥2, 𝑥1, 𝑥0)⊕ (𝑘0, 𝑘1, 𝑘2, 𝑘3, 𝑘4, 𝑘5)→ (𝑥′0, 𝑥
′
1, 𝑥

′
2, 𝑥

′
3, 𝑥

′
4, 𝑥

′
5).

Hàm SBox:

𝑥′ = (𝑥′0, 𝑥
′
1, 𝑥

′
2, 𝑥

′
3, 𝑥

′
4, 𝑥

′
5)

SBox−−−→ 𝑦′ = (𝑦′0, 𝑦
′
1, 𝑦

′
2, 𝑦

′
3).

Hàm PBox:

(𝑦′0, 𝑦
′
1, 𝑦

′
2, 𝑦

′
3)

PBox−−−→ (𝑦′2, 𝑦
′
0, 𝑦

′
3, 𝑦

′
1) ≡ (𝑦0, 𝑦1, 𝑦2, 𝑦3).

Theo phân tích tuyến tính ở trên ta tập trung vào phần SBox, như vậy

𝑦′[0, 1, 2, 3] = 𝑥′[1].

Từ PBox suy ra 𝑦0 = 𝑦′2, 𝑦1 = 𝑦′0, 𝑦2 = 𝑦′3 và 𝑦3 = 𝑦′1, nên suy ra

𝑦′[0, 1, 2, 3] = 𝑦[0, 1, 2, 3].

Điều này có vẻ khá rõ ràng vì tuyến tính 𝑦0 ⊕ 𝑦1 ⊕ 𝑦2 ⊕ 𝑦3 có mặt ở mọi bit nên 𝑦′ hay 𝑦 đều như nhau.
Tuy nhiên nếu trong các trường hợp tuyến tính không có đủ tất cả bit là 1 như 𝑏 ̸= 15 thì chúng ta cần chú
ý sự biến đổi của PBox.

Tiếp theo, do 𝑥′[1] = 𝑥′1 = 𝑥3 ⊕ 𝑘1 nên có thể suy ra quan hệ tuyến tính giữa đầu vào 𝑥 và 𝑦 là

𝑦[0, 1, 2, 3] = 𝑥[3]⊕ 𝑘[1].

Known-plaintext

Linear attack là một dạng known-plaintext, trong đó chúng ta tận dụng các xác suất ở trên.

Phụ thuộc tuyến tính giữa các vòng

Gọi 𝑃 = (𝐿0, 𝑅0) là plaintext ban đầu với 𝐿0 và 𝑅0 là hai nửa trái phải.

Ở vòng 1 ta có

𝐿1 = 𝑅0, 𝑅1 = 𝐿0 ⊕ 𝐹 (𝑅0,𝐾1),
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suy ra

𝐹 (𝑅0,𝐾1) = 𝑅1[0, 1, 2, 3]⊕ 𝐿0[0, 1, 2, 3] = 𝑅0[3]⊕𝐾1[1] (3.16)

với xác suất 14/64. Ngược lại ta có

𝐹 (𝑅0,𝐾1) = 𝑅1[0, 1, 2, 3]⊕ 𝐿0[0, 1, 2, 3] = 𝑅0[3]⊕𝐾1[1]⊕ 1 (3.17)

với xác suất 1− 14/64.

Ở vòng 2 ta có

𝐿2 = 𝑅1, 𝑅2 = 𝐿1 ⊕ 𝐹 (𝑅1,𝐾2).

Ở vòng 3 ta có

𝐿3 = 𝑅2, 𝑅3 = 𝐿2 ⊕ 𝐹 (𝑅2,𝐾3),

suy ra

𝐹 (𝑅2,𝐾3) = 𝑅3[0, 1, 2, 3]⊕ 𝐿2[0, 1, 2, 3] = 𝑅2[3]⊕𝐾3[1] (3.18)

với xác suất 14/64. Tương tự ta cũng có

𝐹 (𝑅2,𝐾3) = 𝑅3[0, 1, 2, 3]⊕ 𝐿2[0, 1, 2, 3] = 𝑅2[3]⊕𝐾3[1]⊕ 1 (3.19)

với xác suất 1− 14/64.

Ta lại có 𝐿2 = 𝑅1, kết hợp thêm vòng 1 ta có phương trình

𝐹 (𝑅2,𝐾3) = 𝑅3[0, 1, 2, 3]⊕𝑅1[0, 1, 2, 3]

= 𝑅3[0, 1, 2, 3]⊕ 𝐿0[0, 1, 2, 3]⊕𝑅0[3]⊕𝐾1[1]

= 𝑅2[3]⊕𝐾3[1] = 𝐿3[3]⊕𝐾3[1],

tương đương với

𝐾1[1]⊕𝐾3[1] = 𝑅3[0, 1, 2, 3]⊕ 𝐿0[0, 1, 2, 3, ]⊕𝑅0[3]⊕ 𝐿3[3].

Phương trình xảy ra:

• với xác suất (14/64)2 khi là xảy ra hai phương trình (3.16) và (3.18);

• với xác suất (1− 14/64)2 khi xảy ra hai phương trình (3.17) và (3.19).

Như vậy tổng xác suất là (14/64)2 + (1− 14/64)2 xấp xỉ 0, 66, khoảng 2/3.

Tính toán khóa con

Giả sử khóa ban đầu gồm 8 bit là

𝐾𝐿0 = (𝑘
(0)
0 , 𝑘

(0)
1 , 𝑘

(0)
2 , 𝑘

(0)
3 ), 𝐾𝑅0 = (𝑘

(0)
4 , 𝑘

(0)
5 , 𝑘

(0)
6 , 𝑘

(0)
7 ).

Dịch vòng trái 1 bit 𝐾𝐿0 và 𝐾𝑅0 ta được 𝐾𝐿1 và 𝐾𝑅1 lần lượt là

𝐾𝐿0 = (𝑘
(0)
0 , 𝑘

(0)
1 , 𝑘

(0)
2 , 𝑘

(0)
3 )

≪1−−→ 𝐾𝐿1 = (𝑘
(0)
1 , 𝑘

(0)
2 , 𝑘

(0)
3 , 𝑘

(0)
0 ) = (𝑘

(1)
0 , 𝑘

(1)
1 , 𝑘

(1)
2 , 𝑘

(1)
3 )

𝐾𝑅0 = (𝑘
(0)
4 , 𝑘

(0)
5 , 𝑘

(0)
6 , 𝑘

(0)
7 )

≪1−−→ 𝐾𝑅1 = (𝑘
(0)
5 , 𝑘

(0)
6 , 𝑘

(0)
7 , 𝑘

(0)
4 ) = (𝑘

(1)
4 , 𝑘

(1)
5 , 𝑘

(1)
6 , 𝑘

(1)
7 )
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nên suy ra

𝐾1 = (𝑘
(1)
5 , 𝑘

(1)
1 , 𝑘

(1)
3 , 𝑘

(1)
2 , 𝑘

(1)
7 , 𝑘

(1)
0 ).

Ở đây, 𝐾1[1] = 𝑘
(1)
1 = 𝑘

(0)
2 .

Thực hiện tiếp quá trình này sẽ dẫn chúng ta tới 𝐾3[1] = 𝑘
(0)
1 .

Như vậy chúng ta có một mối phụ thuộc giữa hai bit khóa ban đầu 𝑘(0)1 và 𝑘(0)2 .

Giả sử ta phá mã known-plaintext với 100 cặp plaintext-ciphertext và có được kết quả sau của biểu thức

𝑅3[0, 1, 2, 3]⊕ 𝐿0[0, 1, 2, 3, ]⊕𝑅0[3]⊕ 𝐿3[3]

bằng 1 ở 66 lần và bằng 0 ở 34 lần. Như vậy theo phân tích xác suất ở phần phụ thuộc tuyến tính ở trên có
thể kết luận 𝑘(0)1 ⊕ 𝑘(0)2 = 1. Điều này cho chúng ta hai trường hợp về hai bit của khóa, và nếu ta vét cạn
6 bits còn lại thì tổng cộng cần 2 · 26 = 128 trường hợp. Như vậy chúng ta không phải vét cạn 8 bits, tốn
28 = 256 trường hợp. Hiện tại chúng ta chỉ mới xét một liên hệ giữa 𝑘(0)1 và 𝑘(0)2 nên độ phức tạp chỉ giảm
một nửa. Nếu xét thêm các liên hệ khác thì sẽ có thể giảm thêm.

INFO-CIRCLE solve.py

# solve.py

from tinydes import encrypt_block, SBox
from functools import reduce
import random

random.seed(4)

secret_key = [1, 1, 0, 1, 0, 0, 1, 0]
count = 0
plaintext = [random.randint(0, 1) for __ in range(8)]
ciphertext = encrypt_block(plaintext, secret_key)

for _ in range(100):
pt = [random.randint(0, 1) for __ in range(8)]
ct = encrypt_block(pt, secret_key)
L0, R0 = pt[:4], pt[4:]
L3, R3 = ct[:4], ct[4:]
S = reduce(lambda x, y: x ^ y, R3) ^ reduce(lambda x, y: x ^ y, L0) ^ R0[3] ^␣

→˓L3[3]
if S == 1:

count += 1

if count > 100 - count:
for k1 in range(2):

k2 = k1 ^ 1
for k0 in range(2): # Bruteforce k_0

for k in range(2**5): # Bruteforce k_3 to k_7
K = [k0, k1, k2] + list(map(int, f"{k:05b}"))
if encrypt_block(plaintext, K) == ciphertext:

print(f"Found key: {K}")
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3.2.3 Slide attack
Phá mã vi sai (differential cryptanalysis) và phá mã tuyến tính (linear cryptanalysis) dựa trên các phân bổ
xác suất khi sử dụng S-box. Một ý tưởng đơn giản để chống lại phân tích xác suất là tăng số vòng lên, khi
đó chúng ta cần nhiều cặp bản rõ-bản mã hơn để tìm liên hệ giữa các bit của khóa. Rõ ràng nếu số lượng
cặp bản rõ-bản mã quá nhiều thì rất khó để tính toán và lưu trữ nên có thể nói cách tiếp cận này hợp lý.

Tuy nhiên slide attack ra đời và đã chứng minh được rằng số vòng nhiều không đồng nghĩa với an toàn hơn.

Tương tự với hai phần trước, mình vẫn dùng TinyDES làm ví dụ cho slide attack.

Slide attack

Slide attack là kỹ thuật tấn công mã khối dạng know-plaintext hoặc chosen-plaintext.

Gọi 𝐹 là một hoặc hợp của nhiều phép biến đổi trong thuật toán. Giả sử bản rõ ban đầu là 𝑃 = 𝑃0, sau
khi đi qua hàm 𝐹 sẽ trở thành 𝑃1 = 𝐹 (𝑃0). Tương tự, 𝑃1 đi qua hàm 𝐹 sẽ trở thành 𝑃2 = 𝐹 (𝑃1). Cứ như
vậy tới khi nhận được bản rõ ở cuối thuật toán, giả sử là sau 𝑛 lần biến đổi, 𝐶 = 𝑃𝑛.

Thông thường, mỗi lần thực hiện phép biến đổi 𝐹 cũng sẽ đi kèm một hoặc nhiều khóa con. Khi khóa con
được sử dụng lặp lại, gọi là 𝐾, thì ta có sơ đồ

𝑃 = 𝑃0
𝐹𝐾−−→ 𝑃1

𝐹𝐾−−→ 𝑃2
𝐹𝐾−−→ · · · 𝐹𝐾−−→ 𝑃𝑛 = 𝐶.

Mục tiêu của slide attack là tìm một cặp bản rõ-bản mã (𝑃,𝐶) và (𝑃 ′, 𝐶 ′) mà chúng ta gọi là slid pair.

INFO-CIRCLE Definition (Slid pair)

Xét một phép biến đổi 𝐹𝐾 với 𝐾 là khóa được sử dụng lặp lại cho mỗi lần thực hiện hàm 𝐹 . Để mã hóa
bản rõ 𝑃 thành bản mã 𝐶 giả sử ta thực hiện theo thứ tự

𝑃 = 𝑃0
𝐹𝐾−−→ 𝑃1

𝐹𝐾−−→ 𝑃2
𝐹𝐾−−→ · · · 𝐹𝐾−−→ 𝑃𝑛 = 𝐶.

Tương tự, để mã hóa bản rõ 𝑃 ′ thành bản mã 𝐶 ′ giả sử ta thực hiện theo thứ tự

𝑃 ′ = 𝑃 ′
0

𝐹𝐾−−→ 𝑃 ′
1

𝐹𝐾−−→ 𝑃 ′
2

𝐹𝐾−−→ · · · 𝐹𝐾−−→ 𝑃 ′
𝑛 = 𝐶 ′.

Khi đó, cặp bản rõ-bản mã (𝑃,𝐶) và (𝑃 ′, 𝐶 ′) được gọi là slid pair nếu 𝐹𝐾(𝑃 ) = 𝑃 ′ và 𝐹𝐾(𝐶) = 𝐶 ′.

P = P0 P1 P2
. . . Pn = C :)))

P ′ = P ′
0 P ′

1
. . . P ′

n−1 P ′
n = C ′

F F F F F

F F F F

Hình 3.33: Sơ đồ mô tả slid pair

Nếu chúng ta có một cặp bản rõ-bản mã là slid pair thì chúng ta có thể trích xuất khóa 𝐾 từ hai phương
trình. Điểm quan trọng của slide attack là chúng ta chỉ quan tâm hai điều kiện 𝐹𝐾(𝑃 ) = 𝑃 ′ và 𝐹𝐾(𝐶) = 𝐶 ′,
còn việc hàm 𝐹 thực hiện bao nhiêu lần không quan trọng. Đây chính là ý nghĩa mình nói ở đầu bài, tăng
số vòng không đồng nghĩa với an toàn hơn.

Sau đây mình sẽ ví dụ đơn giản về slide attack. Giống như hai bài trước, mình vẫn dùng TinyDES nhưng ở
đây sẽ có hai thay đổi nhỏ.
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Slide attack trên mô hình Feistel

Slide attack với TinyDES

TinyDES là một phiên bản thu nhỏ của chuẩn mã hóa DES. TinyDES là mã hóa khối theo mô hình Feistel,
kích thước khối là 8 bit, kích thước khóa cũng là 8 bit. Mỗi vòng khóa con có độ dài 6 bit. Trong phần slide
attack này chúng ta sẽ thay đổi một vài điểm so với TinyDES ở hai bài trước.

Li Ri

Expand

SBox

PBox

Ri+1Li+1

KLi KRi

left shift left shift

Compress

KLi+1 KRi+1

Hình 3.34: Một vòng TinyDES

Theo mô hình Feistel, khối đầu vào 8 bit được chia thành hai nửa trái phải 4 bit. Nửa phải sẽ đi qua các
hàm Expand, SBox và PBox, sau đó XOR với nửa trái để được nửa phải mới. Còn nửa trái mới là nửa phải
cũ. Tóm lại công thức mô hình Feistel là:

𝐿𝑖+1 = 𝑅𝑖, 𝑅𝑖+1 = 𝐿𝑖 ⊕ 𝐹 (𝑅𝑖,𝐾)

với 𝑖 = 1, 2, . . . , 100 với đầu vào của khối là (𝐿0, 𝑅0). Ở đây chúng ta lưu ý hai thay đổi so với TinyDES ở
hai bài trước:

• hiện tại chúng ta sử dụng 100 vòng thay vì 3 như hai bài trước;

• cả 100 vòng sử dụng duy nhất một khóa con là 𝐾.

Chúng ta vẫn dùng các động tác sau:

1. Expand: mở rộng và hoán vị 𝑅𝑖 từ 4 bits lên 6 bits. Giả sử 4 bits của 𝑅𝑖 là 𝑏0𝑏1𝑏2𝑏3 thì kết quả sau
khi Expand là 𝑏2𝑏3𝑏1𝑏2𝑏1𝑏0.

2. SBox: gọi 6 bits đầu vào là 𝑏0𝑏1𝑏2𝑏3𝑏4𝑏5. Khi đó ta tra cứu theo bảng SBox với 𝑏0𝑏5 chỉ số hàng,
𝑏1𝑏2𝑏3𝑏4 chỉ số cột. Nói cách khác bảng SBox có 4 hàng, 16 cột. Kết quả của SBox là một số 4 bits.

3. PBox: là hàm hoán vị 4 bit 𝑏0𝑏1𝑏2𝑏3 thành 𝑏2𝑏0𝑏3𝑏1.

Như vậy, hàm 𝐹 của mô hình Feistel đối với mã TinyDES là:

𝐹 (𝑅𝑖,𝐾) = PBox(SBox(Expand(𝑅𝑖)⊕𝐾)).

Để sinh khóa con cho 100 vòng, khóa ban đầu được chia thành hai nửa trái phải lần lượt là 𝐾𝐿0 và 𝐾𝑅0.
TinyDES thực hiện như sau:
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• 𝐾𝐿0 và 𝐾𝑅0 được dịch vòng trái 1 bit để được 𝐾𝐿1 và 𝐾𝑅1;

• khóa 𝐾 dùng chung cho 100 vòng là hoán vị và nén 8 bits của 𝐾𝐿1‖𝐾𝑅1. Đặt 8 bits khi ghép
𝐾𝐿1‖𝐾𝑅1 là 𝑘0𝑘1𝑘2𝑘3𝑘4𝑘5𝑘6𝑘7. Khi đó khóa 𝐾 là 6 bits 𝑘5𝑘1𝑘3𝑘2𝑘7𝑘0.

INFO-CIRCLE tinydes.py
# tindeys.py

sbox = [
0xE, 0x4, 0xD, 0x1, 0x2, 0xF, 0xB, 0x8, 0x3, 0xA, 0x6, 0xC, 0x5, 0x9, 0x0, 0x7,
0x0, 0xF, 0x7, 0x4, 0xE, 0x2, 0xD, 0x1, 0xA, 0x6, 0xC, 0xB, 0x9, 0x5, 0x3, 0x8,
0x4, 0x1, 0xE, 0x8, 0xD, 0x6, 0x2, 0xB, 0xF, 0xC, 0x9, 0x7, 0x3, 0xA, 0x5, 0x0,
0xF, 0xC, 0x8, 0x2, 0x4, 0x9, 0x1, 0x7, 0x5, 0xB, 0x3, 0xE, 0xA, 0x0, 0x6, 0xD

]

def Xor(a: list[int], b: list[int]) -> list[int]:
return [x^y for x, y in zip(a, b)]

def Expand(R: list[int]) -> list[int]:
return [R[2], R[3], R[1], R[2], R[1], R[0]]

def SBox(R: list[int]) -> list[int]:
row = int("".join(map(str, [R[0], R[5]])), 2)
col = int("".join(map(str, R[1:5])), 2)

return list(map(int, format(sbox[row*16 + col], "04b")))

def PBox(R: list[int]) -> list[int]:
return [R[2], R[0], R[3], R[1]]

def PBox_inv(R: list[int]) -> list[int]:
return [R[1], R[3], R[0], R[2]]

def Compress(K: list[int], round: int) -> list[int]:
left, right = K[:4], K[4:]
if round == 0 or round == 2:

left = left[1:] + left[:1]
right = right[1:] + right[:1]

elif round == 1:
left = left[2:] + left[:2]
right = right[2:] + right[:2]

Ki = left + right
return left, right, [Ki[5], Ki[1], Ki[3], Ki[2], Ki[7], Ki[0]]

def encrypt_block(plaintext: list[int], key: list[int]) -> list[int]:
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keys = [key]
left, right = key[:4], key[4:]
for i in range(3):

left, right, key = Compress(left + right, i)
keys.append(key)

left, right = plaintext[:4], plaintext[4:]
for i in range(100): # 100 vòng

# chỉ sử dụng mỗi K_1 trong TinyDES gốc
left, right = right, Xor(left, PBox(SBox(Xor(Expand(right), keys[1]))))

return left + right

# print(encrypt_block([0, 1, 0, 1, 1, 1, 0, 0], [1, 0, 0, 1, 1, 0, 1, 0]))

Ở đây chúng ta thấy mô hình mã hóa sẽ diễn ra như sau. Gọi (𝐿0, 𝑅0) là hai nửa trái phải của bản rõ ban
đầu 𝑃 . Khi đó, ở mỗi vòng biến đổi sẽ sử dụng chung khóa con 𝐾 theo mô hình

𝑃 = (𝐿0, 𝑅0)
𝐹𝐾−−→ (𝐿1, 𝑅1)

𝐹𝐾−−→ (𝐿2, 𝑅2)
𝐹𝐾−−→ (𝐿3, 𝑅3) = 𝐶.

Theo mô hình Feistel thì

𝐿1 = 𝑅0, 𝑅1 = 𝐿0 ⊕ 𝑓(𝑅0,𝐾)

với 𝑓 là round function tương ứng với thuật toán TinyDES. Nói cách khác thì 𝐹𝑘 là

𝐹𝐾(𝐿𝑖, 𝑅𝑖) = (𝑅𝑖, 𝐿𝑖 ⊕ 𝑓(𝑅𝑖,𝐾)).

Lúc này slid pair có dạng {︃
𝐹𝐾(𝑃 ) = 𝑃 ′

𝐹𝐾(𝐶) = 𝐶 ′ ⇐⇒

{︃
𝐹𝐾(𝐿0, 𝑅0) = (𝐿′

0, 𝑅
′
0)

𝐹𝐾(𝐿3, 𝑅3) = (𝐿′
3, 𝑅

′
3)

hay tương đương với

{︃
(𝑅0, 𝐿0 ⊕ 𝑓(𝑅0,𝐾)) = (𝐿′

0, 𝑅
′
0)

(𝑅3, 𝐿3 ⊕ 𝑓(𝑅3,𝐾)) = (𝐿′
3, 𝑅

′
3)

⇐⇒

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑅0 = 𝐿′

0

𝐿0 ⊕ 𝑓(𝑅0,𝐾) = 𝐿′
0

𝑅3 = 𝐿′
3

𝐿3 ⊕ 𝑓(𝑅3,𝐾) = 𝑅′
3.

(3.20)

Như vậy:

nếu chúng ta có (𝑃,𝐶) và (𝑃 ′, 𝐶 ′) thỏa các điều kiện ở (3.20) thì chúng ta có slid pair.

Câu hỏi đặt ra là nếu chúng ta không biết khóa con 𝐾 thì làm sao kiểm tra được các điều kiện trên?

Câu trả lời (mà cũng là cách chúng ta thực hiện trên thực tế) là chúng ta giả sử đã tìm được slid pair.
Như vậy điều kiện đầu và điều kiện thứ ba phải thỏa mãn trước. Sau đó từ điều kiện thứ hai và thứ tư
chúng ta tìm ngược lại 𝐾. Cuối cùng chúng ta thử mã hóa 𝑃 với 𝐾 đã tìm được. Nếu chúng ta thu được
chính xác 𝐶 thì 𝐾 là khóa con cần tìm, ngược lại thì chúng ta thử với slid pair khác.

INFO-CIRCLE solve.py
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# solve.py

from tinydes import encrypt_block, PBox, SBox, Expand, Xor
import random

def fault_encrypt_block(plaintext: list[int], key: list[int]) -> list[int]:
left, right = plaintext[:4], plaintext[4:]
for _ in range(100):

left, right = right, Xor(left, PBox(SBox(Xor(Expand(right), key))))

return left + right

pts = []
cts = []
secret_key = [1, 0, 0, 1, 1, 1, 1, 0]

L = 2**4

for _ in range(L):
pt = [random.randint(0, 1) for __ in range(8)]
ct = encrypt_block(pt, secret_key)
pts.append(pt)
cts.append(ct)

for i in range(L):
L0, R0 = pts[i][:4], pts[i][4:]
L3, R3 = cts[i][:4], cts[i][4:]
for j in range(i + 1, L):

l0, r0 = pts[j][:4], pts[j][4:]
l3, r3 = cts[j][:4], cts[j][4:]
# Lazy bruteforce for K
for k in range(2**6):

key = list(map(int, f"{k:06b}"))
# Check slid pair
if l0 == R0 and r0 == Xor(L0, PBox(SBox(Xor(Expand(R0), key)))):

if l3 == R3 and r3 == Xor(R3, PBox(SBox(Xor(Expand(R3), key)))):
if fault_encrypt_block(pts[i], key) == cts[i]:

print(key)

Ở đoạn code trên mình bruteforce khóa con 𝐾 vì SBox của TinyDES (và cũng là của DES) nhận đầu vào 6
bit nhưng đầu ra giảm còn 4 bit (chứ không phải do mình lười đâu hiuhiu). Do đó có thể có nhiều trường
hợp của khóa con 𝐾 có thể thỏa mãn điều kiện của slid pair. Chúng ta cũng có thể tạo lookup table và thực
hiện ngược lại round function để tìm các khả năng của khóa con 𝐾.

Gọi PBox−1 là phép biến đổi ngược của PBox. Khi đó từ điều kiện thứ hai 𝐿0 ⊕ 𝑓(𝑅0,𝐾) = 𝐿′
0 suy ra

𝐿0 ⊕ 𝐿′
0 = 𝑓(𝑅0,𝐾) = PBox(SBox(Expand(𝑅0)⊕𝐾)),

suy ra

PBox−1(𝐿0 ⊕ 𝐿′
0) = SBox(Expand(𝑅0)⊕𝐾).
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Chúng ta có thể tính được PBox−1(𝐿0⊕𝐿′
0) và Expand(𝑅0) nên việc "đoán" 𝐾 không phải vấn đề khó khăn.

Thêm nữa điều kiện thứ tư cũng cho chúng ta các ứng cử viên cho khóa con 𝐾. Kết hợp hai điều kiện này
chúng ta có khóa con 𝐾 và chúng ta sẽ thử mã hóa 𝑃 thành 𝐶.

Slide attack với DES

Ở olympiad mật mã học quốc tế NSUCRYPTO 2024 có một bài slide attack trên DES là bài 4 ở round 2
"Weak key schedule for DES". Bài này được giải bởi bạn Chương (vnc) đội mình. Ở phần sau mình sẽ trình
bày lời giải cho bài này. Mình sẽ sử dụng code của bạn Chương trong lời giải. Xin cám ơn bạn Chương vì
đã đóng góp :D :D :D

Trong bài này, thông tin ban đầu là file Book.txt và được mã hóa thành file Book_Cipher.txt.

Thuật toán được sử dụng để mã hóa là DES. Tuy nhiên trong bài này đặc biệt ở chỗ mỗi vòng đều dùng
chung một khóa con (khóa con đầu tiên của thuật toán sinh khóa con).

Nhiệm vụ của chúng ta là tìm khóa con đó và giải mã thông điệp sau:

86991641D28259604412D6BA88A5C0A6471CA7222C52482BF2D0E841D4343DFB877DC8E0147F3D5F20FC18FF28CB5C4DA8A0F4694861AB5E98F37ADBC2D69B35779D9001BB4B648518FE6EBC00B2AB10

Cài đặt FAULTY_DES

Ở đây bạn Chương gọi thuật toán của đề bài là FAULTY_DES và bạn sẽ cài đặt thuật toán này cùng với một
số hàm bổ trợ cho việc giải bài.

INFO-CIRCLE faulty_des.py

# faulty_des.py

from typing import List, Tuple

class DES_CONST:
PC1 = (

57, 49, 41, 33, 25, 17, 9 ,
1 , 58, 50, 42, 34, 26, 18,
10, 2 , 59, 51, 43, 35, 27,
19, 11, 3 , 60, 52, 44, 36,
63, 55, 47, 39, 31, 23, 15,
7 , 62, 54, 46, 38, 30, 22,
14, 6 , 61, 53, 45, 37, 29,
21, 13, 5 , 28, 20, 12, 4 ,

)

PC2 = (
14, 17, 11, 24, 1 , 5 ,
3 , 28, 15, 6 , 21, 10,
23, 19, 12, 4 , 26, 8 ,
16, 7 , 27, 20, 13, 2 ,
41, 52, 31, 37, 47, 55,
30, 40, 51, 45, 33, 48,
44, 49, 39, 56, 34, 53,
46, 42, 50, 36, 29, 32,

)
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KEY_ROTATION = (
1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1,

)

INITIAL_PERMUTATION = (
58, 50, 42, 34, 26, 18, 10, 2,
60, 52, 44, 36, 28, 20, 12, 4,
62, 54, 46, 38, 30, 22, 14, 6,
64, 56, 48, 40, 32, 24, 16, 8,
57, 49, 41, 33, 25, 17, 9 , 1,
59, 51, 43, 35, 27, 19, 11, 3,
61, 53, 45, 37, 29, 21, 13, 5,
63, 55, 47, 39, 31, 23, 15, 7,

)

ROUND_PERMUTATION = (
16, 7 , 20, 21,
29, 12, 28, 17,
1 , 15, 23, 26,
5 , 18, 31, 10,
2 , 8 , 24, 14,
32, 27, 3 , 9 ,
19, 13, 30, 6 ,
22, 11, 4 , 25,

)

INV_ROUND_PERMUTATION = (
9, 17, 23, 31,
13, 28, 2, 18,
24, 16, 30, 6,
26, 20, 10, 1,
8, 14, 25, 3 ,
4, 29, 11, 19,
32, 12, 22, 7,
5, 27, 15, 21,

)

FINAL_PERMUTATION = (
40, 8, 48, 16, 56, 24, 64, 32,
39, 7, 47, 15, 55, 23, 63, 31,
38, 6, 46, 14, 54, 22, 62, 30,
37, 5, 45, 13, 53, 21, 61, 29,
36, 4, 44, 12, 52, 20, 60, 28,
35, 3, 43, 11, 51, 19, 59, 27,
34, 2, 42, 10, 50, 18, 58, 26,
33, 1, 41, 9 , 49, 17, 57, 25,

)

EXPANSION = (
32, 1 , 2 , 3 , 4 , 5 ,
4 , 5 , 6 , 7 , 8 , 9 ,
8 , 9 , 10, 11, 12, 13,
12, 13, 14, 15, 16, 17,

3.2. Phá mã 365



Math Book

16, 17, 18, 19, 20, 21,
20, 21, 22, 23, 24, 25,
24, 25, 26, 27, 28, 29,
28, 29, 30, 31, 32, 1 ,

)

SBOX = [
(

14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7,
0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8,
4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0,
15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13,

),
(

15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10,
3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5,
0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15,
13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9,

),
(

10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8,
13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1,
13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7,
1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12,

),
(

7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15,
13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9,
10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4,
3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14,

),
(

2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9,
14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6,
4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14,
11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3,

),
(

12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11,
10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8,
9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6,
4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13,

),
(

4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1,
13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6,
1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2,
6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12,

),
(

13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7,
1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2,
7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8,
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2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11,
),

]

class HELP:
@classmethod
def INT_TO_BITS(cls, value: int, size: int) -> List[int]:

bits = []
for i in reversed(range(size)):

bits.append((value >> i) & 1)
return bits

@classmethod
def BITS_TO_INT(cls, bits: List[int]) -> int:

value = 0
for bit in bits:

value <<= 1
value |= bit

return value

@classmethod
def BLOCK_TO_BITS(cls, block: bytes) -> List[int]:

bits = []
for byte in block:

bits.extend(cls.INT_TO_BITS(byte, 8))
return bits

@classmethod
def BITS_TO_BLOCK(cls, bits: List[int], size: int) -> bytes:

block_bytes = []
for i in range(size):

byte = cls.BITS_TO_INT(bits[i * 8 : (i + 1) * 8])
block_bytes.append(byte)

return bytes(block_bytes)

@classmethod
def PERMUTATE(cls, bits: List[int], table: List[int]) -> List[int]:

return [
bits[table[i] - 1] for i in range(len(table))

]

@classmethod
def XOR(cls, bits1: List[int], bits2: List[int]) -> List[int]:

return [x ^ y for x, y in zip(bits1, bits2)]

@classmethod
def EXPAND(cls, bits: List[int], table: List[Tuple]) -> List[int]:

return [
bits[table[i] - 1]
for i in range(len(table))

]
@classmethod
def SUBSTITUTE(cls, bits: List[int], mapping: List[Tuple]) -> List[int]:
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pieces = []

for i in range(8):
piece_bits = bits[i * 6 : (i + 1) * 6]

piece = HELP.BITS_TO_INT(piece_bits)
pieces.append(piece)

values = []

for i, piece in enumerate(pieces):
row = (piece & 1) | ((piece >> 4) & 0b10)
column = (piece & 0b011110) >> 1

values.append(mapping[i][row * 16 + column])

result_bits = []

for value in values:
result_bits.extend(HELP.INT_TO_BITS(value, 4))

return result_bits

class FAULTY_DES:
def __init__(self, rk: bytes, rounds: int = 16):

self.rounds = rounds
self.round_keys = [HELP.BLOCK_TO_BITS(rk) for _ in range(rounds)]
self.reversed_round_keys = self.round_keys[::-1]

def encrypt(self, plaintext: bytes) -> bytes:
assert len(plaintext)%8 == 0
blocks = [plaintext[i:i+8] for i in range(0, len(plaintext), 8)]
return b"".join([self._process_block(block, self.round_keys) for block in␣

→˓blocks])

def decrypt(self, ciphertext: bytes) -> bytes:
assert len(ciphertext)%8 == 0
blocks = [ciphertext[i:i+8] for i in range(0, len(ciphertext), 8)]
return b"".join([self._process_block(block, self.reversed_round_keys) for␣

→˓block in blocks])

def _process_block(self, block: bytes, schedule) -> bytes:
bits = HELP.BLOCK_TO_BITS(block)

bits = HELP.PERMUTATE(bits, DES_CONST.INITIAL_PERMUTATION)
left, right = bits[:32], bits[32:]

for i in range(self.rounds):
new_right = self._function(right, schedule[i])
left, right = right, HELP.XOR(new_right, left)

result_bits = right + left
result_bits = HELP.PERMUTATE(result_bits, DES_CONST.FINAL_PERMUTATION)
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return HELP.BITS_TO_BLOCK(result_bits, 8)

def _function(self, bits: List[int], key_bits: List[int]) -> List[int]:
bits = HELP.EXPAND(bits, DES_CONST.EXPANSION)
bits = HELP.XOR(bits, key_bits)
bits = HELP.SUBSTITUTE(bits, DES_CONST.SBOX)
bits = HELP.PERMUTATE(bits, DES_CONST.ROUND_PERMUTATION)

return bits

Thực hiện solve.py

Phần này mình sẽ viết solve.py để giải bài này từ jupyter notebook của bạn Chương.

Đầu tiên chúng ta gọi một số thư viện.

from faulty_des import DES_CONST, HELP, FAULTY_DES
from collections import defaultdict
from typing import List, Tuple
from itertools import product
from tqdm import tqdm

Tiếp theo, chúng ta cần thống nhất rằng mỗi khối trong thuật toán FAULTY_DES sẽ được biểu diễn bởi mảng
gồm 8 phần tử (list[int]). Khi đó nửa trái (left-half) là 4 phần tử đầu của mảng và nửa phải (right-half)
là 4 phần tử sau. Do đó chúng ta cần một số lambda để lấy nửa trái/phải. Sau bước cuối chúng ta ghép
nửa phải cuối cùng với nửa trái cuối cùng nên cần thêm hàm Swap_f.

Left_f = lambda block: block[:4]
Right_f = lambda block: block[4:]
Swap_f = lambda block: Right_f(block) + Left_f(block)

Sau đó đọc bản rõ và bản mã từ file đề cho rồi tách chúng thành các khối 8 bytes.

# Known-Plaintext-Ciphertext Pairs
plaintext = open("Book.txt", "rb").read()[:-1] # độ dài bản rõ chia hết cho 8
ciphertext = open("Book_cipher.txt", "rb").read()

# Divide them into blocks
pts = [plaintext[i:i+8] for i in range(0, len(plaintext), 8)]
cts = [ciphertext[i:i+8] for i in range(0, len(ciphertext), 8)]

Tiếp theo chúng ta tìm các slid pair. Ở đây chúng ta cần xem lại cách hoạt động của thuật toán DES. Hình
sau mình lấy từ [33] và chỉnh sửa lại.
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S1 S2 S3 S4 S5 S6 S7 S8

Expand từ 32 bits lên 48 bits

Nén 48 bits xuống 32 bits Mỗi S-Box biến đổi 6 bits thành 4 bits

Ki

Ri

32 bits

P

XOR với Li

32 bits

48 bits

1
Hình 3.35: Round function của DES

Tóm tắt cách hoạt động thì DES cũng theo mô hình

𝐿𝑖+1 = 𝑅𝑖, 𝑅𝑖+1 = 𝐿𝑖 ⊕ PBox(SBox(Expand(𝑅𝑖)⊕𝐾𝑖+1)),

trong đó

• Expand mở rộng nửa khối từ 32 bits lên 48 bits;

• SBox: 48 bits sẽ được chia thành 8 đoạn, mỗi đoạn có 6 bits. Sau đó mỗi đoạn sẽ đi qua các S-Box và
giảm từ 6 bits xuống 4 bits. Các kết quả được nối lại với nhau nên kết quả sau SBox là 4 · 8 = 32 bits;

• PBox: thực hiện hoán vị 32 bit sau SBox.

Ở đây slid pair cũng tương tự TinyDES ở trên. Giả sử slid pair là cặp (𝑃,𝐶) và (𝑃 ′, 𝐶 ′). Khi đó

𝐹𝐾(𝑃 ) = 𝑃 ′, 𝐹𝐾(𝐶) = 𝐶 ′

với 𝐹𝐾 là round function

(𝐿𝑖, 𝑅𝑖)
𝐹𝐾−−→ (𝐿𝑖+1, 𝑅𝑖+1) ≡ (𝑅𝑖, 𝐿𝑖 ⊕ PBox(SBox(Expand(𝑅𝑖)⊕𝐾𝑖+1))),

như trên.

# Before and After DES' rounds operations, there is a Block Permutation step!
def BlockPermutate(block: bytes, table: list):

assert len(block) == 8
block_bits = HELP.BLOCK_TO_BITS(block)
block_bits = HELP.PERMUTATE(block_bits, table)
block = HELP.BITS_TO_BLOCK(block_bits, 8)

return block
(continues on next page)
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(continued from previous page)

# Create Lookup Table
lookup = defaultdict(list)

for pi, ci in tqdm(zip(pts, cts), desc="[+] Creating Lookup Table..."):
pi_initial = BlockPermutate(pi, DES_CONST.INITIAL_PERMUTATION)
ci_preout = BlockPermutate(ci, DES_CONST.INITIAL_PERMUTATION)
# Why Left_f(Ci) -> Remember that the final round doesn't swap two-halfs
lookup[Right_f(pi_initial) + Left_f(ci_preout)].append((pi_initial, ci_preout))

# Finding "slid pairs"
slid_pairs = []

for pj, cj in tqdm(zip(pts, cts), desc="[+] Finding slid pairs..."):
pj_initial = BlockPermutate(pj, DES_CONST.INITIAL_PERMUTATION)
cj_preout = BlockPermutate(cj, DES_CONST.INITIAL_PERMUTATION)

try:
# Why Right_f(Cj) -> Remember that the final round doesn't swap two-halfs
for pi_initial, ci_preout in lookup[Left_f(pj_initial) + Right_f(cj_preout)]:

slid_pairs.append([
# Now we swap to ensure that (P,C) and (P',C') is slid pair
# <=> F(P) = P' and F(C) = C'
(pi_initial, Swap_f(ci_preout)),
(pj_initial, Swap_f(cj_preout)),

])
except:

continue

print(f"[!] Found {len(slid_pairs)} possible slid pairs!")

Các phép biến đổi ngược của các phép biến đổi trong DES nhằm tìm các "ứng cử viên" cho khóa. Quan
trọng là S-Box vì chúng ta đã biết mỗi S-Box biến đổi 6 bits thành 4 bits nên với nhiều đầu vào cho cùng
đầu ra. Khi đi ngược lại để tìm "ứng cử viên" thì ta phải xét tất cả trường hợp đầu vào S-Box cho cùng
đầu ra mà ta đang có.

# Enumerate all possible candidates
def RevSubtitute(out: List[int], mapping: List[Tuple]):

cands = [[] for _ in range(8)]
out = [out[i:i+4] for i in range(0, len(out), 4)]

for idx in range(8):
for piece in range(2**6):

row = (piece & 1) | ((piece >> 4) & 0b10)
column = (piece & 0b011110) >> 1
if HELP.INT_TO_BITS(mapping[idx][row * 16 + column], 4) == out[idx]:

cands[idx].append(HELP.INT_TO_BITS(piece, 6))

for rk in product(*cands):
yield sum(rk, [])

def RevFeistel(inp, out):
(continues on next page)
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(continued from previous page)

out = HELP.PERMUTATE(out, DES_CONST.INV_ROUND_PERMUTATION)
inp = HELP.EXPAND(inp, DES_CONST.EXPANSION)
for rev_out in RevSubtitute(out, DES_CONST.SBOX):

yield HELP.BITS_TO_BLOCK(HELP.XOR(rev_out, inp), 6)

def RevRound(state0: bytes, state1: bytes):
L0, R0 = Left_f(state0), Right_f(state0)
L1, R1 = Left_f(state1), Right_f(state1)
return set(RevFeistel(

inp=HELP.BLOCK_TO_BITS(R0),
out=HELP.XOR(HELP.BLOCK_TO_BITS(R1), HELP.BLOCK_TO_BITS(L0))

))

Tìm các khóa con có thể và thử giải mã thông điệp đề cho với khóa con đó.

rk_cands = set()

for (pi, ci), (pj, cj) in tqdm(slid_pairs, desc="[+] Recovering Possible RoundKey..."):
rks_1 = RevRound(pi, pj)
rks_2 = RevRound(ci, cj)
rk_cands = rk_cands.union(rks_1.intersection(rks_2))

print(f"[!] Found {len(rk_cands)} possible RoundKeys!")

# Try to decrypt intercepted ciphertext
intercepted_ciphertext = b"".join([

bytes.fromhex("86991641D28259604412D6BA88A5C0A6471CA722"),
bytes.fromhex("2C52482BF2D0E841D4343DFB877DC8E0147F3D5F"),
bytes.fromhex("20FC18FF28CB5C4DA8A0F4694861AB5E98F37ADB"),
bytes.fromhex("C2D69B35779D9001BB4B648518FE6EBC00B2AB10")

])

for rk in tqdm(rk_cands, desc="[+] Try to decrypt intercepted ciphertext..."):
cipher = FAULTY_DES(rk)
try:

print("> Readable Message:", cipher.decrypt(intercepted_ciphertext).decode())
print("> WRT RoundKey:", rk.hex(), end="\n\n")

except:
continue

# Verify again?
assert FAULTY_DES(bytes.fromhex("0c74fa6a642a")).encrypt(plaintext) == ciphertext

3.2.4 Algebraic cryptanalysis
Theo [34] thì algebraic cryptanalysis (mình tạm dịch là phá mã đại số) là kỹ thuật phá mã dựa trên việc
giải một hệ phương trình các đa thức trên trường F2 hoặc đôi khi là vành khác.

Algebraic cryptanalysis gồm hai giai đoạn:

1. Tìm sự liên kết giữa bản rõ và bản mã dưới dạng các hệ phương trình đa thức. Do đó algebraic
cryptanalysis thuộc loại tấn công known-plaintext hoặc chosen-plaintext.

2. Giải hệ phương trình đại số. Ở bước này chúng ta có thể giải tay hoặc sử dụng những phần mềm
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chuyên dụng gọi là SAT-solver vì thông thường các loại mã hóa rất phức tạp.

Interpolation Attack

Interpolation, hay tiếng Việt gọi là nội suy (ví dụ Lagrange's interpolation là nội suy Lagrange) được giới
thiệu vào 1997 [35].

Mình xin phép nhắc lại ý tưởng của nội suy Lagrange như sau:

• chúng ta không biết hệ số của đa thức bậc 𝑛, giả sử là

𝑓(𝑥) = 𝑎0 + 𝑎1𝑥+ · · ·+ 𝑎𝑛𝑥
𝑛

với 𝑎𝑛 ̸= 0;

• chúng ta biết 𝑛+ 1 điểm thuộc đồ thị của đa thức là

(𝑥0, 𝑓(𝑥0), (𝑥1, 𝑓(𝑥1)), . . . , (𝑥𝑛, 𝑓(𝑥𝑛)));

• khi đó chúng ta hoàn toàn có thể tìm lại được đa thức 𝑓(𝑥) ban đầu.

Ở đây, interpolation attack sử dụng ý tưởng tương tự.

1. Chúng ta cố gắng xây dựng một đa thức liên hệ giữa bản rõ 𝑝 và bản mã 𝑐, nghĩa là 𝑓(𝑝) = 𝑐 với mọi
cặp bản rõ 𝑝 và bản mã 𝑐. Ở đây chúng ta không biết khóa.

2. Với một lượng cặp bản rõ-bản mã nhất định và bậc của đa thức 𝑓 thấp chúng ta hy vọng tìm lại được
đa thức bằng nội suy.

3. Sử dụng đa thức tìm được để khôi phục khóa.

Ở [35], các tác giả xây dựng một toy cipher gọi là 𝒫𝒰ℛℰ nhằm demo cho phương pháp tấn công này.

Giới thiệu 𝒫𝒰ℛℰ cipher

Thuật toán dựa trên mô hình Feistel với độ dài khối là 64 bits và độ dài khóa là 192 bits. Khóa 𝐾 gồm 6
khóa con cho 6 vòng là 𝑘1, 𝑘2, ..., 𝑘6 với 𝑘𝑖 ∈ F232 , nghĩa là mỗi khóa có 32 bits (bằng một nửa độ dài khối,
tương ứng với mô hình Feistel).

Ở vòng thứ 𝑖, giả sử nửa trái là 𝐿𝑖 và nửa phải là 𝑅𝑖 thì round function của mô hình Feistel là

𝐿𝑖+1 = 𝑅𝑖, 𝑅𝑖+1 = 𝐿𝑖 ⊕ (𝑅𝑖 ⊕𝐾𝑖+1)
3.

Ở đây, phép tính 𝑧3 được tính trong trường F232 . Chúng ta có thể sử dụng bất kì đa thức tối giản nào làm
modulo cho F232 .

Để demo cho interpolation attack chúng ta sẽ xét 𝒫𝒰ℛℰ cipher với 3 vòng như hình sau.
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L0 R0

(R0 +K1)
3

L1 R1

(R1 +K2)
3

L2 R2

(R2 +K3)
3

L3 R3

Hình 3.36: 𝒫𝒰ℛℰ cipher với 3 vòng

Thiết lập hệ phương trình giữa bản rõ và bản mã

Tiếp theo, chúng ta ... thay từng biểu thức vào để biểu diễn bản mã theo bản rõ.

Đầu tiên chúng ta cần chú ý một điều là do trường F232 có đặc số (characteristic) là 2 nên 3 ≡ 1.

Ở vòng 1:

𝐿1 = 𝑅0,

𝑅1 = 𝐿0 ⊕ (𝑅0 ⊕𝐾1)
3

= 𝐿0 ⊕𝑅3
0 ⊕ 3𝑅2

0𝐾1 ⊕ 3𝑅0𝐾
2
1 ⊕𝐾3

1

= 𝐿0 ⊕𝑅3
0 ⊕𝑅2

0𝐾1 ⊕𝑅0𝐾
2
1 ⊕𝐾3

1 .

Chúng ta có thể nói rằng 𝐿1 và 𝑅1 phụ thuộc vào 𝐿0 và 𝑅0, nghĩa là có ánh xạ{︃
𝐿1 = 𝛼1(𝐿0, 𝑅0)

𝑅1 = 𝛽1(𝐿0, 𝑅0).

Ở vòng 2:

𝐿2 = 𝑅1 = 𝐿0 ⊕𝑅3
0 ⊕𝑅2

0𝐾1 ⊕𝑅0𝐾
2
1 ⊕𝐾3

1 ,

𝑅2 = 𝐿1 ⊕ (𝑅1 ⊕𝐾2)
3 = 𝑅0 ⊕𝑅3

1 ⊕𝑅2
1𝐾2 ⊕𝑅1𝐾

2
2 ⊕𝐾3

2 .
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Lúc này ta có 𝐿2 và 𝑅2 được biểu diễn theo 𝐿1 và 𝑅1, giả sử chúng ta có ánh xạ{︃
𝐿2 = 𝛼2(𝐿1, 𝑅1) = 𝛼2(𝛼1(𝐿0, 𝑅0), 𝛽1(𝐿0, 𝑅0))

𝑅2 = 𝛽2(𝐿1, 𝑅1) = 𝛽2(𝛼1(𝐿0, 𝑅0), 𝛽1(𝐿0, 𝑅0)).

Tương tự ở vòng 3:

𝐿3 = 𝑅2 = 𝑅0 ⊕𝑅3
1 ⊕𝑅2

1𝐾2 ⊕𝑅1𝐾
2
2 ⊕𝐾3

2 ,

𝑅3 = 𝐿2 ⊕ (𝑅2 ⊕𝐾3)
3 = 𝑅1 ⊕𝑅3

2 ⊕𝑅2
2𝐾2 ⊕𝑅2𝐾

2
2 ⊕𝐾3

3 .

Chúng ta thực hiện tương tự như hai vòng trước và nhanh chóng nhận ra rằng việc thay thế này rất cồng
kềnh. Do đó mình sử dụng SageMath để thực hiện khai triển giúp mình. Các bạn có thể xem đoạn code sau
nếu hứng thú.

INFO-CIRCLE Code tính 𝐿3 và 𝑅3 theo 𝐿0, 𝑅0, và khóa con

from sage.all import *

F = GF(2)['x']; x = F.gen()
F32 = GF(2**3, name='x', modulus='random')
Pr = PolynomialRing(F32, names='l0, r0, k1, k2, k3')
l0, r0, k1, k2, k3 = Pr.gens()

l1 = r0
r1 = l0 + (r0 + k1)**3

l2 = r1
r2 = l1 + (r1 + k2)**3

l3 = r2
r3 = l2 + (r2 + k3)**3

# Format for LaTeX
f = str(l3) \

.replace('r0', 'R_0') \

.replace('l0', 'L_0') \

.replace('k1', r'{\color{red}K_1}') \

.replace('k2', r'{\color{red}K_2}') \

.replace('k3', r'{\color{red}K_3}') \

.replace('+', r'\oplus') \

.replace('*', ' ')
print(f)

Như vậy chúng ta biểu diễn được 𝐿3 và 𝑅3 theo 𝐿0, 𝑅0 và các khóa con như sau.

𝑅3 = 𝑅27
0 + · · ·

𝐿3 = 𝑅9
0 ⊕𝑅8

0𝐾1 ⊕𝑅0𝐾1
8 ⊕𝐾1

9 ⊕ 𝐿0𝑅
6
0

⊕ 𝐿0𝑅
4
0𝐾1

2 ⊕ 𝐿0𝑅
2
0𝐾1

4 ⊕ 𝐿0𝐾1
6 ⊕𝑅6

0𝐾2 ⊕𝑅4
0𝐾1

2𝐾2

⊕𝑅2
0𝐾1

4𝐾2 ⊕𝐾1
6𝐾2 ⊕ 𝐿2

0𝑅
3
0 ⊕ 𝐿2

0𝑅
2
0𝐾1 ⊕ 𝐿2

0𝑅0𝐾1
2

⊕ 𝐿2
0𝐾1

3 ⊕𝑅3
0𝐾2

2 ⊕𝑅2
0𝐾1𝐾2

2 ⊕𝑅0𝐾1
2𝐾2

2 ⊕𝐾1
3𝐾2

2

⊕ 𝐿3
0 ⊕ 𝐿2

0𝐾2 ⊕ 𝐿0𝐾2
2 ⊕𝐾2

3 ⊕𝑅0.
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Ở đây 𝑅3 là đa thức bậc 27 theo 𝑅0 và 𝐿0, có lẽ chúng ta không nên dây dưa với anh bạn này.

Nhìn 𝐿3 cũng khá rối rắm nhưng vẫn có thể xử lý được (hoặc mình tin vậy). Hơn nữa trong biểu thức của
𝐿3 không có sự xuất hiện của 𝐾3. Tuy nhiên chỉ với một cặp bản rõ 𝑃 = 𝐿0‖𝑅0 và bản mã 𝐶 = 𝐿3‖𝑅3 thì
không đủ để chúng ta tìm lại khóa.

Ý tưởng của interpolation attack cũng như nội suy Lagrange là dựa trên nhiều cặp bản rõ-bản mã. Trong
biểu thức của 𝐿3 nếu chúng ta nhóm hạng tử theo bậc của 𝑅0 lại thì ta có các hệ số:

• trước 𝑅9
0 là 1;

• trước 𝑅8
0 là 𝐾1;

• trước 𝑅6
0 là 𝐿0 ⊕𝐾2;

• trước 𝑅4
0 là 𝐿0𝐾

2
1 ⊕𝐾2

1𝐾2;

• trước 𝑅3
0 là 𝐿2

0 ⊕𝐾2
2 ;

• trước 𝑅2
0 là 𝐾4

1𝐾2 ⊕ 𝐿2
0𝐾

2
1 ⊕𝐾1𝐾

2
2 ;

• trước 𝑅0 là 𝐿2
0𝐾

2
1 ⊕𝐾2

1𝐾
2
2 ;

• hệ số tự do là các đơn thức còn lại không chứa 𝑅0.

Như vậy chúng ta sẽ có biểu diễn 𝐿3 theo 𝑅0 là đa thức dạng

𝐿3 = 𝑅9
0 ⊕ 𝑎8𝑅8

0 ⊕ 𝑎6𝑅6
0 ⊕ 𝑎4𝑅4

0 ⊕ 𝑎3𝑅3
0 ⊕ 𝑎2𝑅2

0 ⊕ 𝑎1𝑅0 ⊕ 𝑎0

với 𝑎𝑖 có thể xem là hàm của theo các khóa con và 𝐿0.

Nếu chúng ta cố định 𝐿0 và thay đổi 𝑅0 thì với 7 cặp bản rõ-bản mã là đủ để khôi phục đa thức trên nếu
chúng ta giải hệ phương trình tuyến tính. Trong trường hợp 𝒫𝒰ℛℰ với 6 vòng như bản gốc thì chúng ta
cần nhiều cặp bản rõ-bản mã hơn nhiều, theo đó việc tính toán đa thức sẽ tốn công sức hơn.

Khi đã khôi phục được đa thức, tức là đã tìm được các hệ số, thì chúng ta có thể mã hóa bất kì thông điệp
nào mà không cần quan tâm khóa. Vậy nếu chúng ta muốn tìm khóa thì sao?

Như đã nói, các hệ số của đa thức có thể được xem như các hàm theo các khóa con và nửa trái ban đầu 𝐿0.
Lúc này ta có một hệ phương trình không tuyến tính và việc giải quyết khá khó khăn. Trong phiên bản đơn
giản với 3 vòng như trên, để ý rằng hệ số trước 𝑅8

0 chính là 𝐾1. Từ đây, kết hợp với các phương trình khác
có thể tìm được 𝐾2. Tuy nhiên với 𝐾3 thì chúng ta không còn cách nào khác ngoài vét cạn. Như vậy có thể
kết luận:

1. Với phiên bản 𝒫𝒰ℛℰ cipher đơn giản với 3 vòng cần 7 cặp bản rõ-bản mã (để tìm 𝐾1 và 𝐾2) và vét
cạn 232 trường hợp khóa 𝐾3.

2. Với 𝒫𝒰ℛℰ cipher gốc 6 vòng thì ta cần nhiều cặp bản rõ-bản mã hơn để tìm 5 khóa con đầu và vét
cạn 232 trường hợp khóa 𝐾6.

Ở đây là đoạn code demo cho 𝒫𝒰ℛℰ cipher với 3 vòng của mình.

INFO-CIRCLE Demo tấn công 𝒫𝒰ℛℰ cipher 3 vòng

from sage.all import GF, matrix, vector
import random

# Define fields
F = GF(2)['x'] # GF(2)
x = F.gen()
F32 = GF(2**32, name='x', modulus='random') # GF(2^{32})
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K = [F32.random_element() for _ in range(3)] # round keys

for i in range(3):
print(f"K_{i + 1} =", K[i].to_integer())

def encrypt(pt: bytes):
# encrypt with PURE cipher
pL, pR = F32.from_bytes(pt[:4]), F32.from_bytes(pt[4:])
for i in range(3):

pL, pR = pR, pL + (pR + K[i])**3
return pL.to_bytes()[1:] + pR.to_bytes()[1:]

pts = []
cts = []
M = []
v = []

for _ in range(7):
# Chosen-plaintext with fixed left-half
pt = bytes(range(12, 16)) + random.randbytes(4)
ct = encrypt(pt)
pR = F32.from_bytes(pt[4:])
cL = F32.from_bytes(ct[:4])
m = [pR**i for i in [0, 1, 2, 3, 4, 6, 8]]
M.append(m)
v.append(cL - pR**9)

M = matrix(F32, M)
v = vector(F32, v)
sol = M.solve_right(v)
print(sol[-1].to_integer())

3.3 Mật mã học

3.3.1 Lattice-based cryptography
Nhập môn mật mã dựa trên lattice

Kí hiệu. Vector hàng được kí hiệu bởi chữ thường in đậm, ví dụ 𝑥, 𝑦, 𝑣. Ma trận được kí hiệu bởi chữ hoa
in đậm, ví dụ 𝐴, 𝐵.

INFO-CIRCLE Definition 1.64 (Lattice)

Xét tập hợp các vector độc lập tuyến tính 𝑣1, 𝑣2, ..., 𝑣𝑑 trên R𝑛. Ta nói lattice (hay lưới) ℒ ⊂ R𝑛 được
sinh bởi các vector 𝑣1, 𝑣2, ..., 𝑣𝑑 nếu

ℒ = {𝑎1𝑣1 + 𝑎2𝑣2 + . . .+ 𝑎𝑑𝑣𝑑 : 𝑎𝑖 ∈ Z}.

Nói cách khác, lattice là không gian vector được sinh bởi tổ hợp tuyến tính với hệ số nguyên.
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Tập các vector

{𝑣1,𝑣2, . . . ,𝑣𝑑}

được gọi là tập sinh hay cơ sở (basis, базис) của lattice ℒ.

Số lượng vector trong cơ sở được gọi là số chiều của lattice và kí hiệu là 𝑑 = dim(ℒ).

Lattice được gọi là full-rank nếu dim(ℒ) = 𝑛.

Xét ma trận 𝑉 có các hàng là các vector 𝑣1, ..., 𝑣𝑑, nghĩa là 𝑉 ∈ R𝑑×𝑛.

INFO-CIRCLE Definition 1.65 (Định thức của lattice)

Định thức của lattice ℒ được xác định bởi công thức det(ℒ) =
√︁
|det (𝑉 𝑉 ⊤)|.

Nếu lattice full-rank thì det(ℒ) = det(𝑉 ).

INFO-CIRCLE Remark 1.16

Cơ sở của một lưới không là duy nhất nhưng số lượng vector trong mỗi cơ sở là như nhau và bằng số
chiều của lattice.

Nếu 𝑉 và 𝑊 là hai ma trận cơ sở của cùng lattice ℒ thì tồn tại ma trận 𝐴 với hệ số nguyên (tức 𝐴 ∈ Z𝑑×𝑑)
có định thức bằng 1 sao cho 𝑊 = 𝐴 · 𝑉 . Chúng ta có thể dễ dàng chứng minh điều này khi biểu diễn các
vector trong 𝑊 thành tổ hợp tuyến tính các vector trong 𝑉 .

Giả sử {𝑣1,𝑣2, . . . ,𝑣𝑑} là một cơ sở của ℒ. Tương tự, {𝑤1,𝑤2, . . . ,𝑤𝑑} là một cơ sở khác của ℒ.

INFO-CIRCLE Chứng minh

Ta có thể viết mỗi 𝑤𝑖 là tổ hợp tuyến tính của các vector 𝑣 như sau

𝑤1 = 𝑎11𝑣1 + 𝑎12𝑣2 + . . .+ 𝑎1𝑑𝑣𝑑

𝑤2 = 𝑎21𝑣1 + 𝑎22𝑣2 + . . .+ 𝑎2𝑑𝑣𝑑

...
𝑤𝑑 = 𝑎𝑑1𝑣1 + 𝑎𝑑2𝑣2 + . . .+ 𝑎𝑑𝑑𝑣𝑑

Khi đó, nếu viết các vector 𝑤𝑖 thành hàng của ma trận 𝑊 và 𝑣𝑗 thành hàng của ma trận 𝑉 thì biểu
diễn trên tương đương với:

𝑊 =

⎛⎜⎜⎜⎝
𝑎11 𝑎12 · · · 𝑎1𝑑
𝑎21 𝑎22 · · · 𝑎2𝑑
...

...
. . .

...
𝑎𝑑1 𝑎𝑑2 · · · 𝑎𝑑𝑑

⎞⎟⎟⎟⎠ · 𝑉 .
Đặt

𝐴 =

⎛⎜⎜⎜⎝
𝑎11 𝑎12 · · · 𝑎1𝑑
𝑎21 𝑎22 · · · 𝑎2𝑑
...

...
. . .

...
𝑎𝑑1 𝑎𝑑2 · · · 𝑎𝑑𝑑

⎞⎟⎟⎟⎠ .
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Do 𝑊 và 𝑉 là các cơ sở của ℒ nên nếu các vector 𝑤𝑖 có thể biểu diễn qua các vector 𝑣𝑗 thì ngược lại,
các vector 𝑣𝑗 cũng có thể được biểu diễn qua các vector 𝑤𝑖. Suy ra ma trận 𝐴 là ma trận khả nghịch.
Do 𝑎𝑖𝑗 ∈ Z theo định nghĩa lattice, det(𝐴) ∈ Z.

Hơn nữa, vì:

𝐼 = 𝐴 ·𝐴−1 ⇒ 1 = det(𝐴) · det(𝐴−1)

nên det(𝐴) = ±1.

Mỗi lattice ℒ có một lattice đối ngẫu (dual lattice), kí hiệu là

ℒ* = {𝑤 ∈ R𝑛 : ⟨𝑤,𝑥⟩ ∈ Z với mọi 𝑥 ∈ ℒ}.

INFO-CIRCLE Definition 1.66 (Fundamental domain)

Cho lattice ℒ có số chiều là 𝑑 với cơ sở gồm các vector ${ bm{v}_1, bm{v}_2, ldots, bm{v}_d }$. Ta
gọi fundamental domain (hay fundamental parallelepiped) của ℒ ứng với cơ sở trên là tập

ℱ(𝑣1, . . . ,𝑣𝑑) = {𝑡1𝑣1 + . . .+ 𝑡𝑑𝑣𝑑 : 0 6 𝑡𝑖 < 1}.

Trong mặt phẳng 𝑂𝑥𝑦 với hai vector 𝑢 và 𝑣 không cùng phương thì fundamental domain là hình bình hành
tạo bởi hai vector đó.

INFO-CIRCLE Remark 1.17

Gọi ℒ ⊂ R𝑛 là lattice với số chiều là 𝑛 và gọi ℱ là fundamental domain của ℒ. Khi đó mọi vetor 𝑤 ∈ R𝑛

đều có thể viết dưới dạng

𝑤 = 𝑡+ 𝑣

với 𝑡 duy nhất thuộc ℱ và 𝑣 duy nhất thuộc ℒ.

Một cách tương đương, hợp của các fundamental domains

ℱ + 𝑣 = {𝑡+ 𝑣 : 𝑡 ∈ ℱ}

với 𝑣 là các vector trong ℒ, sẽ bao phủ hết R𝑛.

INFO-CIRCLE Chứng minh

Để chứng minh nhận xét trên, giả sử {𝑣𝑖 : 1 6 𝑖 6 𝑛} là cơ sở của ℒ. Khi đó các 𝑣𝑖 độc lập tuyến tính
nên cũng là cơ sở của R𝑛.

Ta viết các vector 𝑤 ∈ R𝑛 dưới dạng tổ hợp tuyến tính của 𝑣𝑖 và tách hệ số trước mỗi vector thành phần
nguyên và phần lẻ. Phần nguyên cho vector trong ℒ và phần lẻ cho vector trong ℱ .

Để chứng minh tính duy nhất của tổ hợp, xét hai cách biểu diễn khác nhau của 𝑤 và chứng minh hai
cách đó là một.
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INFO-CIRCLE Theorem 1.17 (Bất đẳng thức Hadamard)

Cho lattice ℒ, lấy cơ sở bất kỳ của ℒ là các vector 𝑣1, ..., 𝑣𝑛 và gọi ℱ là fundamental domain cho ℒ.
Khi đó

det𝐿 = Vol(ℱ) 6 ‖𝑣1‖ · ‖𝑣2‖ · · · ‖𝑣𝑛‖.

Cơ sở càng gần với trực giao thì bất đẳng thức Hadamard trên càng trở thành đẳng thức.

INFO-CIRCLE Definition 1.67 (Đa thức cyclotomic)

Với mỗi số nguyên dương 𝑁 , đa thức cyclotomic thứ 𝑁 là đa thức tối giản Φ𝑁 duy nhất trong Z[𝑥] sao
cho 𝑥𝑁 − 1 chia hết cho Φ𝑁 nhưng 𝑥𝑘 − 1 không chia hết cho Φ𝑁 với mọi 𝑘 < 𝑁 .

INFO-CIRCLE Example 1.35

Ví dụ, xét 𝑥3 − 1 = (𝑥− 1)(𝑥2 + 𝑥+ 1):

• với 𝑘 = 1, ta có (𝑥2 + 𝑥+ 1) - (𝑥− 1);

• với 𝑘 = 2, ta có (𝑥2 + 𝑥+ 1) - (𝑥2 − 1);

• với 𝑘 = 3, theo phân tích nhân tử trên thì (𝑥2 + 𝑥+ 1) | (𝑥3 − 1).

Như vậy Φ3 = 𝑥2 + 𝑥+ 1.

INFO-CIRCLE Remark 1.18

Nếu 𝑑 là số nguyên tố thì Φ𝑑 = 1 + 𝑥+ 𝑥2 + . . .+ 𝑥𝑑−1.

INFO-CIRCLE Remark 1.19

Các đa thức tối giản không chỉ đối với Z mà còn đối với Q. Ta cũng có thể chứng minh được rằng:

𝑥𝑁 − 1 =
∏︁
𝑑|𝑁

Φ𝑑(𝑥).

INFO-CIRCLE Definition 1.68

Với 𝑖 = 1, . . . , 𝑛, định nghĩa 𝜆𝑖(ℒ) là 𝜆 nhỏ nhất sao cho ℒ chứa ít nhất 𝑖 vector độc lập của chuẩn Euclid
(Euclidean norm) tại hầu hết 𝜆. Cụ thể 𝜆1(ℒ) là độ dài vector khác không ngắn nhất trong ℒ.
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Congruential public key cryptosystem

Thuật toán này mình lấy từ [36].

Tạo khóa

Trong thuật toán này, ta chọn số nguyên tố 𝑞 làm public parameter.

Sau đó chọn hai số 𝑓 và 𝑔 làm private key. Hai số này phải thỏa mãn các điều kiện

𝑓 <
√︀
𝑞/2,

√︀
𝑞/4 < 𝑔 <

√︀
𝑞/2, gcd(𝑓, 𝑞𝑔) = 1.

Tính ℎ ≡ 𝑓−1𝑔 (mod 𝑞). Khi đó public key là ℎ.

Mã hóa

Để mã hóa thông điệp 𝑚, ta chọn số một số ngẫu nhiên 𝑟 thỏa mãn

0 < 𝑚 <
√︀
𝑞/4, 0 < 𝑟 <

√︀
𝑞/2.

Tiếp theo, ta tính 𝑒 ≡ 𝑟ℎ+𝑚 (mod 𝑞).

Bản mã 𝑒 thỏa mãn 0 < 𝑒 < 𝑞.

Giải mã

Từ bản mã 𝑒 ta giải mã bằng cách tính

𝑎 ≡ 𝑓𝑒 (mod 𝑞), 𝑏 ≡ 𝑓−1𝑎 (mod 𝑔).

Lưu ý 𝑓−1 là nghịch đảo modulo 𝑔. Khi đó 𝑏 ≡ 𝑚 là message ban đầu.

INFO-CIRCLE Chứng minh

Để chứng minh rằng số 𝑏 sau khi tính toán bằng chính xác 𝑚 ban đầu ta cần xem xét điều kiện của
private key và public key.

Đầu tiên ta có

𝑎 ≡ 𝑓𝑒 ≡ 𝑓(𝑟ℎ+𝑚) ≡ 𝑓(𝑟𝑓−1𝑔 +𝑚) ≡ 𝑟𝑔 + 𝑓𝑚 (mod 𝑞).

Từ điều kiện của 𝑓 , 𝑔, 𝑟 và 𝑚 ta có

𝑟𝑔 + 𝑓𝑚 <

√︂
𝑞

2
·
√︂
𝑞

2
+

√︂
𝑞

2
·
√︂
𝑞

4
< 𝑞.

Nói cách khác 𝑟𝑔 + 𝑓𝑚 giữ nguyên giá trị trong phép modulo 𝑞, hay 𝑎 ≡ 𝑟𝑔 + 𝑓𝑚.

Ta suy ra

𝑏 ≡ 𝑓−1𝑎 ≡ 𝑓−1(𝑟𝑔 + 𝑓𝑚) ≡ 𝑚 (mod 𝑔),

ở đây giá trị 𝑎 không thay đổi khi chuyển từ modulo 𝑞 sang modulo 𝑔.

Do 0 < 𝑚 <
√︀
𝑞/4 và

√︀
𝑞/4 < 𝑔 <

√︀
𝑞/2 nên 𝑚 < 𝑔. Nói cách khác 𝑏 bằng đúng 𝑚 ban đầu.
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Ví dụ mã hóa và giải mã

Ta chọn số nguyên tố 𝑞 = 3973659461 là public parameter.

Ta chọn 𝑓 = 36624 và 𝑔 = 33577 làm private key. Ở đây có thể kiểm tra điều kiện

𝑓 <
√︀
𝑞/2,

√︀
𝑞/4 < 𝑔 <

√︀
𝑞/2, gcd(𝑓, 𝑞𝑔) = 1.

Lúc này public key là

ℎ ≡ 𝑓−1𝑔 ≡ 3540857813 (mod 𝑞).

Giả sử ta muốn mã hóa thông điệp 𝑚 = 1024 .

Ta chọn (ngẫu nhiên) giá trị 𝑟 = 21542. Ta tính được bản mã là

𝑒 ≡ 𝑟ℎ+𝑚 ≡ 2765654775 (mod 𝑞).

Để giải mã bản mã 𝑒 = 2765654775 với private key 𝑓 = 36624 và 𝑔 = 33577, đầu tiên ta tính

𝑎 ≡ 𝑓𝑒 ≡ 760818710 (mod 𝑞).

Tiếp theo tính

𝑏 ≡ 𝑓−1𝑎 ≡ 1024 (mod 𝑔).

Như vậy 𝑏 bằng chính xác bản rõ 𝑚 = 1024 ban đầu.

Phá mã

Để tấn công hệ mật mã này ta xây dựng lattice. Để ý rằng ℎ = 𝑓−1𝑔 (mod 𝑞), hay 𝑓ℎ+ 𝑘𝑞 = 𝑔 với 𝑘 ∈ Z.

Ta thấy rằng 𝑓 · (ℎ, 1) + 𝑘 · (𝑞, 0) = (𝑔, 𝑓). Như vậy cơ sở của lattice gồm hai vector (ℎ, 1) và (𝑞, 0). Thuật
toán rút gọn lattice Gauss sẽ hoạt động trong trường hợp này (số chiều bằng 2).

NTRU

Đối với NTRU-HRSS mình sử dụng bài thuyết trình ở dự án PQC của NIST1.

Đối với NTRUEncrypt thì mình tham khảo [36] (chương 7 về lattice). Mình sẽ sử dụng kí hiệu từ tài liệu
này làm chuẩn cho cả NTRUEncrypt, NTRU-HRSS và NTRU.

Tham số cho NTRU

Các thuật toán NTRU hoạt động dựa trên các vành thương (quotient ring) sau:

𝑅 =
Z[𝑥]
𝑥𝑛 − 1

, 𝑅𝑝 =
(Z/𝑝Z)[𝑥]
𝑥𝑛 − 1

, 𝑅𝑞 =
(Z/𝑞Z)[𝑥]
𝑥𝑛 − 1

,

trong đó 𝑝, 𝑞 và 𝑛 là các số nguyên tố khác nhau.

Ta cần định nghĩa một phép biến đổi gọi là center-lift. Trong các tài liệu khác thì gọi là phép modular
reduction.

Với số nguyên 𝑛 cố định đóng vai trò modulo, ta xét phần tử

𝑟 ∈ {0, 1, . . . , 𝑛− 1}.

Khi đó center-lift của 𝑟 là số 𝑟′ ∈ Z sao cho −𝑛
2
< 𝑟′ 6

𝑛

2
và 𝑟 ≡ 𝑟′ (mod 𝑛).

Ví dụ, khi 𝑛 = 8:
1 https://csrc.nist.gov/presentations/2018/ntru-hrss-kem
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• với 𝑟 = 3 thì 𝑟′ = 3;

• với 𝑟 = 6 thì 𝑟′ = −2.

Ta cần thêm tập

𝒯 (𝑑1, 𝑑2) =

⎧⎨⎩ : 𝑎(𝑥) có đúng 𝑑1 hệ số bằng 1
𝑎(𝑥) ∈ 𝑅 : 𝑎(𝑥) có đúng 𝑑2 hệ số bằng − 1

: 𝑎(𝑥) có các hệ số còn lại là 0.

⎫⎬⎭ .

NTRUEncrypt

Tạo khóa

Chọn 𝑓(𝑥) ∈ 𝒯 (𝑑+ 1, 𝑑) và 𝑔(𝑥) ∈ 𝒯 (𝑑, 𝑑) ngẫu nhiên.

Ta tính

𝐹𝑞(𝑥) = 𝑓(𝑥)−1 ∈ 𝑅𝑞,

𝐹𝑝(𝑥) = 𝑓(𝑥)−1 ∈ 𝑅𝑝.

Tiếp theo, tính

ℎ(𝑥) = 𝐹𝑞(𝑥) · 𝑔(𝑥) ∈ 𝑅𝑞.

Khi đó, private key là cặp (𝑓(𝑥), 𝐹𝑝(𝑥)) và public key là ℎ(𝑥).

Mã hóa

Giả sử bản rõ là đa thức 𝑚(𝑥) ∈ 𝑅 sao cho hệ số 𝑚𝑖 thỏa −
𝑝

2
< 𝑚𝑖 6

𝑝

2
(center-lift hệ số).

Chọn ngẫu nhiên đa thức 𝑟(𝑥) ∈ 𝒯 (𝑑, 𝑑) và tính

𝑒(𝑥) = 𝑝 · ℎ(𝑥) · 𝑟(𝑥) +𝑚(𝑥) (mod 𝑞).

Khi đó bản mã là 𝑒(𝑥) ∈ 𝑅𝑞.

Giải mã

Để giải mã, ta tính

𝑎(𝑥) = 𝑓(𝑥) · 𝑒(𝑥) (mod 𝑞).

Sau đó ta center-lift các hệ số của 𝑎(𝑥) thành đa thức thuộc 𝑅 rồi tính trong modulo 𝑝:

𝑏(𝑥) = 𝐹𝑝(𝑥) · 𝑎(𝑥) (mod 𝑝).

Khi đó 𝑏(𝑥) chính là bản rõ 𝑚(𝑥) ban đầu.

Ở đây, điều kiện của các tham số 𝑛, 𝑝, 𝑞 và 𝑑 để NTRUEncrypt hoạt động đúng là

𝑞 > (6𝑑+ 1)𝑝.
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Tính đúng đắn của quá trình giải mã

Ta có

𝑎(𝑥) ≡ 𝑓(𝑥) · 𝑒(𝑥) (mod 𝑞)
≡ 𝑓(𝑥) (𝑝 · ℎ(𝑥) · 𝑟(𝑥) +𝑚(𝑥)) (mod 𝑞)
≡ 𝑝 · 𝑓(𝑥) · ℎ(𝑥) · 𝑟(𝑥) + 𝑓(𝑥) ·𝑚(𝑥) (mod 𝑞)
≡ 𝑝 · 𝑓(𝑥) · 𝑟(𝑥) · 𝐹𝑞(𝑥) · 𝑔(𝑥) + 𝑓(𝑥) ·𝑚(𝑥) (mod 𝑞)
≡ 𝑝 · 𝑔(𝑥) · 𝑟(𝑥) + 𝑓(𝑥) ·𝑚(𝑥) (mod 𝑝)

vì 𝑓(𝑥) · 𝐹𝑞(𝑥) ≡ 1 (mod 𝑞).

Xét đa thức 𝑝 · 𝑔(𝑥) · 𝑟(𝑥) + 𝑓(𝑥) ·𝑚(𝑥) trong 𝑅 (center-lift). Ta có

𝑏(𝑥) ≡ 𝐹𝑝(𝑥) · 𝑎(𝑥) (mod 𝑝)
≡ 𝐹𝑝(𝑥) · 𝑝 · 𝑔(𝑥) · 𝑟(𝑥)⏟  ⏞  

0

+𝐹𝑝(𝑥) · 𝑓(𝑥)⏟  ⏞  
1

·𝑚(𝑥) (mod 𝑝)

≡ 𝑚(𝑥) (mod 𝑝).

NTRU lattice

Đặt public key

ℎ(𝑥) = ℎ0 + ℎ1(𝑥) + · · ·+ ℎ𝑛−1𝑥
𝑛−1,

các hệ số đa thức tương ứng với vector

ℎ = (ℎ0, ℎ1, . . . , ℎ𝑛−1).

Đặt

𝑀NTRU
ℎ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 · · · 0 ℎ0 ℎ1 · · · ℎ𝑛−1

0 1 · · · 0 ℎ𝑛−1 ℎ0 · · · ℎ𝑛−2

...
...

. . .
...

...
...

. . .
...

0 0 · · · 1 ℎ1 ℎ2 · · · ℎ0
0 0 · · · 0 𝑞 0 · · · 0
0 0 · · · 0 0 𝑞 · · · 0
...

...
. . .

...
...

...
. . .

...
0 0 · · · 0 0 0 · · · 𝑞

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

(︂
𝐼𝑛 ℎ
𝑂𝑛 𝑞𝐼𝑛

)︂
,

ở đây 𝐼𝑛 là ma trận đơ đơn vị cấp 𝑛, 𝑂𝑛 là ma trận không cấp 𝑛.

Giả sử

𝑎(𝑥) = 𝑎0 + 𝑎1𝑥+ · · ·+ 𝑎𝑛−1𝑥
𝑛−1,

𝑏(𝑥) = 𝑏0 + 𝑏1𝑥+ · · ·+ 𝑏𝑛−1𝑥
𝑛−1,

tương ứng với các vector

𝑎 = (𝑎0, 𝑎1, . . . , 𝑎𝑛−1), 𝑏 = (𝑏0, 𝑏1, . . . , 𝑏𝑛−1).

Ta kí hiệu

(𝑎, 𝑏) = (𝑎0, 𝑎1, . . . , 𝑎𝑛−1, 𝑏0, 𝑏1, . . . , 𝑏𝑛−1) ∈ Z2𝑛.
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Giả sử 𝑓(𝑥) · ℎ(𝑥) ≡ 𝑔(𝑥) (mod 𝑞), đặt 𝑢(𝑥) ∈ 𝑅 là đa thức thỏa

𝑓(𝑥) · 𝑔(𝑥) = 𝑔(𝑥) + 𝑞 · 𝑢(𝑥).

Khi đó

(𝑓 ,−𝑢) ·𝑀NTRU
ℎ = (𝑓 , 𝑔)

nên vector (𝑓 , 𝑔) thuộc lattice 𝐿NTRU
ℎ .

NTRU-HRSS

Hệ mật mã NTRU-HRSS được nộp vòng 1 của dự án NIST PQC. Ở vòng 2, NTRU-HRSS hợp nhất với
NTRUEncrypt trở thành NTRU.

Tạo khóa

Đối với NTRU-HRSS cần thêm các vành con của 𝑅𝑝 và 𝑅𝑞 xác định bằng đa thức cyclotomic. Ta kí hiệu
đa thức cyclotomic thứ 𝑑 là Φ𝑑. Nhận xét bên trên:

• Φ1(𝑥) = 𝑥− 1;

• nếu 𝑑 là số nguyên tố thì

Φ𝑑(𝑥) = 1 + 𝑥+ . . .+ 𝑥𝑑−1.

Đặt 𝑆𝑝 =
(Z/𝑝Z)[𝑥]
Φ𝑛(𝑥)

và 𝑆𝑞 =
(Z/𝑞Z)[𝑥]
Φ𝑛(𝑥)

với 𝑝, 𝑞 và 𝑛 là các số nguyên tố như trên.

Hơn nữa, Khi 𝑛 là số nguyên tố thì $x^n - 1 = Phi_1(x) Phi_n(x)$ và do đó

𝑅𝑝
∼=

(Z/𝑝Z)[𝑥]
Φ1(𝑥)

× 𝑆𝑝, 𝑅𝑞
∼=

(Z/𝑞Z)[𝑥]
Φ1(𝑥)

× 𝒮𝑞.

Thông thường ta chọn 𝑝 = 3 và 𝑛 = 701. Việc chọn 𝑛 như vậy được (nhiều) người khẳng định là an toàn.

Đối với NTRU-HRSS-PKE, private key là một phần tử khác không 𝑓 ∈ 𝑆𝑝.

Từ 𝑓 ta tính public key ℎ = Φ1(𝑥) · 𝑔 · 𝑓−1 ∈ 𝑅𝑞 với một phần tử 𝑔 ∈ 𝑆𝑝. Điều này đòi hỏi 𝑓 khả nghịch
trong 𝑅𝑞.

Để hỗ trợ giải mã ta cần nghịch đảo của 𝑓 trong 𝑆𝑝. Ta viết nghịch đảo của 𝑓 trong 𝑅𝑞 và 𝑆𝑝 tương ứng là
là 𝑓−1

𝑞 và 𝑓−1
𝑝 .

Theo cấu trúc thì 𝑓 khả nghịch trong cả 𝑆𝑝 và 𝒮𝑞.

Thay vì lấy 𝑓 và 𝑔 trực tiếp từ 𝑆𝑝 thì ta lấy từ tập con:

𝒯 + = {𝑣 ∈ 𝑆𝑝 : ⟨𝑥𝑣, 𝑣⟩ > 0}.

Thuật toán sinh khóa gồm các bước:

1. 𝑓 ← 𝒯 +.

2. 𝑓−1
𝑝 ← 𝑓−1 ∈ 𝑆𝑝.

3. 𝑓−1
𝑞 ← 𝑓−1 ∈ 𝒮𝑞.

4. 𝑔 ← 𝒯 +.

5. ℎ = Φ1(𝑥) · 𝑔 · 𝑓−1 ∈ 𝑅𝑞.

6. Trả về public key là pk = ℎ và private key là sk = (𝑓, 𝑓−1
𝑝 ).
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Mã hóa

Gọi 𝑚 ∈ 𝑆𝑝 là encode của bản rõ và 𝑟 ∈ 𝑆𝑝 được chọn ngẫu nhiên.

Bản rõ 𝑒 được tính:

𝑒← 𝑝 · 𝑟 · ℎ+ [𝑚]3 ∈ 𝑅𝑞

Ở đây 𝑝 = 3 là số nguyên tố bên trên.

Giải mã

Input: (𝑒, (𝑓, 𝑓−1
3 )) và hai vành (𝑅𝑞, 𝑆𝑝).

Output: plaintext 𝑚′:

𝑚′ ← [𝑒 · 𝑓 ]𝑞 · 𝑓−1
3 ∈ 𝑆𝑝.

Ở đây kí hiệu [𝑒 · 𝑓 ]𝑞 nghĩa là phép tính diễn ra trong vành 𝑅𝑞. Tương tự ở trên [𝑚]3 là encode của thông
điệp 𝑚 trong 𝑆𝑝.

FALCON

[TODO] Viết lại.

Falcon làm việc với các phần tử thuộc vành Q[𝑥]

𝜑(𝑥)
, ở đây 𝜑(𝑥) = 𝑥𝑛 + 1 và 𝑛 = 2𝑘.

Ở đây 𝜑(𝑥) là đa thức cyclotomic nên ta có

𝜑(𝑥) =
∏︁

𝑘∈Z×
𝑚

(𝑥− 𝜉𝑘)

với 𝑚 = 2𝑛 và 𝜉 là nghiệm bậc 𝑚 của đơn vị.

Z×
𝑚 là nhóm các phần tử khả nghịch của Z𝑚 đối với phép nhân.

Ta có quan hệ

Q ⊆ Q[𝑥]/(𝑥2 + 1) ⊆ · · · ⊆ Q[𝑥]/(𝑥𝑛/2 + 1) ⊆ Q[𝑥]/(𝑥𝑛 + 1)

và chuỗi đẳng cấu

Q𝑛 ∼= (Q[𝑥]/(𝑥2 + 1))𝑛/2 ∼= · · · ∼= (Q[𝑥]/(𝑥𝑛/2 + 1))2 ∼= Q[𝑥]/(𝑥𝑛 + 1).

Đặt

𝑎(𝑥) = 𝑎0 + 𝑎1𝑥+ · · ·+ 𝑎𝑛−1𝑥
𝑛−1 ∈ 𝒬, 𝑏(𝑥) = 𝑏0 + 𝑏1𝑥+ · · ·+ 𝑏𝑛−1𝑥

𝑛−1 ∈ 𝒬

với 𝒬 là vành Q[𝑥]/(𝑥𝑛 + 1).

Kí hiệu 𝑎*(𝜉) và gọi là Hermitian adjoint của 𝑎, là phần tử duy nhất của 𝒬 sao cho mọi nghiệm 𝜉 của 𝜑(𝑥)
ta đều có 𝑎*(𝜉) = 𝑎(𝜉), trong đó · là liên hợp (conjunction) trên C.

Với 𝜑(𝑥) = 𝑥𝑛 + 1 thì Hermitant adjoint là 𝑎* = 𝑎0 − (𝑎1𝑥+ 𝑎2𝑥
2 + · · ·+ 𝑎𝑛−1𝑥

𝑛−1).

Ta mở rộng định nghĩa (Hermitian) adjoint lên vector và ma trận.

Adjoin 𝐵* của ma trận 𝐵 ∈ 𝒬𝑛×𝑚 (tương tự với vector) là adjoint của từng phần tử (component-wise):

𝐵 =

(︂
𝑎 𝑏
𝑐 𝑑

)︂
⇒ 𝐵* =

(︂
𝑎* 𝑏*

𝑐* 𝑑*

)︂
.
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Tích vô hướng (inner product) của hai đa thức 𝑎(𝑥) và 𝑏(𝑥) là

⟨𝑎, 𝑏⟩ = 1

deg 𝑓(𝑥)
·
∑︁

𝜑(𝜉)=0

𝑎(𝜉) · 𝑏(𝜉)

đây gọi là cách biểu diễn bằng fast fourier transform.

Ta mở rộng lên vector, với 𝑢 = (𝑢𝑖)𝑖 và 𝑣 = (𝑣𝑖)𝑖 thuộc 𝒬𝑚 thì

⟨𝑢, 𝑣⟩ =
∑︁
𝑖

⟨𝑢𝑖, 𝑣𝑖⟩.

Cách chọn 𝜑(𝑥) ở trên cho chúng ta tích vô hướng giống thông thường

⟨𝑎, 𝑏⟩ =
𝑛−1∑︁
𝑖=0

𝑎𝑖𝑏𝑖

đây là cách biểu diễn bằng hệ số.

Ring lattice: với vành 𝒬 = Q[𝑥]/𝜑(𝑥) và 𝒵 = Z[𝑥]/𝜑(𝑥), số nguyên dương 𝑚 > 𝑛 và ma trận full-rank
𝐵 ∈ 𝒬𝑛×𝑚, ta kí hiệu Λ(𝐵) và gọi lattice sinh bởi 𝐵 là tập 𝒵𝑛. Khi đó

𝐵 = {𝑧 ·𝐵 : 𝑧 ∈ 𝒵𝑛}

Mở rộng ra, tập Λ là lattice nếu tồn tại ma trận 𝐵 sao cho Λ = Λ(𝐵).

Ta có thể nói Λ ⊆ 𝒵𝑚 là lattice 𝑞-phân nếu 𝑞𝒵𝑚 ⊆ Λ.

Discrete Gaussian:

Với 𝜎,𝑚𝑢 ∈ R mà 𝜎 > 0, ta định nghĩa hàm Gauss 𝜌𝜎,𝜇 là

𝜌𝜎,𝜇 = exp(−(𝑥− 𝜇)2/(2𝜎2)),

và phân phối Gauss rời rạc 𝐷Z,𝜎,𝜇 trên vành số nguyên là

𝐷Z,𝜎,𝜇(𝑥) =
𝜌𝜎,𝜇(𝑥)∑︀
𝑧∈Z 𝜌𝜎,𝜇(𝑧)

.

Trực giao hóa Gram-Schmidt.

Mỗi ma trận 𝐵 ∈ 𝒬𝑛×𝑚 có thể phân tích thành 𝐵 = 𝐿× 𝐵̃ với 𝐿 là ma trận tam giác dưới (lower triangle)
với các phần tử trên đường ché chính bằng 1.

Các hàng 𝑏̃𝑖 của 𝐵̃ kiểm tra ⟨𝑏𝑖, 𝑏𝑗⟩ = 0 với 𝑖 ̸= 𝑗. Khi 𝐵 full-rank thì phân tích này là duy nhất và được gọi
là trực giao hóa Gram-Schmidt (Gram-Schmidt orthogonalization GSO).

Ta gọi chuẩn Gram-Schmidt (norm) của 𝐵 là giá trị

‖𝐵‖𝐺𝑆 = max
𝑏̃𝑖∈𝐵̃
‖𝑏̃𝑖‖

LDL:math:^* decomposition: LDL:math:^* decomposition viết mỗi ma trận Gram full-rank thành tích
LDL:math:^* với:

1. 𝐿 ∈ 𝒬𝑛×𝑛 là ma trận tam giác dưới với các phần tử 1 trên đường chéo chính.

2. 𝐷 ∈ 𝒬𝑛×𝑛 là ma trận chéo.
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Nếu tồn tại GSO duy nhất 𝐵 = 𝐿 · 𝐵̃ và với ma trận Gram 𝐺 full-rank thì tồn tại LDL:math:^* decomp
duy nhất 𝐺 = 𝐿𝐷𝐿*.

Nếu 𝐺 = 𝐵 ·𝐵* thì 𝐺 = 𝐿 · (𝐵̃𝐵̃*) · 𝐿* là LDL:math:^* decomp hợp lệ.

Khi đó, 𝐿 · 𝐵̃ là GSO của 𝐵 khi và chỉ khi 𝐿 · (𝐵̃ · 𝐵̃*) · 𝐿* là LDL:math:^* decomp. của 𝐵 ·𝐵*.

Keys.

Public params.

1. Đa thức cyclotomic 𝜑(𝑥) = 𝑥𝑛 + 1 với 𝑛 = 2𝑘.

2. Modulus là 𝑞 ∈ N* là số nguyên tố, 𝜑(𝑥) mod 𝑞 sẽ split (phân rã) trên Z𝑞[𝑥].

3. Bound (chặn) ⌊𝛽2⌋ > 0.

4. Độ lệch chuẩn 𝜎 và 𝜎min < 𝜎max.

5. Chữ ký với độ dài (theo byte) là sbytelen.

Private key

Private key gồm 4 đa thức 𝑓 , 𝑔, 𝐹 , 𝐺 thuộc Z[𝑥]/𝜑(𝑥) với hệ số ngắn, thỏa phương trình

𝑓 ·𝐺− 𝑔 · 𝐹 = 𝑞 mod 𝜑(𝑥).

Đa thức 𝑓 cũng phải khả nghịch trong Z𝑞[𝑥]/𝜑(𝑥).

Cho trước 𝑓 và 𝑔, ta có thể tính được 𝐹 và 𝐺 nhưng sẽ rất tốn sức. Do đó ta cần lưu thêm 𝐹 và từ 𝑓 , 𝑔 và
𝐹 ta sẽ tính lại 𝐺.

FFT representation (biểu diễn FFT) của 𝑓 , 𝑔, 𝐹 và 𝐺 là dạng ma trận

𝐵̂ =

(︂
𝐹𝐹𝑇 (𝑔) −𝐹𝐹𝑇 (𝑓)
𝐹𝐹𝑇 (𝐺) −𝐹𝐹𝑇 (𝐹 )

)︂
.

Falcon trees. Falcon trees là cây nhị phân được định nghĩa đệ quy như sau:

1. Falcon tree với độ cao 0 gồm một nút đơn với giá trị là 𝜎 > 0.

2. Falcon tree với độ cao 𝑘 có tính chất:

• giá trị tại gốc, T.value, là đa thức 𝑙 ∈ Q[𝑥]/(𝑥𝑛 + 1) với 𝑛 = 2𝑘;

• nút là trái và phải, T.leftChild và T.rightChild, là Falcon tree với độ cao 𝑘 − 1.

Nội dung của Falcon tree T được tính từ các thành phần 𝑓 , 𝑔, 𝐹 , 𝐺 của private key và được mô tả bởi thuật
toán ở sau.

Public key.

Falcon public key 𝑝𝑘 tương ứng với private key 𝑠𝑘 = (𝑓, 𝑔, 𝐹,𝐺) là đa thức ℎ ∈ Z𝑞[𝑥]/𝜑(𝑥) thỏa

ℎ = 𝑔𝑓−1 (mod 𝜑(𝑥), 𝑞).

Thuật toán rút gọn lattice

Thuật toán rút gọn lattice Gauss

Gọi 𝐿 ⊂ R2 là lattice 2 chiều với các vector cơ sở là 𝑣1 và 𝑣2. Thuật toán rút gọn lattice Gauss (Gaussian
Lattice Reduction) hoạt động như sau.
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INFO-CIRCLE Algorithm 1.2 (Thuật toán rút gọn lattice Gauss)

1. Loop

1. Nếu ‖𝑣2‖ < ‖𝑣1‖ thì đổi chỗ 𝑣1 và 𝑣2 (swap).

2. Tính 𝑚 =

⌊︂
𝑣1 · 𝑣2

‖𝑣1‖2

⌉︂
.

3. Nếu 𝑚 = 0 thì trả về cơ sở mới gồm các vector 𝑣1 và 𝑣2.

4. Thay 𝑣2 thành 𝑣2 −𝑚𝑣1.

2. Tiếp tục loop :)))

Sau khi thuật toán kết thúc thì 𝑣1 là vector khác không ngắn nhất trong 𝐿, và do đó bài toán SVP được giải
quyết. Hơn nữa góc 𝜃 giữa 𝑣1 và 𝑣2 thỏa mãn

|cos 𝜃| 6 ‖𝑣1‖/2‖𝑣2‖,

cụ thể là 𝜋

3
6 𝜃 6

2𝜋

3
.

INFO-CIRCLE Chứng minh

Đầu tiên ta chứng minh 𝑣1 là vector khác không ngắn nhất trong 𝐿.

Giả sử thuật toán kết thúc và trả về hai vector 𝑣1 và 𝑣2. Bước 1 của vòng lặp đảm bảo rằng ‖𝑣2‖ > ‖𝑣1‖
và

|𝑣1 · 𝑣2|
‖𝑣1‖2

6
1

2
(3.21)

vì đây là điều kiện để làm tròn 𝑣1 · 𝑣2

‖𝑣1‖2
thành 0 và thỏa bước 3.

Mỗi vector 𝑣 khác không trong 𝐿 đều biểu diễn được dưới dạng

𝑣 = 𝑎1𝑣1 + 𝑎2𝑣2, 𝑎1, 𝑎2 ∈ Z.

Sử dụng (3.21) và bất đẳng thức quen thuộc |𝑥| > −𝑥 với mọi 𝑥 ∈ R ta có

‖𝑣‖2 = ‖𝑎1𝑣1 + 𝑎2𝑣2‖2

= 𝑎21‖𝑣1‖2 + 2𝑎1𝑎2 · 𝑣1 · 𝑣2 + 𝑎22‖𝑣2‖2

> 𝑎21‖𝑣1‖2 − 2|𝑎1𝑎2| · 𝑣1 · 𝑣2 + 𝑎22‖𝑣2‖2

> 𝑎21‖𝑣1‖2 − 2|𝑎1𝑎2| · ‖𝑣1‖2 + 𝑎22‖𝑣2‖2

> 𝑎21‖𝑣1‖2 − 2|𝑎1𝑎2‖ · ‖𝑣1‖2 + 𝑎22‖𝑣1‖2 (vì ‖𝑣2‖ > ‖𝑣1‖)
= (𝑎21 − 2|𝑎1| · |𝑎2|+ 𝑎22)‖𝑣1‖2.

Ta sử dụng bất đẳng thức quen thuộc: với mọi 𝑡1, 𝑡2 ∈ R thì

𝑡21 − 2𝑡1𝑡2 + 𝑡22 =

(︂
𝑡1 −

𝑡2
2

)︂2

+
3

4
· 𝑡22 =

3

4
· 𝑡21 +

(︂
𝑡1
2
− 𝑡2

)︂2

> 0.

Biểu thức bằng 0 khi và chỉ khi 𝑡1 = 𝑡2 = 0. Vì 𝑎1 và 𝑎2 là các số nguyên không đồng thời bằng 0 nên có
thể suy ra ‖𝑣‖2 > ‖𝑣1‖2 với mọi vector 𝑣 khác không trong 𝐿. Nói cách khác, 𝑣1 là vector khác không
ngắn nhất trong 𝐿 và bài toán SVP được giải xong.
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Tiếp theo, với cos 𝜃, ta có

|cos 𝜃| =
⃒⃒⃒⃒

𝑣1 · 𝑣2

‖𝑣1‖ · ‖𝑣2|

⃒⃒⃒⃒
=

𝑣1 · 𝑣2

‖𝑣1‖2
· ‖𝑣1‖
‖𝑣2‖

6
1

2
· ‖𝑣1‖
‖𝑣2‖

.

Hơn nữa ‖𝑣2‖ > ‖𝑣1‖ nên suy ra

|cos 𝜃| 6 1

2
· ‖𝑣1‖
‖𝑣2‖

6
1

2
⇐⇒ −1

2
6 cos 𝜃 6 1

2
⇐⇒ 𝜋

3
6 𝜃 6

2𝜋

3
.

Mình sẽ ví dụ thuật toán trên qua việc phá mã congruential public key cryptosystem với số liệu đã trình
bày trong bài viết.

Số nguyên tố 𝑞 = 3973659461 là public parameter.

Ta đã chọn 𝑓 = 36624 và 𝑔 = 33577 làm private key. Ở đây 𝑓 và 𝑔 điều kiện

𝑓 <
√︀
𝑞/2,

√︀
𝑞/4 < 𝑔 <

√︀
𝑞/2, gcd(𝑓, 𝑞𝑔) = 1.

Lúc này public key là

ℎ ≡ 𝑓−1𝑔 ≡ 3540857813 (mod 𝑞).

Để ý rằng ℎ = 𝑓−1𝑔 (mod 𝑞), tương đương 𝑓ℎ+ 𝑘𝑞 = 𝑔 với 𝑘 ∈ Z.

Ta thấy rằng 𝑓 · (ℎ, 1) + 𝑘 · (𝑞, 0) = (𝑔, 𝑓). Như vậy cơ sở của lattice gồm hai vector

{(ℎ, 1), (𝑞, 0)}.

Điều kiện của 𝑓 và 𝑔 cho ta tính chất quan trọng: vector (𝑔, 𝑓) ngắn trong lattice. Do đó thuật toán rút gọn
lattice Gauss sẽ hoạt động trong trường hợp này (số chiều bằng 2).

Đặt 𝑣1 = (ℎ, 1) = (3540857813, 1) và 𝑣2 = (𝑞, 0) = (3973659461, 0).

Bước 1, ta có

‖𝑣1‖ =
√
12537674051883142970 > ‖𝑣2‖ = 3973659461

nên ta giữ nguyên 𝑣1 và 𝑣2.

Tiếp theo ta tính

𝑚 =

⌊︂
𝑣1 · 𝑣2

‖𝑣1‖2

⌉︂
=

⌊︂
14070163148683218793

12537674051883142970

⌉︂
= 1 ̸= 0

nên ta thay 𝑣2 bởi 𝑣2 −𝑚𝑣1 thì

𝑣2 = (432801648,−1).

Bước 2, hiện tại

𝑣1 = (3540857813, 1), 𝑣2 = (432801648,−1)

nên

‖𝑣1‖ < ‖𝑣2‖,

đổi chỗ 𝑣1 và 𝑣2 ta được

𝑣1 = (432801648,−1),𝑣2 = (3540857813, 1).
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Tiếp theo ta tính

𝑚 =

⌊︂
𝑣1 · 𝑣2

‖𝑣1‖2

⌉︂
=

⌊︂
1532489096800075823

187317266511515905

⌉︂
= 8 ̸= 0

nên ta thay 𝑣2 bởi 𝑣2 −𝑚𝑣1 thì

𝑣2 = (78444629, 9).

Cứ tiếp tục như vậy, vector 𝑣1, 𝑣2 và giá trị 𝑚 sau bước 3 ở mỗi vòng lặp sẽ được thể hiện ở bảng sau.

Loop 𝑣1 𝑣2 𝑚

1 (3540857813, 1) (3973659461, 0) 1
2 (432801648,−1) (3540857813, 1) 8
3 (78444629, 9) (432801648,−1) 6
4 (−37866126,−55) (78444629, 9) −2
5 (2712377,−101) (−37866126,−55) −14
6 (107152,−1469) (2712377,−101) 25
7 (33577, 36624) (107152,−1469) 1
8 (33577, 36624) (73575,−38093) 0

Vector 𝑣1 ở bước cuối chính xác là (𝑔, 𝑓) bên trên.

Phương pháp Coppersmith

Phương pháp Coppersmith được dùng để tìm nghiệm nhỏ của đa thức trên modulo. Phần này mình tham
khảo chính từ [37].

Ý tưởng

Giả sử ta có phương trình 𝐹 (𝑥) ≡ 0 mod𝑀 . Với số 𝑋 cố định cho trước, phương pháp Coppersmith cho
phép tìm nghiệm 𝑥0 nhỏ thỏa mãn |𝑥0| 6 𝑋.

Ý tưởng của phương pháp này là thay vì tìm nghiệm 𝑥0 của 𝐹 (𝑥) trên modulo 𝑀 , chúng ta sẽ mở rộng lên,
tìm một hàm 𝐺(𝑥) nào đó mà có nghiệm 𝑥0 trên Z.

Đơn giản nhất là

𝐺(𝑥) = 𝑘 · 𝐹 (𝑥) +𝑀 · 𝑔(𝑥), 𝑘 ∈ Z

và deg 𝑔(𝑥) 6 deg𝐹 (𝑥). Rõ ràng khi modulo hai vế cho 𝑀 thì 𝐺(𝑥0) = 𝐹 (𝑥0) = 0 mod𝑀 .

Phương pháp này giúp tìm nghiệm của một đa thức bậc nhỏ modulo 𝑀 . Do đó giả sử đặt:

𝐹 (𝑥) = 𝑎0 + 𝑎1𝑥+ · · ·+ 𝑎𝑑𝑥
𝑑

với 𝑎𝑖 ∈ Z.

Lúc này chúng ta sẽ tìm hàm 𝐺(𝑥) trên với hệ số nhỏ.

Giả sử

𝑔(𝑥) = 𝑏0 + 𝑏1𝑥+ · · ·+ 𝑏𝑑𝑥
𝑑

với 𝑏𝑖 ∈ Z.
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Khi đó

𝐺(𝑥) = (𝑘 · 𝑎0 +𝑀 · 𝑏0) + (𝑘 · 𝑎1 +𝑀 · 𝑏1)𝑥+ · · ·+ (𝑘 · 𝑎𝑑 +𝑀 · 𝑏𝑑)𝑥𝑑.

Ta mong muốn các hệ số 𝑘 · 𝑎0 +𝑀 · 𝑏0, 𝑘 · 𝑎1 +𝑀 · 𝑏1, · · ·, 𝑘 · 𝑎𝑑 +𝑀 · 𝑏𝑑 nhỏ so với 𝑀 .

Do đó với số 𝑋 cho trước, nếu ta xây lattice (𝑑+ 2 vector) sau:

𝑣0 ⇐ 𝑀 0 0 · · · 0 0
𝑣1 ⇐ 0 𝑀𝑋 0 · · · 0 0
...

...
...

...
...

. . .
...

...
𝑣𝑑 ⇐ 0 0 0 · · · 0 𝑀𝑋𝑑

𝑣𝑑+1 ⇐ 𝑎0 𝑎1𝑋 𝑎2𝑋
2 · · · 𝑎𝑑−1𝑋

𝑑−1 𝑎𝑑𝑋
𝑑

Khi đó hệ số của mỗi dòng từ 𝑣0 tới 𝑣𝑑 là 𝑏0 tới 𝑏𝑑. Còn hệ số của 𝑣𝑑+1 là 𝑘.

Tuy nhiên chúng ta thường sẽ biến đổi để đa thức trở thành monic (𝑎𝑑 = 1). Khi đó chúng ta bỏ đi 𝑣𝑑 và
còn 𝑑+ 1 vector trong lattice.

Cải tiến thuật toán

Dạng đơn giản

Giả sử 𝑘(𝑥) có bậc là ℎ. Đặt 𝑘(𝑥) = 𝑐0 + 𝑐1𝑥+ · · ·+ 𝑐ℎ𝑥
ℎ.

Khi đó:

𝐺(𝑥) =𝑘(𝑥) · 𝐹 (𝑥) +𝑀 · 𝑔(𝑥)
=(𝑐0 + 𝑐1𝑥+ · · · 𝑐ℎ𝑥ℎ) · (𝑎0 + 𝑎1𝑥+ · · ·+ 𝑥𝑑) +𝑀 · (𝑏0 + 𝑏1𝑥+ · · ·+ 𝑏𝑑𝑥

𝑑)

=𝑐0 · 𝐹 (𝑥) + 𝑐1 · 𝑥𝐹 (𝑥) + · · · 𝑐ℎ · 𝑥ℎ𝐹 (𝑥) +𝑀 · (𝑏0 + 𝑏1𝑥+ · · · 𝑏𝑑𝑥𝑑)

Lúc này mỗi đại lượng 𝐹 (𝑥), 𝑥𝐹 (𝑥), ..., 𝑥ℎ𝐹 (𝑥) sẽ khiến hệ số của 𝐹 (𝑥) ban đầu tăng bậc. Nói cách khác
hệ số 𝑎𝑖 của 𝑥𝑖 trong 𝐹 (𝑥) sẽ là hệ số của 𝑥𝑖+𝑗 trong 𝑥𝑗𝐹 (𝑥).

Sách giáo khoa nói rằng nếu mình chọn ℎ = 𝑑 − 1 thì phương pháp Coppersmith sẽ cho ra kết quả nếu 𝑋
được chọn thỏa 𝑋 ≈𝑀1/(2𝑑−1).

Tương tự, mình sẽ có các vector trong lattice như sau:

𝑣0 ⇐ 𝑀 0 0 · · · 0 0 0 0 · · ·
𝑣1 ⇐ 0 𝑀𝑋 0 · · · 0 0 0 0 · · ·
...

...
...

...
...

...
...

...
...

...
...

𝑣𝑑−1 ⇐ 0 0 0 · · · 𝑀𝑋𝑑−1 0 0 0 · · ·
𝑣𝑑 ⇐ 𝑎0 𝑎1𝑋 𝑎2𝑋

2 · · · 𝑎𝑑−1𝑋
𝑑−1 𝑋𝑑 0 0 · · ·

Sau đó thêm các vector khi shift vào, tương ứng với 𝑥𝐹 (𝑥), 𝑥2𝐹 (𝑥), ...

𝑣𝑑+1 ⇐ 0 𝑎0𝑋 𝑎1𝑋
2 𝑎2𝑋

3 · · · 𝑎𝑑−1𝑋
𝑑 𝑎𝑑𝑋

𝑑+1 0 0 · · ·
𝑣𝑑+2 ⇐ 0 0 𝑎0𝑋

2 𝑎1𝑋
3 · · · 𝑎𝑑−2𝑋

𝑑 𝑎𝑑−1𝑋
𝑑+1 𝑎𝑑𝑋

𝑑+2 0 · · ·

Tuy nhiên vấn đề ở đây là bound của nghiệm bị thu hẹp lại. Ban nãy mình nói rằng nếu chọn ℎ = 𝑑 − 1
thì nghiệm cho kết quả nếu 𝑋 ≈ 𝑀1/(2𝑑−1). Ở đây 𝑀 = 10001 nên 𝑋 ≈ 4. Trong khi ở bài viết trước thì
𝑋 = 10. Do đó có thể thấy việc mở rộng này đôi khi kém hiệu quả tùy thuộc vào ℎ.
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Dạng nâng cao

Coppersmith đã đề xuất ý tưởng như sau:

INFO-CIRCLE Lemma 1.1 (Coppersmith)

Với 0 < 𝜖 < min{0, 18; 1/𝑑}. Đặt 𝐹 (𝑥) là đa thức monic bậc 𝑑 có một hoặc nhiều nghiệm 𝑥0 trên modulo
𝑀 sao cho |𝑥0| 6 1

2𝑀
1/𝑑−𝜖. Khi đó 𝑥0 có thể tính với thời gian đa thức giới hạn bởi 𝑑, 1/𝜖 và log(𝑀).

Để chứng minh bổ đề này thì Coppersmith đã xây dựng một hệ lattice để tính toán và cũng là cách xây
dựng lattice sẽ đề cập tới đây.

Chúng ta biết rằng 𝑥0 là nghiệm của đa thức 𝐹 (𝑥) ≡ 0 mod𝑀 . Do đó ta suy ra 𝐹 (𝑥0)𝑘 ≡ 0 mod𝑀𝑘.

Từ nhận xét này, mình mở rộng phần cơ bản lên tìm nghiệm trong modulo 𝑀ℎ−1 với ℎ là một số được chọn
trước.

Với 𝑘(𝑥) = 𝑐0 + 𝑐1𝑥+ · · ·+ 𝑐𝑑−1𝑥
𝑑−1 biểu diễn việc shift thành 𝐹 (𝑥), 𝑥𝐹 (𝑥), 𝑥2𝐹 (𝑥), ..., 𝑥𝑑−1𝐹 (𝑥).

Ta xét ℎ đa thức sau:

𝑀ℎ−1𝐹 (𝑥)0𝑘(𝑥) ≡ 0 mod𝑀ℎ−1

𝑀ℎ−2𝐹 (𝑥)1𝑘(𝑥) ≡ 0 mod𝑀ℎ−1

· · ·
. . . · · ·

𝑀0𝐹 (𝑥)ℎ−1𝑘(𝑥) ≡ 0 mod𝑀ℎ−1

Với mỗi đa thức 𝑀ℎ−1−𝑗𝐹 (𝑥)𝑗 chúng ta có 𝑑 lần shift tương ứng với từng hệ số của 𝑘(𝑥). Cụ thể là
𝑀ℎ−1−𝑗𝐹 (𝑥)𝑗 , 𝑀ℎ−1−𝑗𝐹 (𝑥)𝑗𝑥, 𝑀ℎ−1−𝑗𝐹 (𝑥)𝑗𝑥2, ..., 𝑀ℎ−1−𝑗𝐹 (𝑥)𝑗𝑥𝑑−1.

Do đó có tất cả 𝑑ℎ vector trong lattice. Số ℎ thường được chọn sao cho 𝑑ℎ ≈ 𝜖. Và chặn nghiệm 𝑋 có thể
chọn là 1

2𝑀
1/𝑑−𝜖 theo như bổ đề.

Như vậy mình xây lattice như sau:

• Bước 1. Với 𝑀ℎ−1𝐹 (𝑥)0 thì các vector sau lần lượt tương ứng với

𝑀ℎ−1𝐹 (𝑥)0,𝑀ℎ−1𝐹 (𝑥)0𝑥, . . . ,𝑀ℎ−1𝐹 (𝑥)0𝑥𝑑−1

Nói cách khác thì:

𝑣0 ⇐ 𝑀ℎ−1 0 0 · · · 0 0 · · ·
𝑣1 ⇐ 0 𝑀ℎ−1𝑋 0 · · · 0 0 · · ·
...

...
...

...
...

. . .
...

...
...

𝑣𝑑−1 ⇐ 0 0 0 · · · 𝑀ℎ−1𝑋𝑑−1 0 · · ·

• Bước 2. Với 𝑀ℎ−2𝐹 (𝑥) thì các vector sau lần lượt tương ứng với

𝑀ℎ−2𝐹 (𝑥)1,𝑀ℎ−2𝐹 (𝑥)1𝑥, . . . ,𝑀ℎ−2𝐹 (𝑥)1𝑥𝑑−1.

Nói cách khác thì:

𝑣𝑑 ⇐ 𝑀𝑎0 𝑀𝑎1𝑋 𝑀𝑎2𝑋
2 · · · 𝑀𝑎𝑑−1𝑋

𝑑−1 𝑀𝑋𝑑 · · · · · ·
𝑣𝑑+1 ⇐ 0 𝑀𝑎0𝑋 𝑀𝑎1𝑋

2 · · · 𝑀𝑎𝑑−2𝑋
𝑑−1 𝑀𝑎𝑑−1𝑋

𝑑 𝑀𝑋𝑑+1 · · ·
...

...
...

...
...

...
...

...
...

...
𝑣2𝑑−1 ⇐ 0 0 0 · · · 𝑀𝑎0𝑋

𝑑−1 𝑀𝑎1𝑋
𝑑 · · · · · ·

• Bước thứ 𝑗. Cứ như vậy với 𝑀ℎ−1−𝑗𝐹 (𝑥)𝑗 .

Chạy LLL trên lattice trên sẽ cho kết quả ^^.
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Code thử nghiệm

So sánh ví dụ đơn giản với small_roots của SageMath

from sage.all import *

def small_roots(f, M, X):
d = f.degree()

P = f.base_ring()
B = []
for i in range(d):

b = [0] * (d + 1)
b[i] = M * X**i
B.append(b)

B.append([j*X**i for i,j in enumerate(f.coefficients())])
B = Matrix(ZZ, B)
B = B.LLL()
bf = B[0]
g = sum((j//(X**i)) * x**i for i,j in enumerate(bf))
roots = g.roots()
return [root[0] for root in roots]

M = 10001
X = 10
P = PolynomialRing(ZZ, 'x')
Q = PolynomialRing(Zmod(M), 'xn')
x = P.gen()
xn = Q.gen()
f = x**3 + 10*x**2 + 5000*x - 222
g = f.change_ring(Q).subs(x=xn)
print(small_roots(f, M, X))
print(g.small_roots(X=10))

Cải tiến dạng đơn giản

from sage.all import *

def small_roots(f, M, X):
d = f.degree()
B = []
for i in range(d):

b = [0] * (2*d)
b[i] = M * X**i
B.append(b)

for i in range(d):
g = x**i * f
b = [v * X**u for u, v in enumerate(g.coefficients(sparse=False))]
b = b + [0] * (2*d - len(b))
B.append(b)

B = Matrix(ZZ, B)
B = B.LLL()

(continues on next page)
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(continued from previous page)

bf = B[0]
g = sum((j // (X**i)) * x**i for i, j in enumerate(bf))
roots = g.roots()
return [root[0] for root in roots]

M = 10001
X = 10
P = PolynomialRing(ZZ, 'x')
x = P.gen()
f = x**3 + 10*x**2 + 5000*x - 222
print(small_roots(f, M, X))

Cải tiến dạng nâng cao

from sage.all import *

def small_roots(f, M, h = None, epsilon = None, X = None):
d = f.degree()
if not h:

h = d
if not epsilon:

epsilon = 1/(d*h)
if not X:

X = round(0.5*M**(1/d-epsilon))
B = []
for j in range(h):

g = M**(h-1-j) * f**j
for i in range(d):

k = g * x**i
b = [v * X**u for u, v in enumerate(k.coefficients(sparse=False))]
b = b + [0] * (d*h - len(b))
B.append(b)

B = Matrix(ZZ, B)
B = B.LLL()
bf = B[0]
g = sum((j // (X**i)) * x**i for i, j in enumerate(bf))
roots = g.roots()
return [root[0] for root in roots]

# Test theo sách giáo khoa

M = (2**30 + 3)*(2**32 + 15)
P = PolynomialRing(ZZ, 'x')
x = P.gen()
f = 1942528644709637042 + 1234567890123456789*x + 987654321987654321*x**2 + x**3
print(small_roots(f, M))

# Tự test

M = (2**20 + 7)*(2**21 + 17)
(continues on next page)
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(continued from previous page)

P = PolynomialRing(ZZ, 'x')
x = P.gen()
f = x**3 + (2**25 - 2883584)*x**2 + 46976195*x + 227
print(small_roots(f, M, X = 2**9))

3.3.2 Code-based cryptography
Introduction

INFO-CIRCLE Definition 2.34 (Block code)

Block code (𝑛)𝑞 là tập hợp 𝒞 bất kì chứa các vector độ dài 𝑛 trên trường F𝑞.

INFO-CIRCLE Definition 2.35 (Codeword)

Codeword (hay từ mã) là bất kì vector nào trong block code 𝒞.

INFO-CIRCLE Definition 2.36 (Lực lượng của code)

Lực lượng (hay cardinality, мощность) 𝑀 của block code 𝒞 là số lượng codeword trong 𝒞.

Kí hiệu 𝑀 = |𝐶|.

INFO-CIRCLE Definition 2.37

Block code 𝒞 trên trường F𝑞 có độ dài 𝑛 và có lực lượng 𝑀 được gọi là (𝑛,𝑀)𝑞 code.

INFO-CIRCLE Definition 2.38 (Độ dài của code)

Độ dài của (𝑛)𝑞 code 𝒞 là số 𝑛 chỉ độ dài mỗi codeword (độ dài mỗi vector).

INFO-CIRCLE Definition 2.39 (Khoảng cách tối thiểu)

Khoảng cách tối thiểu (hay minimum distance) của code 𝒞 là số 𝑑 chỉ khoảng cách Hamming nhỏ
nhất giữa hai codeword trong code 𝒞:

𝑑 = min
𝑢,𝑣∈𝒞,𝑢̸=𝑣

𝜌(𝑢,𝑣) = min
𝑢,𝑣∈𝒞,𝑢̸=𝑣

wt(𝑢− 𝑣).

Nhắc lại, khoảng cách Hamming của một vector là số phần tử khác 0 trong vector đó:

wt(𝑥1, 𝑥2, . . . , 𝑥𝑛) = |{𝑥𝑖 : 𝑥𝑖 ̸= 0}|.
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INFO-CIRCLE Definition 2.40

Block code 𝒞 trên trường F𝑞 với độ dài 𝑛, lực lượng𝑀 và có khoảng cách tối thiểu 𝑑 được gọi là (𝑛,𝑀, 𝑑)𝑞
code.

Thông tin ban đầu có thể được chia thành các đoạn độ dài 𝑘 và mỗi đoạn như vậy được encode thành một
đoạn độ dài 𝑛.

Cụ thể hơn, hàm encode biến đổi một thông điệp là vector 𝑎 độ dài 𝑘 thành codeword 𝑐 ∈ 𝒞 với độ dài 𝑛:

𝜙 : 𝑉𝑘(𝑞)→ 𝒞, 𝜙(𝑎) = 𝑐.

Ánh xạ 𝜙 cần là đơn ánh (one-to-one) vì chúng ta không muốn hai thông điệp độ dài 𝑘 cùng encode ra một
codeword độ dài 𝑛 (khi decode chúng ta không biết sẽ ra thông điệp nào).

INFO-CIRCLE Lemma 2.1

Để (𝑛,𝑀)𝑞 code có thể encode được các thông điệp độ dài 𝑘 thì điều kiện cần và đủ để tồn tại ánh xạ 𝜙
như trên là 𝑘 6 ⌊log𝑞𝑀⌋.

INFO-CIRCLE Definition 2.41 (Спектр весов)

Phổ trọng số (hay спектр весов) của (𝑛)𝑞 code 𝒞 là một vector các số nguyên không âm
(𝐴0, 𝐴1, . . . , 𝐴𝑛) ∈ Z𝑛+1

>0 với 𝐴𝑖 là số lượng vector có trọng số Hamming bằng 𝑖 trong code.

Bài toán decode tổng quát

Khi vector 𝑥 được truyền qua kênh truyền, không gì đảm bảo chúng ta sẽ nhận được chính xác 𝑥 ở bên
nhận, mà có thể là 𝑦 nào đó.

Các codeword nằm trong một block code nào đó là tập con của 𝑉𝑛(𝑞), trong khi ở bên nhận có thể là một
vector bất kỳ trong 𝑉𝑛(𝑞). Bài toán decode đặt ra câu hỏi, làm sao biết được vector 𝑦 sẽ được decode thành
vector nào trong block code.

INFO-CIRCLE Definition 2.42 (Bài toán decode)

Bài toán decode của (𝑛)𝑞 code 𝒞 là bài toán cho trước vector 𝑦 ∈ 𝑉𝑛(𝑞), ta tìm codeword 𝑐 ∈ 𝒞 của code
(𝑛)𝑞 sao cho 𝜌𝐻(𝑐,𝑦) = min

𝑐′∈𝒞
𝜌𝐻(𝑐′,𝑦) với 𝜌𝐻 là khoảng cách Hamming.

Input:

• vector 𝑦 ∈ 𝑉𝑛(𝑞) nhận được từ kênh truyền;

• 𝒞 là (𝑛)𝑞 code.

Output:

• vector 𝑐 ∈ 𝒞 là codeword sao cho 𝜌𝐻(𝑐,𝑦) = min
𝑐′∈𝒞

𝜌𝐻(𝑐′,𝑦).
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INFO-CIRCLE Definition 2.43 (Bài toán decode)

Bài toán decode của (𝑛)𝑞 code 𝒞 là bài toán cho trước vector 𝑦 ∈ 𝑉𝑛(𝑞), ta tìm codeword 𝑐 ∈ 𝒞 của code
(𝑛)𝑞 sao cho wt(𝑦 − 𝑐) = min

𝑐′∈𝒞
wt(𝑦 − 𝑐′) với wt là trọng số Hamming.

Input:

• vector 𝑦 ∈ 𝑉𝑛(𝑞) là vector nhận được từ kênh truyền;

• 𝒞 là (𝑛)𝑞 code.

Output:

• vector 𝑐 ∈ 𝒞 là codeword sao cho wt(𝑦 − 𝑐) = min
𝑐′∈𝒞

wt(𝑦 − 𝑐′).

INFO-CIRCLE Definition 2.44 (Bài toán decode)

Bài toán decode của (𝑛)𝑞 code 𝒞 là bài toán cho trước vector 𝑦 ∈ 𝑉𝑛(𝑞), ta tìm vector 𝑒 ∈ 𝑉𝑛(𝑞) sao cho
𝑦 − 𝑒 ∈ 𝒞, nghĩa là 𝑦 − 𝑒 là codeword, và vector 𝑒 có trọng số Hamming nhỏ nhất wt(𝑒)→ min.

Input:

• vector 𝑦 ∈ 𝑉𝑛(𝑞) là vector nhận được từ kênh truyền;

• 𝒞 là (𝑛)𝑞 code.

Output:

• vector 𝑒 ∈ 𝑉𝑛(𝑞) sao cho 𝑦 − 𝑒 ∈ 𝒞, nghĩa là 𝑦 − 𝑒 là codeword;

• và vector 𝑒 có trọng số Hamming nhỏ nhất wt(𝑒)→ min.

INFO-CIRCLE Remark 2.17

Các định nghĩa về bài toán decode ở trên tương đương nhau.

INFO-CIRCLE Definition 2.45 (Decoder)

Decoder của code (𝑛)𝑞 𝒞 là thuật toán mà với vector 𝑦 ∈ 𝑉𝑛(𝑞) cho trước, tìm được codeword 𝑐 ∈ 𝒞
sao cho vector 𝑒 = 𝑦 − 𝑐 có trọng số Hamming nhỏ nhất có thể, nghĩa là 𝑐 = argmin

𝑢∈𝒞
wt(𝑦 − 𝑢).

Decoder của code 𝒞 sẽ giải bài toán decode trên code 𝒞.

Linear code

INFO-CIRCLE Definition (Linear code)

Block code (𝑛)𝑞 𝒞 được gọi là tuyến tính (hay linear) nếu với mọi 𝑎, 𝑏 ∈ F2 và với mọi codeword
𝑥,𝑦 ∈ 𝒞 thì vector 𝑎 · 𝑥+ 𝑏 · 𝑦 cũng là codeword thuộc 𝒞.
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Ta kí hiệu linear code (mã tuyến tính) là [𝑛]𝑞. Có thể thấy block code [𝑛]𝑞 là không gian vector con của
𝑉𝑛(𝑞).

INFO-CIRCLE Definition

Đối với code [𝑛]𝑞 thì số 𝑛 được gọi là độ dài của code.

INFO-CIRCLE Definition

Số chiều của code [𝑛]𝑞 là số 𝑘 bằng với số chiều của không gian vector con 𝒞 của 𝑉𝑛(𝑞).

INFO-CIRCLE Definition

Linear code 𝒞 có độ dài 𝑛 và số chiều 𝑘 được gọi là [𝑛, 𝑘]𝑞 code.

INFO-CIRCLE Definition

Tốc độ truyền của [𝑛, 𝑘]𝑞 code là số 𝑅 =
𝑘

𝑛
.

INFO-CIRCLE Definition

Redundancy (hay избыточность) của [𝑛, 𝑘]𝑞 code là số 𝑟 = 𝑛− 𝑘.

INFO-CIRCLE Definition

Khoảng cách nhỏ nhất của code 𝒞 là số 𝑑 bằng với trọng số Hamming nhỏ nhất của các codeword
trong 𝒞

𝑑 = min
𝑢∈𝒞,𝑢̸=0

wt(𝑢).

INFO-CIRCLE Definition

Linear code [𝑛, 𝑘]𝑞 với khoảng cách nhỏ nhất 𝑑 được gọi là [𝑛, 𝑘, 𝑑]𝑞 code.

Ma trận sinh

INFO-CIRCLE Definition

Ma trận 𝐺 được gọi là ma trận sinh (hay порождающая матрица) của code 𝐶 nếu nó chứa các
vector trong cơ sở của không gian vector con 𝒞.
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Nếu 𝒞 là [𝑛, 𝑘]𝑞 code thì 𝐺 là ma trận kích thước 𝑘 × 𝑛.

INFO-CIRCLE Remark

Nếu 𝐺 là ma trận sinh của [𝑛, 𝑘]𝑞 code thì

𝒞 = {𝑎 ·𝐺 : 𝑎 ∈ 𝑉𝑘(𝑞)}.

Ở đây ta nói ma trận 𝐺 sinh ra code 𝒞.

Theo kiến thức đại số tuyến tính, nếu 𝐺1 và 𝐺2 kích thước 𝑘 × 𝑘 cùng sinh ra một code 𝒞 thì tồn tại ma
trận khả nghịch 𝐴 kích thước 𝑘 × 𝑘 trên F𝑞 sao cho 𝐴𝐺1 = 𝐺2.

Coder

INFO-CIRCLE Definition

Coder 𝜙 : 𝑉𝑘(𝑞)→ 𝑉𝑛(𝑞) cho [𝑛, 𝑘]𝑞 code xác định bởi ma trận sinh 𝐺 theo nghĩa:

𝜙((𝑎1, . . . , 𝑎𝑘)) = (𝑎1, . . . , 𝑎𝑘) ·𝐺.

INFO-CIRCLE Definition

Ma trận 𝐺 kích thước 𝑘 × 𝑛 được gọi là systematic nếu nó có dạng:

𝐺 = (𝐼𝑘‖𝐺0),

với 𝐼𝑘 là ma trận đơn vị 𝑘 × 𝑘 và 𝐺0 là ma trận cỡ 𝑘 × (𝑛− 𝑘) nào đó.

INFO-CIRCLE Definition

Code được gọi là systematic nếu nó có ma trận sinh 𝐺 là systematic.

INFO-CIRCLE Definition

Coder 𝜙𝐺 của systematic code [𝑛, 𝑘]𝑞, xác định bởi ma trận sinh systematic 𝐺 = (𝐼𝑘‖𝐺0), được gọi là
systematic.

Khi đó với mọi thông điệp 𝑎 = (𝑎1, . . . , 𝑎𝑘) ∈ 𝑉𝑘(𝑞) thì coder thực hiện:

𝑎 = (𝑎1, . . . , 𝑎𝑛)
𝜙−→ (𝑎1, . . . , 𝑎𝑘,𝑎 ·𝐺0).

Lưu ý rằng không phải code nào cũng là systematic và do đó không chắc chắn tồn tại systematic coder.

INFO-CIRCLE Definition
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Ta đánh số tọa độ các codeword trong [𝑛, 𝑘]𝑞 code từ 1 tới 𝑛.

Tập thông tin (hay information set, информационное множество) ℐ của code [𝑛, 𝑘]𝑞 là tập con
của tập đánh số tọa độ, nghĩa là ℐ ⊆ {1, . . . , 𝑛}, sao cho |ℐ| = 𝑘 và ma trận con 𝐺𝑘 kích thước 𝑘× 𝑘 của
ma trận sinh 𝐺 khả nghịch.

Ma trận kiểm tra

INFO-CIRCLE Definition

Nếu 𝒞 là hạt nhân của ma trận 𝐻, tức là

𝒞 = ker(𝐻) = {𝑣 ∈ 𝒞 : 𝐻𝑣⊤ = 0},

thì ta nói 𝐻 là ma trận kiểm tra chẵn lẻ (hay parity-check matrix).

Ta có thể thấy 𝐺𝐻⊤ = 0.

INFO-CIRCLE Definition

Syndrome 𝑆𝐻(𝑦) của vector 𝑦 ∈ 𝑉𝑛(𝑞) tương ứng với ma trận parity-check 𝐻 của [𝑛, 𝑘]𝑞 code 𝒞 là
vector cột 𝑆𝐻(𝑦) = 𝐻 · 𝑦⊤.

Khi đó 𝑆𝐻(𝑦) có độ dài 𝑟 = 𝑛− 𝑘 -- chính là redundancy ở trên.

INFO-CIRCLE Remark

Nếu 𝐻1 và 𝐻2 là hai ma trận parity-check của code 𝒞 thì 𝑆𝐻1
(𝑦) = 𝐴 · 𝑆𝐻2

(𝑦) với 𝐴 là ma trận khả
nghịch thỏa mãn 𝐻2 = 𝐴 ·𝐻1.

Linear code

Do [𝑛]𝑞 code cũng là (𝑛)𝑞 code nên ta cũng có định nghĩa phổ trọng số như (𝑛)𝑞:

INFO-CIRCLE Definition

Спектр весов của [𝑛]𝑞 code 𝒞 là vector (𝐴0, 𝐴1, . . . , 𝐴𝑛) ∈ Z𝑛+1
>0 với 𝐴𝑖 > 0 là số lượng vector có trọng

số bằng 𝑖 trong code.

Dual code (mã đối ngẫu) và kiểm tra chẵn lẻ (check-parity)

INFO-CIRCLE Definition (Dual code)

Dual code (hay mã đối ngẫu, дуальный код) của linear code 𝒞 là code 𝒞⊤ được sinh bởi parity-check
matrix 𝐻 của code 𝒞.
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INFO-CIRCLE Remark

Dual code với [𝑛, 𝑘]𝑞 code là [𝑛, 𝑛− 𝑘]𝑞 code.

INFO-CIRCLE Remark

Với mọi code 𝒞 ta có (𝒞⊤)⊤ = 𝐶.

INFO-CIRCLE Remark

Với mọi [𝑛]𝑞 code 𝒞 và ℬ thì ta có đẳng thức:

(𝒞 + ℬ)⊤ = 𝒞⊤ ∩ ℬ⊤.

Trong đó 𝒞 + ℬ = {𝑢+ 𝑣 : 𝑢 ∈ 𝒞,𝑣 ∈ ℬ} là tổng của hai code 𝒞 và ℬ.

INFO-CIRCLE Definition

Với các vector 𝑥 = (𝑥1, . . . , 𝑥𝑛) và 𝑦 = (𝑦1, . . . , 𝑦𝑛) trong 𝑉𝑛(𝑞) ta định nghĩa tích vô hướng (hay inner
product, dot product, скалярное произведение) của hai vector là:

⟨𝑥,𝑦⟩ = 𝑥1𝑦1 + . . .+ 𝑥𝑛𝑦𝑛 ∈ F𝑞.

INFO-CIRCLE Definition

Vector ℎ ∈ 𝑉𝑛(𝑞) được gọi là parity-check (hay проверка на чётность) của [𝑛]𝑞 code nếu với mọi
𝑐 ∈ 𝒞 ta có ⟨𝑐,ℎ⟩ = 0, nói cách khác vector ℎ trực giao với mọi vector 𝑐 ∈ 𝒞.

INFO-CIRCLE Remark

Dual code 𝒞⊤ trùng với tập tất cả parity-check vector của code 𝒞.

Bài toán phổ trọng số của mã tuyến tính

INFO-CIRCLE Definition 2.66

Bài toán về phổ trọng số của linear code (hay Задача о спектре весов линейного кода)
𝑊𝑆(𝐻, 𝑡) là bài toán nhận dạng trong code, với ma trận parity-check 𝐻, có tồn tại hay không vector
𝑐 ∈ 𝑉𝑛(𝑞) có trọng số Hamming bằng 𝑡 và thỏa mãn 𝐻𝑐⊤ = 0.

INFO-CIRCLE Theorem 2.5 (Định lí từ [38])
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Bài toán về phổ trọng số là NP-complete.

Bài toán decode trên linear code

INFO-CIRCLE Definition 2.67

Bài toán decode trên linear code [𝑛, 𝑘]𝑞 với ma trận sinh 𝐺 trong điều kiện kênh truyền có 𝑡
lỗi là bài toán cho trước vector 𝑦 ∈ 𝑉𝑛(𝑞), ta tìm vector 𝑚 ∈ 𝑉𝑘(𝑞) sao cho vector 𝑒 = 𝑦−𝑚𝐺 có trọng
số Hamming bằng 𝑡.

Input:

• vector 𝑦 ∈ 𝑉𝑛(𝑞);

• ma trận sinh 𝐺 cỡ 𝑘 × 𝑛;

• số tự nhiên 𝑡 ∈ N.

Output:

• vector 𝑚 ∈ 𝑉𝑘(𝑞) sao cho vector 𝑒 = 𝑦 −𝑚𝐺 có trọng số Hamming bằng 𝑡.

INFO-CIRCLE Definition 2.68

Bài toán decode trên linear code [𝑛, 𝑘]𝑞 với ma trận parity-check 𝐻 trong điều kiện kênh
truyền có 𝑡 lỗi là bài toán cho trước vector 𝑦 ∈ 𝑉𝑛(𝑞), ta tìm vector 𝑒 ∈ 𝑉𝑛(𝑞) sao cho 𝑒𝐻⊤ = 𝑦𝐻⊤

và vector 𝑒 có trọng số Hamming bằng 𝑡, hay wt(𝑒) = 𝑡.

Input:

• vector 𝑦 ∈ 𝑉𝑛(𝑞), ma trận parity-check 𝐻 cỡ (𝑛− 𝑘)× 𝑛 và số tự nhiên 𝑡 ∈ N.

Output:

• vector 𝑒 ∈ 𝑉𝑛(𝑞) có trọng số Hamming bằng 𝑡, hay wt(𝑒) = 𝑡, sao cho 𝑒𝐻⊤ = 𝑦𝐻⊤.

Từ các bài toán decode linear code liên hệ với bài toán decode syndrome code.

INFO-CIRCLE Definition 2.69

Bài toán tối ưu (hay bài toán tổng quát) của syndrome decode [𝑛, 𝑘]𝑞 với ma trận parity-check 𝐻
là bài toán cho trước vector 𝑠 ∈ 𝑉𝑛(𝑞), ta tìm vector 𝑒 ∈ 𝑉𝑛(𝑞) sao cho 𝐻𝑒⊤ = 𝑠⊤ và vector 𝑒 có trọng
số Hamming nhỏ nhất có thể, hay wt(𝑒)→ min.

Input:

• 𝑠 ∈ 𝑉𝑛(𝑞) là syndrome;

• 𝐻 là ma trận parity-check cỡ (𝑛− 𝑘)× 𝑛 của [𝑛, 𝑘]𝑞 code 𝒞

Output:

• vector 𝑒 ∈ 𝑉𝑛(𝑞) thỏa mãn 𝐻𝑒⊤ = 𝑠⊤ và vector 𝑒 có trọng số Hamming nhỏ nhất có thể, hay
wt(𝑒)→ min.
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INFO-CIRCLE Definition 2.70

Bài toán tìm kiếm syndrome decode 𝑠𝑆𝐷(𝐻, 𝑠, 𝑡) là bài toán tìm kiếm theo vector 𝑠 ∈ 𝑉𝑟(𝑞) vector
𝑒 ∈ 𝑉𝑛(𝑞) có trọng số Hamming bằng 𝑡, hay wt(𝑒) = 𝑡 và 𝐻𝑒⊤ = 𝑠⊤.

Input:

• 𝐻 là ma trận cỡ 𝑟 × 𝑛 trên F𝑞;

• 𝑠 ∈ 𝑉𝑟(𝑞) là syndrome;.

• 𝑡 ∈ N là trọng số Hamming

Output:

• vector 𝑒 ∈ 𝑉𝑛(𝑞) có trọng số Hamming bằng 𝑡, hay wt(𝑒) = 𝑡, và 𝐻𝑒⊤ = 𝑠⊤.

INFO-CIRCLE Definition 2.71

Bài toán nhận dạng syndrome decode (hay распознавательная задача синдромного
декодирования) hay đơn giản là bài toán syndrome decode (hay задача синдромного
декодирования) 𝑆𝐷(𝐻, 𝑠, 𝑡) là bài toán xác định theo syndrome 𝑠 ∈ 𝑉𝑟(𝑞) xem có tồn tại hay không
vector 𝑒 ∈ 𝑉𝑛(𝑞) có trọng số Hamming bằng 𝑡 và thỏa mãn 𝐻𝑒⊤ = 𝑠⊤.

Input:

• 𝐻 là ma trận cỡ 𝑟 × 𝑛 trên F𝑞

• 𝑠 ∈ 𝑉𝑟(𝑞) là syndrome;

• 𝑡 ∈ N là trọng số Hamming.

Output: tồn tại hay không vector 𝑒 ∈ 𝑉𝑛(𝑞) có trọng số Hamming wt(𝑒) = 𝑡 và thỏa 𝐻𝑒⊤ = 𝑠⊤.

INFO-CIRCLE Theorem 2.6 (Định lí từ [38])

Bài toán nhận dạng syndrome code 𝑆𝐷(𝐻, 𝑠, 𝑡) là NP-complete.

Bài toán tương đương các linear code

Hoán vị và tác động của chúng lên tập hợp

INFO-CIRCLE Definition 2.72 (Hoán vị)

Xét 𝑁 là tập hợp có 𝑛 phần tử. Khi đó một hoán vị (hay permutation, постановка) 𝜎 : 𝑁 → 𝑁 là
một song ánh từ 𝑁 tới 𝑁 .

Tập hợp tất cả hoán vị trên tập 𝑁 được kí hiệu là 𝒮𝑁 . Nếu 𝑁 = {1, 2, . . . , 𝑛} thì ta có thể viết 𝒮𝑁 = 𝒮𝑛.

Đặt 𝜎 ∈ 𝒮𝑛 là một hoán vị trên tập {1, . . . , 𝑛}. Khi đó ta định nghĩa tác động của hoán vị 𝜎 lên vector
𝑥 ∈ 𝑉𝑛(𝑞). Giả sử vector 𝑥 = (𝑥1, . . . , 𝑥𝑛) ∈ 𝑉𝑛(𝑞), ta định nghĩa tác động của hoán vị 𝜎 lên vector 𝑥 như
sau:

𝑥𝜎 = (𝑥𝜎(1), 𝑥𝜎(2), . . . , 𝑥𝜎(𝑛)).
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Có thể thấy tác động của 𝜎 lên 𝑉𝑛(𝑞) là tuyến tính, nghĩa là với mọi 𝛼, 𝛽 ∈ F𝑞 và với mọi vector 𝑥,𝑦 ∈ 𝑉𝑛(𝑞)
ta có:

(𝛼 · 𝑥+ 𝛽 · 𝑦)𝜎 = 𝛼 · 𝑥𝜎 + 𝛽 · 𝑦𝜎.

Nếu 𝑈 ⊆ 𝑉𝑛(𝑞) thì kí hiệu 𝑈𝜎 là tác động của hoán vị 𝜎 lên mỗi vector trong 𝑈 , nghĩa là 𝑈𝜎 = {𝑥𝜎 : 𝑥 ∈ 𝑈}.

Do tính tuyến tính của tác động từ 𝒮𝑛 lên 𝑉𝑛(𝑞), nếu 𝒞 là [𝑛, 𝑘, 𝑑]𝑞 code thì 𝒞𝜎 cũng là [𝑛, 𝑘, 𝑑]𝑞 code.

Mỗi hoán vị 𝜎 ∈ 𝒮𝑛 có thể được viết thành dạng ma trận 𝑛× 𝑛 là 𝑃𝜎 = (𝑝𝑖𝑗). Khi đó phần tử 𝑝𝑖𝑗 = 1 nếu
𝜎(𝑗) = 𝑖, các vị trí còn lại bằng 0.

INFO-CIRCLE Example 2.23

Với hoán vị 𝜎 =

(︂
1 2 3 4 5
4 1 5 3 2

)︂
thì ma trận tương ứng là:

𝑃𝜎 =

⎛⎜⎜⎜⎜⎝
0 1 0 0 0
0 0 0 0 1
0 0 0 1 0
1 0 0 0 0
0 0 1 0 0

⎞⎟⎟⎟⎟⎠ .

Khi đó tác động của 𝜎 lên vector 𝑥 là 𝑥𝜎 = 𝑥 · 𝑃𝜎.

Như vậy, với mọi vector 𝑥 = (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5), dưới tác động của 𝜎 bên trên ta có:

𝑥𝜎 = (𝑥𝜎(1), 𝑥𝜎(2), 𝑥𝜎(3), 𝑥𝜎(4), 𝑥𝜎(5)) = (𝑥4, 𝑥1, 𝑥5, 𝑥3, 𝑥2).

Ta cũng thấy phép nhân vector 𝑥 với ma trận 𝑃𝜎 cho kết quả:

𝑥 · 𝑃𝜎 = (𝑥4, 𝑥1, 𝑥5, 𝑥3, 𝑥2).

Mã tương đương và nhóm các tự đẳng cấu của linear code

INFO-CIRCLE Definition 2.73

Hai [𝑛]𝑞 code 𝒞1 và 𝒞2 được gọi là tương đương (hay tương đương hoán vị, перестановочно
эквивалентные) nếu tồn tại một hoán vị 𝜎 ∈ 𝒮𝑛 sao cho 𝒞1 = 𝒞𝜎2 .

INFO-CIRCLE Definition 2.74

Hai ma trận 𝐺1 và 𝐺2 kích thước 𝑘 × 𝑛 gọi là tương đương hoán vị nếu tồn tại ma trận 𝑀 cỡ 𝑘 × 𝑘
và hoán vị 𝜎 ∈ 𝒮𝑛 sao cho 𝑀 ·𝐺1 = 𝐺2 · 𝜎.

Nhóm các tự đẳng cấu của code

INFO-CIRCLE Definition 2.75

Tự đẳng cấu của (𝑛)𝑞 code 𝒞 là hoán vị 𝜎 sao cho 𝒞 = 𝒞𝜎. Tập hợp tất cả tự đẳng cấu của code 𝒞
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được kí hiệu là nhóm PAut(𝒞) và được gọi là nhóm tự đẳng cấu hoán vị hoặc đơn giản hơn là nhóm
tự đẳng cấu của code 𝒞.

Bài toán về tính tương đương giữa các linear code nhị phân

INFO-CIRCLE Definition 2.76

Bài toán về tính tương đương giữa các linear code là bài toán nhận dạng tính chất tương đương
giữa hai linear code [𝑛]𝑞 𝒞1 và 𝒞2 với ma trận sinh tương ứng là 𝐺1 và 𝐺2.

Input: hai ma trận 𝐺1 và 𝐺2 cỡ 𝑘 × 𝑛.

Output: hai ma trận 𝐺1 và 𝐺2 có tương đương hoán vị hay không.

Sau đây chúng ta xem xét code nhị phân, tức 𝑞 = 2.

Định lí về polynomial-time reduction của bài toán đẳng cấu đồ thị đến bài toán sự tương đương của
code

INFO-CIRCLE Definition 2.77

Ma trận kề (hay матрица инцидентности) là ma trận nhị phân 𝐷 = (𝑑𝑒𝑣) cỡ |𝐸|× |𝑉 |, với 𝑑𝑒𝑣 = 1
nếu 𝑒 = (𝑢, 𝑣) với 𝑣 nào đó thuộc 𝑉 , nghĩa là 𝑑𝑒𝑣 = 1 khi và chỉ khi trên đồ thị có cạnh 𝑒 xuất phát từ
đỉnh 𝑣.

Định nghĩa về sự đẳng cấu của hai đồ thị đã được giới thiệu ở Định nghĩa 29, ở đây mình giới thiệu lại.

Pause-Circle Quan trọng

Đồ thị đẳng cấu

Hai đồ thị (𝐸1, 𝑉1) và (𝐸2, 𝑉2) được gọi là đẳng cấu (hay isomorphism) nếu tồn tại song ánh 𝜙 : 𝑉1 → 𝑉2
sao cho với mọi cặp đỉnh (𝑢, 𝑣) ∈ 𝐸1 thì cặp (𝜙(𝑢), 𝜙(𝑣)) ∈ 𝐸2.

INFO-CIRCLE Definition 2.78

Bài toán xác định hai đồ thị, xác định bởi ma trận kề, có đẳng cấu với nhau hay không.

Input: hai ma trận nhị phân 𝐷1 và 𝐷2 cỡ 𝑘 × 𝑛.

Output: có tồn tại hay không các hoán vị 𝛾 ∈ 𝒮𝑘 và 𝜎 ∈ 𝒮𝑛 sao cho 𝐷1 = 𝛾 ·𝐷2 · 𝜎.

Ý tưởng xây dựng các hệ mật mã dựa trên mã sửa sai

Đặt 𝐺 là ma trận sinh của linear code [𝑛, 𝑘]𝑞 𝒞 có thể sửa 𝑡 lỗi.

Nếu code với ma trận sinh 𝐺 không có các cấu trúc đại số hoặc tổ hợp thì theo định lí trên về độ khó NP
của bài toán nhận dạng syndrome decode, bài toán decode linear code [𝑛, 𝑘]𝑞 là rất khó.

Khi đó nếu mã hóa thông điệp 𝑚 có thể thực hiện qua việc: 𝑚→ 𝑐 = 𝑚𝐺+ 𝑒, wt(𝑒) = 𝑡, 𝑒 ∈ 𝑉𝑛(𝑞).
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Khi đó, cho trước vector 𝑐, việc tìm một vector 𝑚 là bài toán decode trên linear code [𝑛, 𝑘]𝑞 với ma trận
sinh 𝐺, không có các cấu trúc đại số hoặc tổ hợp. Suy ra việc phá mã rất khó.

Vấn đề là ở phía bên việc tìm lại 𝑚 từ 𝑐 rất khó nên cần một phương án để giải mã lại thông điệp ban đầu.

Các hệ mật mã khóa công khai dựa trên lý thuyết code

Hệ mật mã McEliece

Hệ mật mã McEliece được phát triển bởi R.J. Mceliece vào năm 1978 trong [39].

Ý tưởng xây dựng

Đặt 𝐺 là ma trận sinh của linear code [𝑛, 𝑘]𝑞 𝒞 nào đó, sửa được 𝑡 lỗi.

Tham số

• 𝒞 = {𝒞𝜆}𝜆∈Λ là một họ các linear code trên trường F𝑞 sao cho với mỗi code 𝐶 ∈ 𝒞 có một thuật toán
decode hiệu quả là Decode sửa được 𝑡 lỗi. Ở đây Λ ⊆ {0, 1}⋆ là tập các giá trị của tham số code trong
họ.

• Sample(1𝜆) là thuật toán xác suất hiệu quả và детерминированный, sao cho với giá trị tham số 𝜆 ∈ Λ
cho ra ma trận sinh 𝐺 của code 𝒞𝜆, số lượng lỗi 𝑡 và thuật toán Decode, giải được bài toán decode trên
linear code [𝑛, 𝑘]𝑞 với ma trận sinh 𝐺 và kênh truyền có 𝑡 lỗi. Kí hiệu 𝒢 = {𝐺𝜆}𝜆∈Λ là tập tất cả ma
trận sinh cho ra thuật toán Sample(1𝜆) cho mọi trường hợp tham số 𝜆 ∈ Λ.

Thuật toán sinh khóa (Gen)

Private key gồm:

1. Ma trận 𝑀 ∈ GL𝑞(𝑘) không suy biến cỡ 𝑘 × 𝑘 trên F𝑞.

2. 𝐺 ∈ 𝑉𝑘×𝑛(𝑞) là ma trận sinh của [𝑛, 𝑘]𝑞 code 𝒞𝜆.

3. 𝑃 ∈ 𝒮𝑛 là hoán vị trên tập {1, . . . , 𝑛}.

4. Decode là thuật toán decode trên mã 𝒞𝜆.

Public key gồm:

1. 𝐺𝑝𝑢𝑏 = 𝑀 ·𝐺 · 𝑃 ∈ 𝑉𝑘×𝑛(𝑞) là ma trận sinh của code tương đương với code 𝒞𝜆.

2. 𝑡 ∈ N là số lỗi được decode bởi Decode.

Thuật toán mã hóa (Enc)

Thuật toán mã hóa nhận đầu vào là thông điệp 𝑚 ∈ 𝑉𝑘(𝑞) và trả về ciphertext 𝑐 ∈ 𝑉𝑛(𝑞).

Để mã hóa, chọn ngẫu nhiên vector 𝑒 ∈ 𝑉𝑛(𝑞) độ dài 𝑛 và có trọng số Hamming bằng 𝑡. Khi đó ta tính
ciphertext:

𝑐 = 𝑚 ·𝐺𝑝𝑢𝑏 + 𝑒.

Thuật toán giải mã (Dec)

1. Tính 𝑏← 𝑐 · 𝑃−1.

2. Tính 𝑢← Decode(𝑏).

3. Tính 𝑚← 𝑢 ·𝑀−1.

Khi đó 𝑚 là plaintext ban đầu.
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Hệ mật mã Niederreiter

Tham số

• 𝒞 = {𝒞𝜆}𝜆∈Λ là một họ các linear code trên trường F𝑞 sao cho với mỗi code 𝐶 ∈ 𝒞 có một thuật toán
decode hiệu quả là Decode sửa được 𝑡 lỗi. Ở đây Λ ⊆ {0, 1}⋆ là tập các giá trị của tham số code trong
họ.

• Sample(1𝜆) là thuật toán xác suất hiệu quả và детерминированный, sao cho với giá trị tham số 𝜆 ∈ Λ
cho ra ma trận parity-check 𝐻 của code 𝒞𝜆, số lượng lỗi 𝑡 và thuật toán SDecode, giải được bài toán
syndrome decode trên linear code [𝑛, 𝑘]𝑞 với ma trận parity-check 𝐻 và kênh truyền có 𝑡 lỗi. Kí hiệu
ℋ = {𝐻𝜆}𝜆∈Λ là tập tất cả ma trận parity-check cho ra thuật toán Sample(1𝜆) cho mọi trường hợp
tham số 𝜆 ∈ Λ.

Thuật toán sinh khóa (Gen)

Private key gồm:

1. Ma trận 𝑀 ∈ GL𝑞(𝑟) cỡ 𝑟 × 𝑟 trên F𝑞, với 𝑟 = 𝑛− 𝑘 là số kí tự kiểm tra của [𝑛, 𝑘]𝑞 code 𝒞𝜆.

2. 𝐻 ∈ 𝑉𝑟×𝑛(𝑞) là ma trận parity-check của [𝑛, 𝑘]𝑞 code 𝒞𝜆.

3. 𝑃 ∈ 𝒮𝑛 là hoán vị trên {1, . . . , 𝑛}.

4. SDecode là thuật toán syndrome decode trên code 𝒞𝜆.

Public key gồm:

1. 𝐻𝑝𝑢𝑏 = 𝑀 ·𝐻 · 𝑃 ∈ 𝑉𝑘×𝑛(𝑞) là ma trận parity-check của code mới tương đương với code 𝒞𝜆.

2. 𝑡 ∈ N là số lượng lỗi có thể sửa bởi SDecode.

Thuật toán mã hóa (Enc)

Plaintext được biểu diễn thành vector 𝑚 ∈ 𝑉𝑙(𝑞) với 𝑙 = ⌊log𝑞((𝑞− 1)𝑡
(︀
𝑛
𝑡

)︀
)⌋. Ciphertext là vector 𝑐 ∈ 𝑉𝑟(𝑞).

Ta cần ánh xạ 𝜙𝑛,𝑡,𝑞 : 𝑉𝑙(𝑞) → 𝑉𝑛(𝑞) là đơn ánh, với mỗi 𝑚 ∈ 𝑉𝑙(𝑞) cho ra vector 𝑒 ∈ 𝑉𝑛(𝑞) có trọng số
Hamming là 𝑡.

1. 𝑒← 𝜙𝑛,𝑡,𝑞(𝑚)

2. 𝑐← 𝑒 ·𝐻⊤
𝑝𝑢𝑏

Thuật toán giải mã (Dec)

Đẻ giải mã ta cần ánh xạ 𝜙−1
𝑛,𝑡,𝑞 là ánh xạ ngược của 𝜙𝑛,𝑡,𝑞.

1. 𝑠←𝑀−1𝑐⊤.

2. 𝑒← SDecode(𝑐).

3. 𝑒← 𝑒 · 𝑃 .

4. 𝑚← 𝜙−1
𝑛,𝑡,𝑞(𝑒).

Goppa Code

Goppa code được sử dụng trong thuật toán Classic McEliece, là một thuật toán mã hóa khóa công khai
thuộc post-quantum cryptography. Phần này mình sử dụng slide bài giảng1.

1 https://crypto-kantiana.com/elena.kirshanova/talks/Talk_McEliece.pdf
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Thiết lập Goppa Code

Đầu tiên ta chọn số nguyên 𝑚 > 1 và số nguyên tố 𝑞 > 2 nhằm xác định trường F𝑞𝑚 .

Chọn tập

𝐿 = {𝛼1, . . . , 𝛼𝑛}

sao cho 𝛼𝑖 ∈ F𝑞𝑚 đôi một khác nhau và 𝑛 6 𝑞𝑚.

Ta chọn đa thức 𝑔(𝑥) bậc không quá 𝑡 với hệ số trong F𝑞𝑚 , sao cho 𝑔(𝑥) không có nghiệm bội và 𝑔(𝛼𝑖) ̸= 0
với mọi 𝑖 = 1, . . . , 𝑛.

Khi đó Goppa code 𝒞 với độ dài 𝑛 là:

𝒞 = Γ(𝐿, 𝑔) =

{︃
𝑐 = (𝑐1, . . . , 𝑐𝑛) ∈ F𝑛

𝑞 :

𝑛∑︁
𝑖=1

𝑐𝑖
𝑥− 𝛼𝑖

= 0 mod 𝑔(𝑥)

}︃
,

nghĩa là Goppa code 𝒞 gồm các vector 𝑐 ∈ F𝑛
𝑞 sao cho tổng

𝑐1
𝑥− 𝛼1

+
𝑐2

𝑥− 𝛼2
+ · · ·+ 𝑐𝑛

𝑥− 𝛼𝑛
= 0 mod 𝑔(𝑥).

Dễ thấy khi biến đổi tương đương ta có

1

𝑥− 𝛼𝑖
= −𝑔(𝑥)− 𝑔(𝛼𝑖)

𝑥− 𝛼𝑖
· 𝑔−1(𝛼𝑖) mod 𝑔(𝑥).

Trong Classic McEliece thì 𝑞 = 2 và 𝑔(𝑥) là đa thức monic và tối giản.

Tìm ma trận parity-check

Giả sử

𝑔(𝑥) = 𝑔0 + 𝑔1𝑥+ · · ·+ 𝑔𝑡𝑥
𝑡 =

𝑡∑︁
𝑖=0

𝑔𝑡𝑥
𝑡

với 𝑔𝑖 ∈ F𝑞𝑚 .

Ta có

𝑔(𝑥)− 𝑔(𝛼𝑖)

𝑥− 𝛼𝑖
=
𝑔𝑡(𝑥

𝑡 − 𝛼𝑡
𝑖) + · · ·+ 𝑔1(𝑥− 𝛼𝑖) + 𝑔0 · 0

𝑥− 𝛼𝑖

= 𝑔𝑡(𝑥
𝑡−1 + 𝑥𝑡−2𝛼𝑖 + 𝑥𝑡−3𝛼2

𝑖 + · · ·+ 𝛼𝑡−1
𝑖 )

+ 𝑔𝑡−1(𝑥
𝑡−2 + 𝑥𝑡−3𝛼𝑖 + 𝑥𝑡−4𝛼2

𝑖 + · · ·+ 𝛼𝑡−2
𝑖 )

+ · · ·+ 𝑔2(𝑥+ 𝛼𝑖) + 𝑔1

= 𝑔𝑡𝑥
𝑡−1 + (𝑔𝑡𝛼𝑖 + 𝑔𝑡−1)𝑥

𝑡−2

+ (𝑔𝑡𝛼
2
𝑖 + 𝑔𝑡−1𝛼𝑖 + 𝑔𝑡−2)𝑥

𝑡−3

+ · · ·
+ (𝑔𝑡𝛼

𝑡−1
𝑖 + 𝑔𝑡−1𝛼

𝑡−2
𝑖 + · · ·+ 𝑔2𝛼𝑖 + 𝑔1).

Như vậy, hệ số trước 𝑥𝑗 của codeword
𝑛∑︁

𝑖=1

𝑐𝑖 ·
𝑔(𝑥)− 𝑔(𝛼𝑖)

𝑥− 𝛼𝑖
· 𝑔−1(𝛼𝑖)
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lần lượt là

𝑥𝑡−1 : 𝑔𝑡𝑔
−1(𝛼1)𝑐1 + · · ·+ 𝑔𝑡𝑔

−1(𝛼𝑛)𝑐𝑛
𝑥𝑡−2 : (𝑔𝑡𝛼1 + 𝑔𝑡−1)𝑔

−1(𝛼1)𝑐1 + · · ·+ (𝑔𝑡𝛼𝑛 + 𝑔𝑡−1)𝑔
−1(𝛼𝑛)𝑐𝑛

...
𝑥0 : (𝑔𝑡𝛼

𝑡−1
1 +𝑔𝑡−1𝛼

𝑡−2
1 +···+𝑔2𝛼1+𝑔1)𝑐1+(𝑔𝑡𝛼

𝑡−1
2 +𝑔𝑡−1𝛼

𝑡−2
2 +···+𝑔2𝛼2+𝑔1)𝑐2

+···+(𝑔𝑡𝛼
𝑡−1
𝑛 +𝑔𝑡−1𝛼

𝑡−2
𝑛 +···+𝑔2𝛼𝑛+𝑔1)𝑐𝑛

.

Khi đó, 𝑐 ∈ Γ(𝐿, 𝑔) khi và chỉ khi tất cả hệ số trước 𝑥𝑗 bằng 0. Điều này tương đương với 𝐻𝑐ᵀ = 0 với
𝐻 ∈ F𝑡×𝑛

𝑞𝑚 .

Ở đây

𝐻 =

⎛⎜⎜⎜⎝
𝑔𝑡 · 𝑔−1(𝛼1) · · · 𝑔𝑡 · 𝑔−1(𝛼𝑛)

(𝑔𝑡𝛼1 + 𝑔𝑡−1) · 𝑔−1(𝛼1) · · · (𝑔𝑡𝛼𝑛 + 𝑔𝑡−1) · 𝑔−1(𝛼𝑛)
...

. . .
...

(𝑔𝑡𝛼
𝑡−1
1 + 𝑔𝑡−1𝛼

𝑡−2
1 + · · ·+ 𝑔2𝛼1 + 𝑔1) · 𝑔−1(𝛼1) · · · (𝑔𝑡𝛼

𝑡−1
𝑛 + 𝑔𝑡−1𝛼

𝑡−2
𝑛 + · · ·+ 𝑔2𝛼𝑛 + 𝑔1) · 𝑔−1(𝛼𝑛)

⎞⎟⎟⎟⎠

=

⎛⎜⎜⎜⎝
𝑔𝑡 0 · · · 0
𝑔𝑡−1 0 · · · 0
...

...
. . .

...
𝑔1 𝑔2 · · · 𝑔𝑡

⎞⎟⎟⎟⎠
⏟  ⏞  

𝐺

·

⎛⎜⎜⎜⎝
1 1 · · · 1
𝛼1 𝛼2 · · · 𝛼𝑛

...
...

. . .
...

𝛼𝑡−1
1 𝛼𝑡−1

2 · · · 𝛼𝑡−1
𝑛

⎞⎟⎟⎟⎠
⏟  ⏞  

𝑋

·

⎛⎜⎜⎜⎝
𝑔−1(𝛼1) 0 · · · 0

0 𝑔−1(𝛼2) · · · 0
...

...
. . .

...
0 0 · · · 𝑔−1(𝛼𝑛)

⎞⎟⎟⎟⎠
⏟  ⏞  

𝑌

.

Ma trận 𝐺 khả nghịch, đặt

𝐻 = 𝐺−1𝐻 =

⎛⎜⎜⎜⎝
𝑔−1(𝛼1) · · · 𝑔−1(𝛼𝑛)
𝛼1𝑔

−1(𝛼1) · · · 𝛼𝑛𝑔
−1(𝛼𝑛)

...
. . .

...
𝛼𝑡−1
1 𝑔−1(𝛼1) · · · 𝛼𝑡−1

𝑛 𝑔−1(𝛼𝑛)

⎞⎟⎟⎟⎠ ∈ F𝑡×𝑛
𝑞𝑚 .

Ta sẽ thu được ma trận trên F𝑡𝑚×𝑛
𝑞𝑚 bằng việc xét song ánh F𝑡×𝑛

𝑞𝑚 → F𝑡𝑚×𝑛
𝑞𝑚 với một cơ sở cố định.

Decode với Goppa code

Khoảng cách tối thiểu (minimal distance) của Γ(𝐿, 𝑔) là 𝑑 > 𝑡+1. Đặc biệt, khi 𝑞 = 2 và 𝑔 là separable (tức
là 𝑔 có đủ 𝑡 nghiệm phân biệt trên một trường mở rộng nào đó của F𝑞𝑚) thì 𝑑 > 2𝑡+ 1 (bài tập).

Giả sử ta nhận được vector qua kênh truyền là

𝑦 = (𝑦1, . . . , 𝑦𝑛) = (𝑐1, . . . , 𝑐𝑛)⏟  ⏞  
𝑐

+(𝑒1, . . . , 𝑒𝑛)⏟  ⏞  
𝑒

,

trong đó 𝑒 là lỗi. Khi đó wt(𝑒) 6
⌊︂
𝑑− 1

2

⌋︂
với wt(𝑒) là trọng số của vector 𝑒.

Đặt ℬ = {𝑖 : 𝑒𝑖 ̸= 0} là tập các vị trí xảy ra lỗi. Khi đó |ℬ| = wt(𝑒).

Đặt

𝑠(𝑥) =

𝑛∑︁
𝑖=1

𝑦𝑖
𝑥− 𝛼𝑖

=

𝑛∑︁
𝑖=1

𝑒𝑖
𝑥− 𝛼𝑖

mod 𝑔(𝑥)

thì đây là syndrome của 𝑦 và chúng ta sẽ decode dựa trên 𝑠(𝑥).

Ta cần hai đa thức bổ trợ nữa là

𝜎(𝑥) =
∏︁
𝑖∈ℬ

(𝑥− 𝛼𝑖)
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gọi là đa thức định vị lỗi (error locator polynomial), và đa thức

𝑤(𝑥) =
∏︁
𝑖∈ℬ

𝑒𝑖
∏︁

𝑗∈ℬ,𝑗 ̸=𝑖

(𝑥− 𝛼𝑗).

Khi đó ta suy ra

𝑒𝑘 =
𝑤(𝛼𝑘)

𝜎(𝛼𝑘)

với mọi 𝑘 ∈ ℬ.

Ta cũng suy ra

𝜎(𝑥) · 𝑠(𝑥) = 𝑤(𝑥) mod 𝑔(𝑥).

Khi đó

deg𝜎(𝑥) = |ℬ|, deg𝑤(𝑥) = wt(𝑒)− 1.

Lúc này ta có deg 𝑔 = 𝑡 phương trình, trong đó có 2wt(𝑒)− 1 phương trình chưa biết.

Vì wt(𝑒) < (𝑡− 1)/2 nên ta có thể giải hệ và tìm lại được các 𝑒𝑘.

3.3.3 Đường cong elliptic
Đường cong elliptic (elliptic curve) rất nổi tiếng trong toán học. Đây là công cụ giúp các nhà toán học giải
quyết bài toán lớn Định lý cuối cùng của Fermat.

Trong mật mã học, đường cong elliptic là một trong những tiêu chuẩn bảo mật về mã hóa và chữ ký điện
tử. Chương này khảo sát những đặc trưng cơ bản đường cong elliptic và ứng dụng trong mật mã học.

Mở đầu về đường cong elliptic

Đường cong elliptic là tập hợp các điểm (𝑥, 𝑦) trên mặt phẳng 𝑂𝑥𝑦 thỏa mãn phương trình

𝑦2 = 𝑥3 + 𝑎𝑥+ 𝑏,

với 𝑎, 𝑏 ∈ R và 4𝑎3 + 27𝑏2 ̸= 0.

Ví dụ với phương trình 𝑦2 = 𝑥3 + 8, đồ thị được biểu diễn ở hình 3.37.

Ta thấy rằng, đường cong elliptic đối xứng qua trục hoành.

Hình 3.37: Elliptic 𝑦2 = 𝑥3 + 8
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Ví dụ với phương trình 𝑦2 = 𝑥3 − 𝑥, đồ thị được biểu diễn ở hình 3.38.

Hình 3.38: Elliptic 𝑦2 = 𝑥3 − 𝑥

Hoặc đối với phương trình 𝑦2 = 𝑥3 − 3𝑥+ 3 thì đồ thị được biểu diễn ở hình 3.39.

Hình 3.39: Elliptic 𝑦2 = 𝑥3 − 3𝑥+ 3

Phép cộng các điểm trên elliptic

Phương trình và đồ thị của đường cong elliptic đã được trình bày ở trên. Tuy nhiên chúng ta quan tâm tới
mối liên hệ giữa các điểm trên elliptic, cụ thể là phép cộng hai điểm.

Ta thêm một điểm trừu tượng vào tập hợp các điểm trên đường cong elliptic và gọi là điểm vô cực. Điểm
vô cực được kí hiệu là 𝒪. Khi đó mọi điểm 𝑃 thuộc đường cong elliptic sẽ có tính chất

𝑃 +𝒪 = 𝒪 + 𝑃 = 𝑃.

Khi đó, với điểm 𝑃 = (𝑥, 𝑦) bất kì trên elliptic, điểm đối xứng của nó qua trục hoàng là 𝑃 ′ = (𝑥,−𝑦), và ta
định nghĩa 𝑃 + 𝑃 ′ = 𝒪.

Tiếp theo ta định nghĩa phép cộng hai điểm.

Giả sử 𝑃 = (𝑥𝑃 , 𝑦𝑃 ) và 𝑄 = (𝑥𝑄, 𝑦𝑄) là hai điểm trên elliptic. Ta có hai trường hợp:

1. Nếu 𝑃 ̸= 𝑄, ta vẽ đường thẳng đi qua 𝑃 và 𝑄. Đường thẳng này cắt elliptic tại điểm thứ ba là 𝑆. Ta
lấy 𝑅 đối xứng với 𝑆 qua trục hoành. Khi đó 𝑅 cũng nằm trên elliptic và 𝑃 +𝑄 = 𝑅;
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2. Nếu 𝑃 ≡ 𝑄, ta vẽ tiếp tuyến với elliptic tại điểm 𝑃 . Tiếp tuyến này cắt elliptic tại điểm thứ hai là 𝑆.
Tương tự ta lấy 𝑅 đối xứng với 𝑆 qua trục hoành. Khi đó 𝑃 +𝑄 = 2𝑃 = 𝑅.

Khi đó, tập hợp các điểm trên elliptic cùng với điểm vô cực, và phép cộng hai điểm được định nghĩa như
trên tạo thành một nhóm.

Để chứng minh đây là nhóm, ta cần chuyển các khái niệm hình học kia sang đại số để tính toán và chứng
minh.

Phép cộng hai điểm khác nhau

Đầu tiên ta thiết lập công thức phép cộng giữa hai điểm cho trường hợp 𝑃 ̸= 𝑄. Giả sử 𝑃 = (𝑥𝑃 , 𝑦𝑃 ) và
𝑄 = (𝑥𝑄, 𝑦𝑄).

Phương trình đường thẳng đi qua 𝑃 và 𝑄 là

𝑦 =
𝑦𝑄 − 𝑦𝑃
𝑥𝑄 − 𝑥𝑃

(𝑥− 𝑥𝑃 ) + 𝑦𝑃 . (3.22)

Thay 𝑦 vào phương trình đường cong elliptic ta có[︂
𝑦𝑄 − 𝑦𝑃
𝑥𝑄 − 𝑥𝑃

(𝑥− 𝑥𝑃 ) + 𝑦𝑃

]︂2
= 𝑥3 + 𝑎𝑥+ 𝑏 (3.23)

Đặt 𝑘 =
𝑦𝑄 − 𝑦𝑃
𝑥𝑄 − 𝑥𝑃

. Khi đó phương trình tương đương với

(𝑘𝑥− 𝑘𝑥𝑃 + 𝑦𝑃 )
2 = 𝑥3 + 𝑎𝑥+ 𝑏.

Khai triển và chuyển vế ta có

𝑥3 − 𝑘2𝑥2 + . . . = 0.

Ta chỉ cần quan tâm hệ số trước 𝑥2. Bởi vì ta biết rằng đường thẳng 𝑃𝑄 cắt elliptic tại ba điểm 𝑃 , 𝑄, 𝑆,
nên phương trình bậc 3 này có 3 nghiệm phân biệt là 𝑥𝑃 , 𝑥𝑄 và 𝑥𝑆 . Theo theo định lý Viete ta có

𝑥𝑃 + 𝑥𝑄 + 𝑥𝑆 = 𝑘2.

Như vậy ta có hoành độ điểm 𝑆

𝑥𝑆 = 𝑘2 − 𝑥𝑃 − 𝑥𝑄,

thay 𝑥𝑆 vào (3.22), ta có tung độ điểm 𝑆

𝑦𝑆 = 𝑘(𝑥𝑆 − 𝑥𝑃 ) + 𝑦𝑃 ,

mà 𝑅 đối xứng với 𝑆 qua trục hoành, như vậy 𝑥𝑅 = 𝑥𝑆 và 𝑦𝑅 = −𝑦𝑆 .

Như vậy kết quả của phép cộng là

𝑥𝑅 = 𝑘2 − 𝑥𝑃 − 𝑥𝑄
𝑦𝑅 = 𝑘(𝑥𝑃 − 𝑥𝑅)− 𝑦𝑃

với 𝑘 =
𝑦𝑄 − 𝑦𝑃
𝑥𝑄 − 𝑥𝑃

.
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Phép cộng hai điểm giống nhau

Trong trường hợp hai điểm giống nhau, ta vẽ tiếp tuyến tiếp xúc với elliptic đi qua điểm đó.

Giả sử ta muốn vẽ tiếp tuyến tại điểm 𝑃 = (𝑥𝑃 , 𝑦𝑃 ), khi đó từ phương trình elliptic 𝑦2 = 𝑥3 + 𝑎𝑥+ 𝑏 ta vi
phân hai vế thu được

2𝑦 𝑑𝑦 = (3𝑥2 + 𝑎) 𝑑𝑥.

Ta biết rằng hệ số góc của đường tiếp tuyến là đạo hàm hàm số tại điểm đó, hay nói cách khác là 𝑑𝑦/𝑑𝑥.
Như vậy hệ số góc tiếp tuyến tại điểm 𝑃 là

𝑘 =
𝑑𝑦

𝑑𝑥
=

3𝑥2𝑃 + 𝑎

2𝑦𝑃

và như vậy phương trình đường tiếp tuyến là

𝑦 = 𝑘(𝑥− 𝑥𝑃 ) + 𝑦𝑃 .

Thực hiện tương tự như bên trên, ta có đường tiếp tuyến cắt elliptic tại hai điểm phân biệt, trong đó có
một điểm tiếp xúc nên trong phương trình hoành độ giao điểm điểm tiếp xúc là nghiệm bội hai. Nói cách
khác, theo định lý Viete thì

𝑥𝑃 + 𝑥𝑃 + 𝑥𝑆 = 𝑘2,

suy ra hoành độ điểm 𝑆 là

𝑥𝑆 = 𝑘2 − 2𝑥𝑃 ,

và tung độ điểm 𝑆 là

𝑦𝑆 = 𝑘(𝑥𝑆 − 𝑥𝑃 ) + 𝑦𝑃

Cuối cùng, tọa độ điểm 𝑅 = 𝑃 + 𝑃 là

𝑥𝑅 = 𝑘2 − 2𝑥𝑃 , 𝑦𝑅 = 𝑘(𝑥𝑃 − 𝑥𝑆)− 𝑦𝑃 .

Tổng kết

Để cộng hai điểm 𝑃 = (𝑥𝑃 , 𝑦𝑃 ) và 𝑄 = (𝑥𝑄, 𝑦𝑄) ta có ba trường hợp sau:

1. Nếu 𝑥𝑄 = 𝑥𝑃 và 𝑦𝑄 = −𝑦𝑃 , nói cách khác là đối xứng qua trục hoành, thì ta có 𝑃 +𝑄 = 𝒪.

2. Nếu 𝑥𝑃 ̸= 𝑥𝑄, đặt 𝑘 =
𝑦𝑄 − 𝑦𝑃
𝑥𝑄 − 𝑥𝑃

thì tọa độ điểm 𝑅 = 𝑃 +𝑄 là

𝑥𝑅 = 𝑘2 − 𝑥𝑃 − 𝑥𝑄, 𝑦𝑅 = 𝑘(𝑥𝑃 − 𝑥𝑅)− 𝑦𝑃 .

3. Nếu 𝑥𝑃 = 𝑥𝑄 và 𝑦𝑃 = 𝑦𝑄, khi hai điểm trùng nhau, đặt 𝑘 =
3𝑥2𝑃 + 𝑎

2𝑦𝑃
, thì tọa độ điểm 𝑅 = 2𝑃 là

𝑥𝑅 = 𝑘2 − 2𝑥𝑃 , 𝑦𝑅 = 𝑘(𝑥𝑃 − 𝑥𝑅)− 𝑦𝑃 .
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Đường cong elliptic trên trường hữu hạn F𝑝

Trong mật mã học đường cong elliptic được sử dụng nhiều nhất là trên trường hữu hạn F𝑝 với 𝑝 là số nguyên
tố.

Đường cong ellipitc lúc này là điểm vô cực 𝒪 và tập hợp các điểm (𝑥, 𝑦) ∈ F2
𝑝 thỏa mãn

𝑦2 ≡ 𝑥3 + 𝑎𝑥+ 𝑏 mod 𝑝, .

với 4𝑎3 + 27𝑏2 ̸= 0 mod 𝑝.

Việc thực hiện phép cộng hai điểm cũng tương tự như trên R ở phần trên nhưng các phép tính được thực
hiện trong modulo 𝑝.

Như vậy để cộng hai điểm 𝑃 = (𝑥𝑃 , 𝑦𝑃 ) và 𝑄 = (𝑥𝑄, 𝑦𝑄) thì:

1. Nếu 𝑥𝑄 ≡ 𝑥𝑃 (mod 𝑝) và 𝑦𝑄 ≡ −𝑦𝑃 (mod 𝑝) thì 𝑃 +𝑄 = 𝒪.

2. Nếu 𝑥𝑄 ̸≡ 𝑥𝑃 (mod 𝑝), đặt 𝑘 ≡ 𝑦𝑄 − 𝑦𝑃
𝑥𝑄 − 𝑥𝑃

(mod 𝑝) thì tọa độ điểm 𝑅 = 𝑃 +𝑄 là

𝑥𝑅 ≡ 𝑘2 − 𝑥𝑃 − 𝑥𝑄 (mod 𝑝), 𝑦𝑅 = 𝑘(𝑥𝑃 − 𝑥𝑅)− 𝑦𝑃 (mod 𝑝).

3. Nếu 𝑥𝑄 ≡ 𝑥𝑃 và 𝑦𝑄 ≡ 𝑦𝑃 , nói cách khác là hai điểm trùng nhau, đặt 𝑘 =
3𝑥2𝑃 + 𝑎

2𝑦𝑃
(mod 𝑝) thì tọa độ

điểm 𝑅 = 2𝑃 là

𝑥𝑅 = 𝑘2 − 2𝑥𝑃 (mod 𝑝), 𝑦𝑅 = 𝑘(𝑥𝑃 − 𝑥𝑅)− 𝑦𝑃 (mod 𝑝).

Một điểm đáng chú ý là F𝑝 có hữu hạn phần tử, do đó số phần tử của đường cong elliptic với tọa độ trong
F𝑝 cũng là hữu hạn. Do tính chất này mà mật mã học có thể sử dụng đường cong elliptic.

Dạng Weierstrass tổng quát

Ở công thức cộng hai điểm giống nhau xuất hiện hai hằng số là 2 và 3. Một vấn đề đặt ra là nếu trường có
đặc số bằng 2, nghĩa là 2 ≡ 0, khi đó hàm hai biến

𝑓(𝑥, 𝑦) = 𝑦2 − 𝑥3 − 𝑎𝑥− 𝑏

sẽ có đạo hàm theo 𝑦 luôn bằng 0 vì 𝑓𝑦 = 2𝑦 ≡ 0. Ta không thể tính tiếp tuyến như trên R để đưa ra công
thức cho phép cộng hai điểm giống nhau. Tương tự đối với trường có đặc số bằng 3.

Trong trường hợp các trường𝐾 có đặc số bằng 2 thì chúng ta sử dụng dạng Weierstrass tổng quát (generalized
Weierstrass) là

𝑦2 + 𝑎1𝑥𝑦 + 𝑎3𝑦 = 𝑥3 + 𝑎2𝑥
2 + 𝑎4𝑥+ 𝑎6,

với 𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎6 ∈ 𝐾.

[TODO] Phép cộng hai điểm trên đường cong elliptic dạng Weierstrass tổng quát.

3.3.4 Nguyên tắc Kerckhoffs và mật mã học
Khi mình kể với mọi người rằng mình đang học mật mã thì mình nhận ra một điều thú vị là rất nhiều người
hiểu lầm về mật mã. Trong quan điểm của đa số thì mật mã là một thứ gì đó cực kì bí mật và chỉ sử dụng
trong quân sự. Điều này đúng từ nửa đầu thế kỉ 20 trở về trước, nhưng hiện tại thì mật mã được sử dụng
rộng rãi trong dân sự, thậm chí là bắt buộc để đảm bảo an toàn thông tin trên Internet. Bài viết này sẽ giải
thích một số khía cạnh của mật mã được sử dụng trong việc truyền thông tin.

Các bạn có thể xem phim "The Imitation Game" (năm 2014) về đội giải mã Enigma và nhà toán học Alan
Turing để có cái nhìn tổng quan hơn những điều mình sắp nói.
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Hình 3.40: Nguồn: Wikipedia

Nguyên lý Kerckhoffs được phát biểu như sau:

Độ an toàn của hệ thống mật mã không phụ thuộc vào việc giữ bí mật thuật toán mã hóa mà
phụ thuộc vào việc giữ bí mật khóa.

Các bạn cũng có thể đọc hai bài viết sau:

• Nguyên lý Kerckhoffs - công trình khoa học mật mã uyên bác từ thế kỷ XIX.

• Mật mã hiện đại (1).

Vấn đề truyền tin trên kênh mở

Thông tin có thể được truyền đi dưới nhiều dạng:

• tiếng nói;

• sóng điện từ (sóng radio);

• tín hiệu điện tử (qua cáp đồng);

• tín hiệu ánh sáng (qua cáp quang);

• vân vân và mây mây.

Thông thường chúng ta sử dụng các loại sóng vô tuyến, cáp quang để truyền tín hiệu đi xa. Vấn đề là các
tín hiệu đó có thể bị bắt (chặn) lại bằng nhiều dụng cụ vật lý.

Trong phim "The Imitation Game", bộ phận thu sóng của quân Đồng minh chặn được hàng tá thông điệp
của quân Phát xít gửi bằng radio mỗi ngày (từ bộ chỉ huy gửi tới đơn vị tác chiến) bằng các thiết bị chuyên
dụng. Như vậy các kênh truyền trên trở thành các kênh mở, không chỉ người gửi và người nhận có thể biết
thông điệp (tín hiệu) mà những bên có các thiết bị chuyên dụng cũng có thể đọc được.
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Mã Caesar - nguồn gốc mật mã học

Thời xa xưa, cụ thể là thế kỉ 3 Sau Công Nguyên, hệ mã hóa đầu tiên là Caesar ra đời nhằm phục vụ chiến
tranh. Các chỉ thị từ bộ chỉ huy được gửi tới các trạm, nhưng nếu gửi văn bản bình thường sẽ rất nguy hiểm
nếu người đưa tin bị địch tóm. Như vậy mật mã sẽ giải quyết vấn đề này.

Mật mã gồm hai quá trình ngược nhau là mã hóa (hay encrypt) và giải mã (hay decrypt). Câu chuyện
về mật mã Caesar như sau.

Giả sử ông Caesar muốn gửi thông điệp "It is rainy today" (thông tin về thời tiết). Ông Caesar sẽ không
viết thông điệp này lên tờ giấy, xếp gọn lại, rồi đưa cho anh shipper gửi tới tiền tuyến. Thay vào đó, ông ấy
viết từng ký tự trong thông điệp bởi chữ cái đứng sau nó ba ký tự trong bảng chữ cái. Nghĩa là "I" thành
"L", "t" thành "w", vân vân và mây mây. Như vậy thông điệp sau khi biến đổi là "Lw lv udlqb wrgdb".
Đây là quá trình mã hóa, biến đổi thông điệp gốc thành thành thông điệp mới khác ban đầu (và đa phần
không có ý nghĩa).

INFO-CIRCLE Ghi chú

Thông điệp ban đầu được gọi là bản rõ (hay plaintext).

Thông điệp đã bị mã hóa được gọi là bản mã (hay ciphertext).

Ở ví dụ trên:

• bản rõ "It is rainy today";

• bản mã là "Lw lv udlqb wrgdb".

Sau đó anh shipper mang tờ giấy có thông điệp này tới tiền tuyến. Các chú lính cát ở tiền tuyến sẽ làm
công việc ngược lại, thay từng ký tự ở thông điệp mới bởi ký tự trước đó ba vị trí trong bảng chữ cái. Nghĩa
là "L" thành "I", "w" thành "t", và tương tự vậy. Đây là quá trình giải mã, biến đổi thông điệp mới quay
về thông điệp gốc ban đầu.

Công việc mã hóa và giải mã sử dụng một quy tắc chung cho tất cả ký tự của thông điệp, do đó chúng ta
cần một công thức toán học biểu thị quá trình này.

Đầu tiên ta đánh số các ký tự của bảng chữ cái tiếng Anh bắt đầu từ 0.

A B C D E F G H I J K L M
0 1 2 3 4 5 6 7 8 9 10 11 12
N O P Q R S T U V W X Y Z
13 14 15 16 17 18 19 20 21 22 23 24 25

Giả sử bản rõ là dãy các ký tự 𝑝1, 𝑝2, ..., 𝑝𝑛 với 𝑝𝑖 là các ký tự thuộc bảng chữ cái tiếng Anh. Như vậy
0 6 𝑝𝑖 6 25.

Nếu gọi bản mã là dãy các ký tự tương ứng 𝑐1, 𝑐2, ..., 𝑐𝑛 thì việc dịch chuyển ba ký tự sang trái tương đương
với công thức

𝑐𝑖 = (𝑝𝑖 + 3) mod 26.

Ở đây modulo 26 giúp việc tính toán không vượt khỏi bảng chữ cái, mang ý nghĩa là nếu đi tới cuối bảng
chữ cái thì ta bắt đầu lại từ đầu (ví dụ "Y" sẽ thành "B").

Thay vì sử dụng số 3, chúng ta có thể sử dụng một số bất kì khác và giữ bí mật số này, gọi là khóa bí mật.
Công thức chung lúc này sẽ là

𝑐𝑖 = (𝑝𝑖 + 𝑘) mod 26,
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với 𝑘 là khóa bí mật.

Reverse Engineering và mật mã học

Nếu chỉ có người gửi và người nhận biết nguyên lý mã hóa và khóa bí mật thì gần như không thể phục
hồi bản rõ. Tuy nhiên nếu kẻ địch biết nguyên lý mã hóa thì sao? Với mã Caesar ở trên, nếu đã biết
𝑐𝑖 = (𝑝𝑖 + 𝑘) mod 26 thì rõ ràng chúng ta có thể thử giải mã với từng khóa 𝑘 = 1, 2, . . . , 25 và xem thông
điệp gốc nào có ý nghĩa.

Chúng ta thử giải mã thông điệp "Jr jvyy zrrg ng fgngvba". Với từng khóa 𝑘 ta giải mã theo công thức
ngược lại là

𝑝𝑖 = (𝑐𝑖 − 𝑘) mod 26

và nhận được bản rõ tương ứng theo bảng sau:

Khóa 𝑘 Bản rõ tương ứng
1 Iq iuxx yqqf mf efmfuaz
2 Hp htww xppe le deletzy
3 Go gsvv wood kd cdkdsyx
4 Fn fruu vnnc jc bcjcrxw
5 Em eqtt ummb ib abibqwv
6 Dl dpss tlla ha zahapvu
7 Ck corr skkz gz yzgzout
8 Bj bnqq rjjy fy xyfynts
9 Ai ampp qiix ex wxexmsr
10 Zh zloo phhw dw vwdwlrq
11 Yg yknn oggv cv uvcvkqp
12 Xf xjmm nffu bu tubujpo
13 We will meet at station
14 Vd vhkk ldds zs rszshnm
15 Uc ugjj kccr yr qryrgml
16 Tb tfii jbbq xq pqxqflk
17 Sa sehh iaap wp opwpekj
18 Rz rdgg hzzo vo novodji
19 Qy qcff gyyn un mnuncih
20 Px pbee fxxm tm lmtmbhg
21 Ow oadd ewwl sl klslagf
22 Nv nzcc dvvk rk jkrkzfe
23 Mu mybb cuuj qj ijqjyed
24 Lt lxaa btti pi hipixdc
25 Ks kwzz assh oh ghohwcb

Ta thấy rằng 𝑘 = 13 cho bản rõ là một thông điệp có ý nghĩa. Như vậy mã Caesar không an toàn trước
phương pháp thử tất cả khóa có thể (vét cạn, bruteforce).

Vấn đề ở đây là khi đối thủ cũng biết nguyên lý mã hóa thì đối thủ có thể đưa ra phương pháp tấn công
thuật toán mật mã. Khi thời đại phát triển với sự ra đời các máy cơ học, máy tính (phần cứng, phần mềm)
thì các thuật toán mật mã được "giấu" kỹ bằng các kỹ thuật gây rối khác nhau. Tuy nhiên sau một thời gian
thì các bên tấn công cũng hiểu được toàn bộ cơ chế hoạt động của phần mềm, phần cứng và sau đó là thuật
toán. Quy trình tìm hiểu cơ chế hoạt động của một thiết bị, thuật toán nào đó là reverse engineering
(dịch ngược). Khi đã biết cơ chế mã hóa thì việc phá mã trở nên dễ dàng, như mã RC4 được sử dụng để mã
hóa tín hiệu WiFi.
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Lúc này, mật mã học đi theo một cách tiếp cận khác. Nếu mã hóa là một quy trình với hai đầu vào là bản
rõ 𝑝 và khóa 𝑘, đầu ra là bản mã 𝑐, thì quy trình này có thể được viết dưới dạng hàm số

𝑐 = Enc(𝑝, 𝑘)

với Enc là thuật toán mã hóa. Lúc này, thuật toán Enc không cần thiết được giữ bí mật, mà chỉ cần giữ bí
mật khóa 𝑘. Như chúng ta đã thấy ở mã Caesar, từ bản mã ban đầu 𝑐, với mỗi khóa 𝑘 chúng ta lại có một
bản rõ 𝑝 tương ứng. Vậy bản rõ 𝑝 tương ứng khóa 𝑘 nào mới là thông điệp đúng, mang ý nghĩa?

Nguyên lý Kerckhoffs và mật mã hiện đại

Từ phần trên chúng ta có thể rút ra một số yêu cầu chính đối với mật mã hiện đại.

Yêu cầu thứ nhất đối với mật mã an toàn là tính không bí mật của thuật toán mã hóa. Trong phim
"The Imitation Game", quân Đồng Minh biết rõ quân Đức sử dụng máy Enigma để mã hóa các thông điệp
gửi từ bộ chỉ huy tới đơn vị tác chiến. Họ (quân Đồng minh) thậm chí còn "thó" được một máy Enigma và
mổ xẻ nó, biết rõ cách hoạt động của nó. Nhưng thiết lập của máy Enigma thay đổi mỗi ngày, đó chính là
khóa bí mật. Dù biết cách máy Enigma hoạt động, nhưng không biết thiết lập (không biết khóa) thì cũng
không thể giải mã được các thông điệp được gửi đi. Như mình đã nói, quân Đồng minh dư sức đọc các tín
hiệu điện tử được gửi đi bởi quân Đức, nhưng những gì họ nhận được chỉ là những văn bản vô nghĩa, chính
là bản mã. Enigma trở thành pháo đài vững chãi không thể bị phá thời đó.

Ngày nay, các thuật toán mật mã được sử dụng trên Internet được định nghĩa đầy đủ trong các tiêu chuẩn
quốc gia, quốc tế (NIST, GOST, RFC, ...). Các tài liệu này tất nhiên là được công bố rộng rãi và được nhiều
nhà nghiên cứu phân tích, đánh giá độ an toàn của các thuật toán mật mã. Ngoài ra, các giao thức mạng
về mật mã (SSL/TLS) cũng chỉ rõ thuật toán mã hóa nào được sử dụng, yêu cầu với các tham số đầu vào,
vân vân.

Trên đây chính là nội dung của nguyên lý Kerckhoffs. Ông viết nguyên lý này trong một tài liệu tên là "Mật
mã trong quân sự" (tên gốc là "La Cryptographie Militaire"). Tuy nhiên ý nghĩa của nó không chỉ dừng lại
ở quân sự mà còn cả dân sự, là môi trường Internet chúng ta đang sử dụng hằng ngày.

Yêu cầu thứ hai đối với mật mã an toàn là không gian khóa phải đủ lớn. Ở mã Caesar, không gian
khóa có 25 phần tử (vì 𝑘 = 0 cho bản mã y hệt bản rõ nên không có ý nghĩa che giấu thông tin) nên rất dễ
phá, thậm chí có thể thử bằng giấy và bút. Ngày nay các thuật toán mã hóa khối có không gian khóa rất
lớn với các khóa có độ dài 128 bit hoặc 256 bit. Khi đó có 2128 trường hợp khóa nếu khóa có độ dài 128 bit,
cụ thể thì

2128 = 340282366920938463463374607431768211456,

một con số khổng lồ nếu chúng ta thử từng trường hợp, kể cả có sử dụng các máy tính mạnh nhất hiện tại.
Ví dụ như thuật toán AES với trường hợp khóa 256 bit được đánh giá là an toàn nhất hiện nay và sẽ còn
an toàn trong nhiều năm tới.

Trên đây là hai yêu cầu đơn giản đối với mật mã an toàn hiện nay. Theo sự phát triển của khoa học và công
nghệ thì nhiều phương pháp phá mã phức tạp (về mặt toán học) đã ra đời nên cũng có nhiều tiêu chí khác
đánh giá độ an toàn của mật mã. Tuy nhiên các tiêu chí kia rất phức tạp nên mình sẽ không đề cập ở đây.

Cám ơn các bạn đã đọc bài viết của mình.

Moscow, ngày 23 tháng 1 năm 2025.

3.3.5 Câu hỏi ôn thi mật mã học
Môn "Các phương pháp bảo vệ thông tin bằng mật mã"

Задачи криптографической защиты информации и средства их решения

В криптографических исследованиях разрабатываются средства и методы решения следующих задач:
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1. Конфиденциальность. Защита от ознакомления с содержанием информации (сообщения)
лицами, не обладающими правом доступа. При этом:

• не скрывается сам факт передачи сообщения;

• зашифрованное сообщение передается по открытому каналу связи.

2. Целостность. Обеспечение невозможности несанкционированного изменения исходной
информации.

3. Аутентификации. Доказательное подтверждение подлинности сторон и передаваемой
информации в процессе информационного взаимодействия.

4. Невозможность отказа от авторства. Разработка методов предотвращения возможности
отказа от ранее совершенных действий.

Симметричные, асимметричные и комбинированные криптосистемы

Симметричные криптосистемы - данные криптосистемы построены на основе сохранения в тайне
ключа шифрования. Процессы зашифрования и расшифрования используют один и тот же ключ.
Секретность ключа является постулатом. Основная проблема при применении симметричных
криптосистем для связи заключается в сложности передачи обоим сторонам секретного ключа.

Однако данны раскрытие ключа злоумышленником грозит раскрытием только той информации, что
была зашифрована на этом ключе. Эти системы обладают высоким быстродействием.

Асимметричные криптосистемы - смысл данных криптосистем состоит в том, что для
зашифрования и расшифрования используются разные преобразования. Одно из них - зашифрование
- является абсолютно открытым для всех. Друго же - расшифрование - остается секретным. Таким
образом, любой, кто хочет что-либо зашифровать, пользуется открытым преобразованием. Но
расшифровать и прочитать это сможет лишь тот, кто владеет секретным преобразованием.

Комбинированное - совместное использование этих криптосистем позволяет эффективно
реализовывать такую базовую функцию защиты, как криптографическое закрытие передаваемой
информации с целью обеспечения ее конфиденциальности.

Комбинированное применение симметричного и асимметричного шифрования устраняет основные
недостатки, присущие обоим методам, и позволяет сочетать преимущества высокой секретности,
предоставляемые асимметричными криптосистемами с открытым ключом, с преимуществами высокой
скорости работы, присущими симметричным криптосистемам с секретным ключом.

Метод комбинированного использования симметричного и асимметричного шифрования заключается
в следующем.

Симметричную криптосистему применяют для шифрования исходного открытого текста, а
асимметричную криптосистему с открытым ключом применяют только для шифрования секретного
ключа симметричной криптосистемы. В результате асимметричная криптосистема с открытым
ключом не заменяет, а лишь дополняет симметричную криптосистему с секретным ключом, позволяя
повысить в целом защищенность передаваемой информации. Такой подход иногда называют схемой
электронного "цифрового конверта".

Шифры, алгебраическая модель шифра, примеры

Пусть:

1. 𝒳 -- пространство открытых текстов;

2. 𝒴 -- пространство шифротекстов;

3. 𝒦 -- пространство ключей;
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4. функцию зашифрования 𝑦 = 𝐸(𝑥, 𝑘), переводящую открытый текст 𝑥 ∈ 𝒳 на ключе шифрования
𝑘 ∈ 𝒦 в шифротекст 𝑦 ∈ 𝒴;

5. функцию расшифрования 𝑥 = 𝐷(𝑦, 𝑘).

Тройка множеств, 𝒳 , 𝒦, 𝒴 с введенными функциями называется шифром по Шеннону, если каждый
шифротекст есть результат шифрования одного из открытых текстов(т.е. функция 𝑦 = 𝐸(𝑥, 𝑘)
сюрьективна), а разным открытым текстам отвечают разные шифротексты(т.е. функция 𝑦 = 𝐸(𝑥, 𝑘)
инъективна). Алгебраическая модель предложена Шенноном.

Шифры, вероятностная модель шифра, примеры

Вероятностной моделью шифра называется его алгебраическая модель, дополненная известными
независимыми распределениями вероятностей 𝑃 (𝒳 ) и 𝑃 (𝒦).

Вероятность появления шифротекста 𝑦 равна:

𝑃 (𝑦) =
∑︁

𝐸(𝑥,𝑘)=𝑦

𝑝(𝑥) · 𝑝(𝑘)

В тех случаях, когда требуется знание распределений 𝑃 (𝒳 ) и 𝑃 (𝒦), мы будем пользоваться
вероятностной моделью Σ𝐵 , состоящей из пяти множеств, связанных условиями 1 и 2 предыдущего
определения алгебраической модели шифра, и двух вероятностных распределений:

Σ𝐵 = (𝒳 ,𝒦,𝒴, 𝐸,𝐷, 𝑃 (𝒳 ), 𝑃 (𝒦))

Модели и критерии распознавания открытых текстов

Криптоанализ классических шифров. Дешифрование шифра Виженера

Классификации шифров

По особенностям алгоритмы шифрования

1. Симметричные

2. Асимметричные

3. Комбинированные

По количеству символов сообщения шифруемых или расшифровываемых по однотипной процедуре
преобразования

1. Потоковые

2. Блочные

Теоретическая и практическая стойкость шифров

Совершенные шифры

Пусть Σ𝐵 = (𝒳 ,𝒴,𝒦, ℰ ,𝒟, 𝑃 (𝒳 ), 𝑃 (𝒴)) - вероятностная модель шифра. Шифр Σ𝐵 называется
совершенным, если для любого 𝑥 из 𝒳 и любого 𝑦 из 𝒴 выполняется равенство

𝑝(𝑥) = 𝑝(𝑥|𝑦)

Назовем шифр Σ𝐵 совершенным, если для любых 𝑥 ∈ 𝒳 , 𝑦 ∈ 𝒴 выполняется равенство 𝑝(𝑥|𝑦) = 𝑝(𝑥).
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Шифры замены и их криптоанализ

Шифр простой замены — класс методов шифрования, которые сводятся к созданию по определённому
алгоритму таблицы шифрования, в которой для каждой буквы открытого текста существует
единственная сопоставленная ей буква шифр-текста.

Шифры перестановки и их криптоанализ

Шифр перестановки — это метод симметричного шифрования, в котором элементы исходного
открытого текста меняют местами.

Шифрование методом гаммирования и его криптоанализ

Это метод симметричного шифрования, заключающийся в «наложении» последовательности,
состоящей из случайных чисел, на открытый текст. Последовательность случайных чисел называется
гаммапоследовательностью и используется для зашифровывания и расшифровывания данных.
Суммированиеобычно выполняется в каком-либо конечном поле.

Например, в поле Галуа GF(2) суммирование принимает вид операции «исключающее ИЛИ (XOR)».
Взлом шифра невозможен т.к. по Шеннону он является совершенным.

Криптоаналитические атаки и их классификация

Криптоаналитическая атака при наличии только известного шифртекста (known-plaintext).
Криптоаналитик имеет только шифртексты 𝐶1, 𝐶2, ..., 𝐶𝑖 нескольких сообщений, причем все они
зашифрованы с использованием одного и того же алгоритма шифрования 𝐸. Работа криптоаналитика
заключается в том, чтобы раскрыть исходные тексты 𝑀1, 𝑀2, ..., 𝑀𝑖.

Криптоаналитическая атака при наличии известного открытого текста. Криптоаналитик
имеет доступ не только к шифртекстам 𝐶1, 𝐶2, ..., 𝐶𝑖 и нескольких сообщений, но также к
открытым текстам 𝑀1, 𝑀2, ..., 𝑀𝑖 этих сообщений. Его работа заключается в нахождении ключа
𝑘, используемого при шифровании этих сообщений, или алгоритма расшифрования любых новых
сообщений, зашифрованных тем же ключом.

Криптоаналитическая атака при возможности выбора открытого текста (chosen-plaintext).
Крипто-аналитик не только имеет доступ к шифртекстам 𝐶1, 𝐶2, ..., 𝐶𝑖 и связанным с ними открытым
текстам 𝑀1, 𝑀2, ..., 𝑀𝑖 этих сообщений, но и может по желанию выбирать открытые тексты, которые
затем получает в зашифрованном виде.

Криптоаналитическая атака методом полного перебора всех возможных ключей
(bruteforce).

Блочные шифры. Принципы построения симметричных блочных шифров

Блочный шифр — разновидность симметричного шифра, оперирующего группами бит фиксированной
длины — блоками.

Если исходный текст (или его остаток) меньше размера блока, перед шифрованием его дополняют.
Фактически, блочный шифр представляет собой подстановку на алфавите блоков, которая, как
следствие, может быть моно- или полиалфавитной.

Принципы построения:

1. SP-сети: AES, Кузнечик

2. Сеть Фейстеля: DES, Магма
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Режимы работы блочных шифров и их сравнение

В ГОСТ 28147—89 этот режим называется режимом простой замены.

INFO-CIRCLE Ghi chú

Простая замена (thay thế đơn giản) là cách gọi mode ECB trong các tài liệu tiếng Nga.

Сообщение делится на блоки одинакового размера.

Размер (длина) блока равен 𝑛 и измеряется в битах. В результате получается последовательность
блоков 𝑃1, 𝑃2, ..., 𝑃𝑚.

Последний блок при необходимости дополняется до длины 𝑛. Каждый блок 𝑃𝑖 шифруется алгоритмом
шифрования 𝐸𝑘 с использованием ключа 𝑘:

𝐶𝑖 = 𝐸𝑘(𝑃𝑖, 𝑘).

Методы анализа алгоритмов блочного шифрования

1. Атака полным перебором

2. Дифференциальный криптоанализ

3. Линейный криптоанализ (поиск аффинных приближений)

Стандарт шифрования данных DES

DES (англ. Data Encryption Standard) — алгоритм для симметричного шифрования, утверждённый
правительством США в 1977 году как официальный стандарт (FIPS 46-3).

Размер блока для DES равен 64 битам. В основе алгоритма лежит сеть Фейстеля с 16 циклами
(раундами) и ключом, имеющим длину 56 бит. Алгоритм использует комбинацию нелинейных
(S-блоки) и линейных преобразований.

Развертывание раундовых ключей в DES

Ключи 𝑘𝑖 получаются из начального ключа 𝑘 (56 бит) следующим образом.

Добавляются биты в позиции 8, 16, 24, 32, 40, 48, 56, 64 ключа 𝑘 таким образом, чтобы каждый байт
содержал нечетное число единиц. Это используется для обнаружения ошибок при обмене и хранении
ключей.

Затем делают перестановку для расширенного ключа (кроме добавляемых битов 8, 16, 24, 32, 40, 48,
56, 64)

Эта перестановка определяется двумя блоками 𝐶0 и 𝐷0 по 28 бит каждый. Первые 3 бита 𝐶0 есть
биты 57, 49, 41 расширенного ключа. А первые три бита 𝐷0 есть биты 63, 55, 47 расширенного ключа
𝐶𝑖, 𝐷𝑖, 𝑖 = 1, 2, 3, . . . получаются из 𝐶𝑖−1, 𝐷𝑖−1 одним или двумя левыми циклическими сдвигами.

Ключ 𝑘𝑖, 𝑖 = 1, . . . , 16 состоит из 48 бит, выбранных из битов вектора 𝐶𝑖‖𝐷𝑖 (56 бит) согласно таблице.
Ппример, первый и второй биты 𝑘𝑖 есть биты 14, 17 вектора 𝐶𝑖‖𝐷𝑖.
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Режим сцепления блоков шифра (CBC) на примере DES

Режим обратной связи по выходу (OFB) на примере DES

Режим сцепления блоков шифра (CBC) на примере DES

Имитостойкость шифров

Имитостойкость шифра определим как его способность противостоять попыткам противника по
имитации или подмене.

Имитозащита — защита системы шифровальной связи или другой криптосистемы от навязывания
ложных данных. Защита данных от внесения в них несанкционированных изменений, другими
словами, защита целостности сообщения.

Реализуется с помощью добавления к сообщению дополнительного кода (добавление битов четности,
контрольной суммы), имитовставки, зависящей от содержания сообщения и секретного элемента,
известного только отправителю и получателю (ключа).

Закладка избыточности позволяет обнаружить внесённые в сообщение несанкционированные
изменения.

Стандарт шифрования данных AES

Xem bài viết về AES.

Развертывание раундовых ключей в AES

Xem bài viết về AES.

Российский стандарт шифрования данных МАГМА (ГОСТ Р 34.12-2015)

Xem bài viết về Magma.

Развертывание раундовых ключей в стандарте МАГМА, количество слабых и 2-слабых ключей

Российский стандарт шифрования данных КУЗНЕЧИК (ГОСТ Р 34.12-2015)

Xem bài viết về Kuznyechik.

Развертывание раундовых ключей в стандарте КУЗНЕЧИК

Xem bài viết về Kuznyechik.

Поточные шифры. Принципы их построения

Методы генерации и анализа псевдослучайных последовательностей

Регистры сдвига, критерий регулярности

Регистры сдвига максимального периода

Криптоанализ поточных шифров

Системы шифрования с открытыми ключами. Принципы их построения

Анализ асимметричных криптосистем
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Атаки на асимметричные криптосистемы

Системы шифрования с открытыми ключами Криптосистема RSA

Системы шифрования с открытыми ключами. Криптосистема Эль-Гамаля

Управление ключами. Открытое распределение ключей Диффи - Хеллмана

Электронная подпись. Принципы ее формирования

Электронная подпись на базе криптосистемы RSA

Электронная подпись на базе криптосистемы Эль Гамаля

Российский стандарт электронной подписи ГОСТ Р 34.10-2012

Хэш-функции, требования к ним

Методы построения функций хэширования

Российский стандарт хэш-функции ГОСТ Р 34.11-2012

Криптографические протоколы и их классификация

Системы аутентификации

Алгоритмы облегченной (lightweight) криптографии и их предназначение

Криптографические средства защиты информации в ОС Windows

Криптографические средства защиты информации в MSDN

Реализация операций над байтами в стандарте AES

Реализация преобразования SubBytes в стандарте AES

Реализация нелинейного узла замены в стандарте DES

Вычисления в группе точек эллиптических кривых

Криптосистемы на эллиптических кривых. Принципы их построения

Распределение ключей с использованием эллиптических кривых. Протокол Диффи-Хеллмана

Криптосистема Эль-Гамаля на эллиптических кривых

Электронная подпись Эль-Гамаля на эллиптических кривых

Квантовая криптография, протоколы открытого распределения ключей

HẾT.

3.3.6 Quantum computing
Qubit và toán tử quantum

Trên máy tính hiện nay, đơn vị xử lý cơ bản là bit (0 hoặc 1). Trong máy tính lượng tử, đơn vị tính toán là
qubit (quantum bit).
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Qubit

Mỗi qubit |𝜓⟩ được biểu diễn dưới dạng tổ hợp tuyến tính của cơ sở gồm |0⟩ = (1, 0) và |1⟩ = (0, 1). Khi đó
qubit |𝜓⟩ = 𝛼|0⟩+ 𝛽|1⟩. Ở đây 𝛼, 𝛽 ∈ C (tập số phức).

Tích của 𝑛 qubit là các tổ hợp |0, 0, . . . , 0⟩, |0, 0, . . . , 1⟩, ..., |1, 1, . . . , 1⟩. Ta cũng kí hiệu |0⟩ ⊗ |1⟩ = |01⟩.

INFO-CIRCLE Example 6.10

Nếu |𝜓⟩ = 𝛼|0⟩+ 𝛽|1⟩ và |Ψ⟩ = 𝛾|0⟩+ 𝛿|1⟩ thì

|𝜓⟩ ⊗ |Ψ⟩ = (𝛼|0⟩+ 𝛽|1⟩)⊗ (𝛾|0⟩+ 𝛿|1⟩) = 𝛼𝛾|00⟩+ 𝛼𝛿|01⟩+ 𝛽𝛾|10⟩+ 𝛽𝛿|11⟩

Tiếp theo là toán tử quantum và tương ứng với nó là các cổng (gate) trên mạch.

Toán tử quantum tác động lên một qubit hoặc tích của nhiều qubit.

Qubit có dạng |𝜓⟩ = 𝑎|0⟩+ 𝑏|1⟩. Ta có thể viết hệ số dưới dạng vector cột
(︂
𝑎
𝑏

)︂
. Khi đó, toán tử quantum

sẽ là một ma trận 2× 2 biến đổi vector trên thành vector mới
(︂
𝑐
𝑑

)︂
tương ứng với qubit |Ψ⟩ = 𝑐|0⟩+ 𝑑|1⟩.

Nói cách khác, đặt toán tử quantum là ma trận 𝒰 =

(︂
𝑐11 𝑐12
𝑐21 𝑐22

)︂
thì ta có

|𝜓⟩ → |Ψ⟩ = 𝒰|𝜓⟩,
(︂
𝑐11 𝑐12
𝑐21 𝑐22

)︂
·
(︂
𝑎
𝑏

)︂
=

(︂
𝑐
𝑑

)︂

Các toán tử quantum thường gặp

INFO-CIRCLE Definition 6.4 (Toán tử đồng nhất)

Toán tử đồng nhất identity giữ nguyên qubit đầu vào. Ma trận tương ứng là ma trận đơn vị 𝐼 =

(︂
1 0
0 1

)︂
.

INFO-CIRCLE Definition 6.5 (Toán tử NOT)

Toán tử NOT có ma trận tương ứng là NOT =

(︂
0 1
1 0

)︂
. Khi đó NOT|𝜓⟩ = 𝑏|0⟩+ 𝑎|1⟩ với 𝑥 ∈ {0, 1}.

Khi qubit là |0⟩ hoặc |1⟩, tác dụng của toán tử NOT là phép XOR nên ta có NOT|𝑥⟩ = |𝑥⊕ 1⟩.

INFO-CIRCLE Definition 6.6 (Toán tử Hadamard)

Ma trận của toán tử Hadamard là 𝐻 =
1√
2

(︂
1 1
1 −1

)︂
.
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INFO-CIRCLE Example 6.11

Xét qubit |𝜓⟩ = 𝑎|0⟩+ 𝑏|1⟩, toán tử Hadamard tương ứng với phép nhân ma trận

1√
2

(︂
1 1
1 −1

)︂
·
(︂
𝑎
𝑏

)︂
=

⎛⎜⎝
1√
2
(𝑎+ 𝑏)

1√
2
(𝑎− 𝑏)

⎞⎟⎠
Ta chuyển cột kết quả về lại dạng tổ hợp tuyến tính thì cổng Hadamard hoạt động trên qubit |𝜓⟩ =
𝑎|0⟩+ 𝑏|1⟩ cho kết quả là

𝐻|𝜓⟩ = 𝐻(𝑎|0⟩+ 𝑏|1⟩) = 1√
2
(𝑎+ 𝑏)|0⟩+ 1√

2
(𝑎− 𝑏)|1⟩

Nếu |𝜓⟩ ≡ |0⟩ thì tương đương với 𝑎 = 1, 𝑏 = 0. Ta có 𝐻|0⟩ = |0⟩+ |1⟩√
2

.

Nếu |𝜓⟩ ≡ |1⟩ thì tương đương với 𝑎 = 0, 𝑏 = 1. Ta có 𝐻|1⟩ = |0⟩ − |1⟩√
2

.

Tổng quát ta nhận thấy, với 𝑥 ∈ {0, 1} thì 𝐻|𝑥⟩ = |0⟩+ (−1)𝑥|1⟩√
2

.

Ta thấy rằng toán tử ngược của toán tử Hadamard là chính nó.

Tiếp theo là toán tử thường được dùng nhất khi tính toán trên tích của nhiều qubit: toán tử control.

Như đã xem xét ở trên, tích của 𝑛 qubit sẽ có 2𝑛 phần tử tương ứng các bộ |0, 0, . . . , 0, 0⟩, |0, 0, . . . , 0, 1⟩, ...
Do đó toán tử control sẽ là ma trận kích thước 2𝑛 × 2𝑛.

INFO-CIRCLE Definition 6.7 (Toán tử control)

Gọi 𝒰 =

(︂
𝑐11 𝑐12
𝑐21 𝑐22

)︂
là toán tử tác động lên một qubit. Xét hai qubit là |𝑥⟩ = 𝑎|0⟩ + 𝑏|1⟩ và |𝑦⟩ =

𝑐|0⟩+ 𝑑|1⟩. Ta có tích

|𝑥⟩ ⊗ |𝑦⟩ = 𝑎𝑐|00⟩+ 𝑎𝑑|01⟩+ 𝑏𝑐|10⟩+ 𝑏𝑑|11⟩

Khi đó toán tử control có dạng ma trận là

𝑐𝒰 =

⎛⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 𝑐11 𝑐12
0 0 𝑐21 𝑐22

⎞⎟⎟⎠
Hay viết dưới dạng ma trận khối là 𝑐𝒰 =

(︂
𝐼 𝒪
𝒪 𝒰

)︂
.

Ta cũng viết tích |𝑥⟩ ⊗ |𝑦⟩ dưới dạng vector cột (4 phần tử). Khi đó

𝒰(|𝑥⟩ ⊗ |𝑦⟩) =

⎛⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 𝑐11 𝑐12
0 0 𝑐21 𝑐22

⎞⎟⎟⎠ ·
⎛⎜⎜⎝
𝑎𝑐
𝑎𝑑
𝑏𝑐
𝑏𝑑

⎞⎟⎟⎠ =

⎛⎜⎜⎝
𝑎𝑐
𝑎𝑑

𝑐11 · 𝑏𝑐+ 𝑐12 · 𝑏𝑑
𝑐21 · 𝑏𝑐+ 𝑐22 · 𝑏𝑑

⎞⎟⎟⎠
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Hai phần tử đầu của vector kết quả không thay đổi, còn phần sau có "một phần" là 𝒰|𝑦⟩. Khi viết lại kết
quả dưới dạng qubit thì

𝑎𝑐|00⟩+ 𝑎𝑑|01⟩+ (𝑐11 · 𝑏𝑐+ 𝑐12 · 𝑏𝑑)|10⟩+ (𝑐21 · 𝑏𝑐+ 𝑐22 · 𝑏𝑑)|11⟩

Ta có một số nhận xét sau đây.

INFO-CIRCLE Remark 6.8

Nếu |𝑥⟩ ≡ |0⟩, tức là 𝑎 = 1, 𝑏 = 0 thì tích trên tương ứng với

𝑐|00⟩+ 𝑑|01⟩+ 0|10⟩+ 0|11⟩ = |0⟩ ⊗ (𝑐|0⟩+ 𝑑|1⟩) = |𝑥⟩ ⊗ |𝑦⟩.

Nếu |𝑥⟩ ≡ |1⟩, tức là 𝑎 = 0, 𝑏 = 1 thì tích trên tương ứng với

0|00⟩+ 0|01⟩+ (𝑐11𝑐+ 𝑐12𝑑)|10⟩+ (𝑐21𝑐+ 𝑐22𝑑)|11⟩ = |1⟩ ⊗ ((𝑐11𝑐+ 𝑐12𝑑)|0⟩+ (𝑐21𝑐+ 𝑐22𝑑)|1⟩) = |1⟩ ⊗ 𝒰|𝑦⟩ = |𝑥⟩ ⊗ 𝒰|𝑦⟩.

Tổng kết lại, với 𝑥 ∈ {0, 1} thì

• nếu 𝑥 = 0 thì |𝑥⟩ ⊗ |𝑦⟩ → |𝑥⟩ ⊗ |𝑦⟩.

• nếu 𝑥 = 1 thì |𝑥⟩ ⊗ |𝑦⟩ → |𝑥⟩ ⊗ 𝒰|𝑦⟩.

Tùy vào 𝑥 là 0 hay 1 mà toán tử quantum 𝒰 sẽ bị bỏ qua hoặc xem xét. Ở đây qubit |𝑥⟩ đóng vai trò điều
khiển nên đây được gọi là toán tử control.

INFO-CIRCLE Definition 6.8 (Toán tử control CNOT, Control NOT)

Toán tử quantum CNOT có ma trận là⎛⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞⎟⎟⎠ =

(︂
𝐼 𝒪
𝒪 NOT

)︂

Qubit |𝑥⟩ với 𝑥 ∈ {0, 1} đóng vai trò control cho qubit |𝑦⟩. Khi 𝑥 ≡ 0 thì 𝑦 giữ nguyên, hay |𝑦⊕0⟩ = |𝑦⊕𝑥⟩.
Khi 𝑥 ≡ 1 thì áp dụng cổng NOT bên trên, khi đó 𝑦 biến đổi thành 𝑦 ⊕ 1 = 𝑦 ⊕ 𝑥.

3.3.7 Zero Knowledge Proof
Giới thiệu

Zero Knowledge Proof (ZKP) là một protocol mật mã cho phép một bên thuyết phục bên còn lại rằng họ
sở hữu những thông tin quan trọng mà không để lộ bất cứ gì về chính thông tin quan trọng đó.

Khi đó, bên thuyết phục được gọi là prover, bên đưa ra thử thách để prover chứng minh bản thân gọi là
challenger hoặc verifier.

INFO-CIRCLE Tính chất của zero knowledge proof

Mỗi protocol zero-knowledge phải đảm bảo ba tính chất sau:

1. Completeness (tính đầy đủ): nếu mệnh đề đúng thì verifier có thể xác nhận và bị thuyết phục bởi
prover.
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2. Soundness: nếu mệnh đề sai thì prover không thể thuyết phục verifier rằng nó đúng.

3. Zero-knowlegde: verifier không biết gì về tính đúng sai của mệnh đề.

Lấy một ví dụ đơn giản để xem cách hoạt động của ZKP là protocol QR1.

Protocol PQ

Mệnh đề cần kiểm tra: 𝑥 là một thặng dư chính phương modulo 𝑛. Prover muốn chứng minh với verifier
rằng mình biết căn bậc hai của 𝑥 trong modulo 𝑛.

Public input

Số 𝑥 và modulo 𝑛, với 0 6 𝑥 < 𝑛.

Quá trình tạo proof

Quá trình tạo proof (thuyết phục) diễn ra như sau:

Prover (Alice) Verifier (Bob)
Public input: 𝑥 (mod 𝑛)
Private input: 𝑤 (mod 𝑛) thỏa 𝑥 = 𝑤2 (mod 𝑛)
Chọn ngẫu nhiên số 𝑢 từ Z*

𝑛

Gửi Bob 𝑦 = 𝑢2 (mod 𝑛)
Chọn ngẫu nhiên 𝑏 ∈ {0, 1}
Gửi 𝑏 cho Alice

Gửi 𝑧 = 𝑤𝑏 · 𝑢 cho Bob

Quá trình verification

Gọi 𝑧 là số được gửi bởi Alice. Bob kiểm tra

𝑧2
?
= 𝑥𝑏 · 𝑦.

Như vậy:

1. Nếu 𝑏 = 0 thì 𝑧2 = 𝑦 = 𝑢2 (mod 𝑛).

2. Nếu 𝑏 = 1 thì 𝑧2 = 𝑥𝑦 = (𝑤𝑢)2 (mod 𝑛).

Nguyên lí hoạt động

Bob chỉ biết 𝑥 và 𝑛 trong khi Alice biết căn bậc hai của 𝑥 modulo 𝑛.

Ở đây Alice muốn thuyết phục Bob rằng mình biết căn bậc hai của 𝑥 trong modulo 𝑛.

Nếu Alice thật sự biết căn bậc hai của 𝑥 là 𝑤, hay 𝑥 = 𝑤2 (mod 𝑛), thì Alice cần chứng minh cho Bob thấy.

1. Alice chọn số random 𝑢 ∈ Z*
𝑛 và gửi 𝑦 = 𝑢2 (mod 𝑛) cho Bob.

2. Bob chọn ngẫu nhiên 𝑏 ∈ {0, 1} và gửi cho Alice.

Với mỗi trường hợp của 𝑏:
1 https://www.cs.princeton.edu/courses/archive/fall07/cos433/lec15.pdf
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• nếu 𝑏 = 0 thì Alice cần tính căn bậc hai của 𝑦 modulo 𝑛 và gửi cho Bob. Đó chính là 𝑢;

• nếu 𝑏 = 1 thì Alice cần tính căn bậc hai của 𝑥𝑦 (𝑥 public và 𝑦 được gửi trước đó). Ta có 𝑥𝑦 = 𝑤2𝑢2

(mod 𝑛) nên Alice cần gửi 𝑤𝑢. Nếu Alice thật sự biết căn bậc hai của 𝑥 thì có thể tính được 𝑤𝑢;

Bob có thể kiểm tra số 𝑧 được gửi tới có thỏa mãn 𝑧2 = 𝑦 (mod 𝑛) (nếu 𝑏 = 0) hoặc thỏa mãn 𝑧2 = 𝑥𝑦
(mod 𝑛) (nếu 𝑏 = 1) hay không.

Trong ví dụ trên, ta thấy các tính chất của ZKP:

1. Completeness: khi 𝑥 thực sự là số chính phương modulo 𝑛 và Alice có thể đưa số 𝑤 sao cho 𝑥 = 𝑤2

(mod 𝑛) thì Bob sẽ chấp nhận với xác suất bằng 1. Điều này khá dễ thấy;

2. Soundness: nếu 𝑥 không là số chính phương modulo 𝑛 thì Bob có thể bác bỏ chứng minh của Alice với
xác suất ít nhất 1/2 (trong trường hợp 𝑏 = 1). Trong khi đó 𝑏 = 0 thì vẫn có "cơ may" đúng;

3. Zero knowledge: Bob không biết bất cứ thông tin nào liên quan đến Alice nhưng Alice có thể thuyết
phục Bob tin rằng mình biết căn bậc hai của 𝑥. Zero knowledge có nghĩa là trong suốt quá trình Bob
không biết thêm thông tin gì hơn từ Alice.

Mô hình Zero Knowledge Proof

Phần tiếp theo được tổng hợp từ một số nguồn dành cho newbie2.

ZKP bao gồm ba bước là: key generation, proof generation và verification.

1. Key generation

Bước này tạo các tham số để một bên proof và để bên còn lại verification.

Thông thường, ở bước này có một hàm 𝐶(𝑥,𝑤) nhận hai tham số là 𝑥 (public input) và 𝑤 (private input,
witness).

Một tham số private là 𝜆 giúp việc sinh ra các tham số gồm public key 𝑝𝑘 và private key 𝑣𝑘.

Ký hiệu: Setup(𝐶, 𝜆)→ (𝑝𝑘, 𝑣𝑘).

Trong đó 𝑝𝑘 được gửi cho prover để họ chứng minh bản thân (thuyết phục verifier rằng họ sở hữu thông
tin).

Ngược lại, 𝑣𝑘 được gửi cho verifier để họ kiểm tra mệnh đề từ prover.

2. Proof generation

Bước này thực hiện bởi prover để sinh ra giá trị gửi cho bên verifier kiểm tra.

Với đầu vào gồm private input là 𝑤, public input là 𝑥 và public key là 𝑝𝑘, prover sẽ tính toán prf rồi gửi
cho verifier.

Ký hiệu: Prove(𝑤, 𝑥, 𝑝𝑘)→ prf.

3. Verification

Bước này thực hiện bởi verifier để kiểm tra mệnh đề prf được gửi từ prover.

Với đầu vào gồm public input 𝑥, proof là prf và private key là 𝑣𝑘, verifier kiểm tra tính đúng đắn của prf.

Ký hiệu: Verify(𝑥, prf, 𝑣𝑘)→ đúng (nếu hợp lệ) hoặc sai (ngược lại).
2 What is a zk-SNARK? URL - https://blog.thirdweb.com/what-is-a-zk-snark/
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Plonk Protocol

[TODO] Viết lại.

Elliptic curve và pairing

Elliptic curve

Đường cong elliptic trên trường F có dạng 𝑦2 = 𝑥3 + 𝑎𝑥+ 𝑏 với 𝑥, 𝑦, 𝑎, 𝑏 thuộc F và 𝑎, 𝑏 là các phần tử cho
trước.

Khi đó đường cong elliptic là tập hợp các điểm (𝑥, 𝑦) thỏa mãn phương trình trên và điểm vô cực 𝒪.

Để lấy ví dụ, xét F101 là trường modulo 101 và đường cong elliptic với phương trình 𝑦2 = 𝑥3 +3 (mod 101).

Pairing

Gọi G1,G2,G𝑡 là các nhóm có cùng order bằng 𝑟 và 𝑒 là một pairing. Khi đó 𝑒 là ánh xạ sao cho

G1 ×G2 → G𝑡 : 𝑒(𝑔1, 𝑔2) = 𝑔𝑡.

Embedding degree

Order của đường cong elliptic trên là 102 = 2 · 3 · 17. Như vậy tồn tại các điểm trên đường cong có order là
17. Tuy nhiên, chung ta cần nhiều điểm khác cũng có order là 17 nhưng không nằm trên đường cong F101.
Lúc này chúng ta sẽ mở rộng trường lên F101𝑘 .

Bậc thấp nhất của mở rộng trường (với characteristic 𝑝) chứa tất cả điểm với order 𝑟 được gọi là embedding
degree. Nói đơn giản, embedding degree là số 𝑘 nhỏ nhất mà 𝑟 | (𝑝𝑘 − 1).

Trong ví dụ này thì 𝑟 = 17 là order của điểm và 𝑘 = 2.

Khi đó trường mở rộng F1012 với đa thức tối giản 𝑥2 + 2 cho đường cong với các điểm order 17.

Mỗi phần tử trong F1012 có dạng 𝑎+ 𝑏𝑥 với 𝑎, 𝑏 ∈ F101.

Mạch Plonk

Trusted setup

Chúng ta cần một trusted setup gọi là structured reference string (SRS, chuỗi liên kết cấu trúc).

SRS là một danh sách các điểm trên đường cong elliptic được tính toán từ một số bí mật sinh ngẫu nhiên
𝑠. Theo paper PLONK thì một mạch 𝑛 cổng sẽ cần 𝑛+ 5 điểm sau:

SRS : 1 ·𝐺1, 𝑠 ·𝐺1, · · · , 𝑠𝑛+2 ·𝐺1,

1 ·𝐺2, 𝑠 ·𝐺2.

Trong ví dụ này, 𝑠 giúp sinh ra các điểm trong subgroup với generator là 𝐺1. Do 𝐺1 có order là 17, 𝑠 không
được vượt quá 17.

Chọn 𝐺1 = (1, 2) và 𝐺2 = (36, 31𝑥) là hai generator cho hai subgroup đều có order là 17.

Xét 𝑠 = 2 (cho dễ tính) và 𝑛 = 4 (có 4 cổng). Khi đó 1 ·𝐺1, 𝑠 ·𝐺1, · · · , 𝑠𝑛+2 ·𝐺1 là các điểm sau:

1 ·𝐺1 = (1, 2) 𝑠 ·𝐺1 = (68, 74) 𝑠2 ·𝐺1 = (65, 98) 𝑠3 ·𝐺1 = (18, 49)
𝑠4 ·𝐺1 = (1, 99) 𝑠5 ·𝐺1 = (68, 27) 𝑠6 ·𝐺1 = (65, 3)

Tương tự, 1 ·𝐺2 và 𝑠 ·𝐺2 là các điểm (36, 31𝑥) và (90, 82𝑥).
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Như vậy,

SRS : (1, 2), (68, 74), (65, 98), (18, 49), (1, 99), (68, 27), (65, 3)

(36, 31𝑥), (90, 82𝑥).

Mạch PLONK

Plonk circuit là mạch được biểu diễn ở dạng đa thức (gồm phép cộng và nhân). Trong đó mỗi cổng, hay
constrain, thực hiện một thao tác (cộng hoặc nhân).

Ví dụ với định lý Pythagoras

Giả sử chúng ta có bộ ba (3, 4, 5) và chúng ta muốn kiểm tra xem chúng có thỏa mãn phương trình Pythagoras
𝑎2 + 𝑏2 = 𝑐2 hay không.

Giả sử bộ ba (3, 4, 5) sẽ đi vào ba đầu là 𝑥1, 𝑥3, 𝑥5. Khi đó mạch tính

𝑥1 · 𝑥1 = 𝑥2

𝑥3 · 𝑥3 = 𝑥4

𝑥5 · 𝑥5 = 𝑥6

𝑥2 + 𝑥4 = 𝑥6

Phương trình cuối cho kết quả 𝑥21 + 𝑥23 = 𝑥25 là điều kiện thỏa mãn phương trình Pythagoras. Mỗi 𝑥𝑖 được
gọi là "wire" (dây). Mạch này đi qua ba cổng nhân và một cổng cộng. Ta có thể viết tất cả 𝑥𝑖 thành vector
x = (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6). Đối với ví dụ bộ ba (3, 4, 5) thì

x = (3, 9, 4, 16, 5, 25).

Tương tự, đối với bộ ba (5, 12, 13) thì

x = (5, 25, 12, 144, 13, 169).

Mỗi cổng plonk sẽ gồm hai dây input trái và phải, và một dây output. Ta gọi dây input trái và phải lần lượt
là 𝑎 và 𝑏, còn dây output là 𝑐.

Cổng plonk phức tạp hơn cổng cộng hoặc nhân để kiểm tra bộ ba Pythagoras ở trên. Cổng plonk đầy đủ có
dạng

(𝑞𝐿) · 𝑎+ (𝑞𝑅) · 𝑏+ (𝑞𝑂) · 𝑐+ (𝑞𝑀 ) · 𝑎𝑏+ 𝑞𝐶 = 0.

Trong đó 𝑎, 𝑏 là hai dây input trái và phải, 𝑐 là dây output, còn lại là các hệ số cho trước.

Ví dụ. Đối với đẳng thức 𝑎+ 𝑏 = 𝑐 thì ta cho 𝑞𝐿 = 𝑞𝑅 = 1, 𝑞𝑂 = −1 và 𝑞𝑀 = 𝑞𝐶 = 0.

Mạch kiểm tra bộ ba Pythagoras bên trên có thể được viết lại dưới dạng mạch với các cổng plonk như sau

0 · 𝑎1 + 0 · 𝑏1 + (−1) · 𝑐1 + 1 · 𝑎1𝑏1 + 0 = 0
0 · 𝑎2 + 0 · 𝑏2 + (−1) · 𝑐2 + 1 · 𝑎2𝑏2 + 0 = 0
0 · 𝑎3 + 0 · 𝑏3 + (−1) · 𝑐3 + 1 · 𝑎3𝑏3 + 0 = 0
1 · 𝑎4 + 1 · 𝑏4 + (−1) · 𝑐4 + 0 · 𝑎3𝑏3 + 0 = 0

Bốn cổng plonk này tương đương bốn cổng kiểm tra bên trên. Tương tự bên trên, nếu gọi a là vector các
dây input trái, b là vector các dây input phải và c là các dây output thì

a = (3, 4, 5, 9), b = (3, 4, 5, 16), c = (9, 16, 25, 25).
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Ta cũng viết hệ số cổng plonk dưới dạng vector, khi đó

qL = (0, 0, 0, 1),

qR = (0, 0, 0, 1),

qO = (−1,−1,−1,−1),
qM = (1, 1, 1, 0),

qC = (0, 0, 0, 0)

Lúc này, các vector q được gọi là selector và sẽ giúp xây dựng nên cấu trúc của mạch. Các vector a,b, c
thể hiện các biến của mạch và là private input của Prover (bên chứng minh ZKP).

Proof

Roots of unity

Trong trường F có phần tử đơn vị là 1. Nghiệm bậc 𝑛 của 1 là các nghiệm 𝑥 thỏa mãn phương trình 𝑥𝑛 = 1.

Ở ví dụ trên, mỗi subgroup đều có order là 17. Bây giờ các tính toán của chúng ta sẽ nằm trong F17.

Nhắc lại, các vector a,b, c cũng như các vector hệ số qL,qR,qO,qM,qC đều có bốn phần tử. Chúng ta có
cách xây dựng đa thức 𝑓(𝑥) từ các cặp (𝑥𝑖, 𝑓(𝑥𝑖)) là đa thức nội suy.

Khi đó, mỗi vector ở trên sẽ tương ứng 𝑓(𝑥𝑖) với 1 6 𝑖 6 4. Đa thức sinh ra là đa thức bậc 3.

Ứng với mỗi vector a,b, c ta xây dựng một đa thức bậc 3. Do có 3 · 4 = 12 giá trị 𝑥𝑖 nên ta cần một "cơ
chế" để tách trường F17 thành 3 tập rời nhau, mỗi tập 4 phần tử.

Đầu tiên là cần một tập con của F17 có 4 phần tử. Tập con này là tập nghiệm của 𝑥4 = 1 (mod 17). Phương
trình này có nghiệm và may thay là có đủ 4 nghiệm. Gọi 𝐻 là tập các nghiệm của phương trình 𝑥4 = 1
(mod 17) thì 𝐻 = {1, 4, 16, 13}.

Ta cần tìm thêm hai tập con khác của F17, cũng chứa 4 phần tử và không giao nhau với 𝐻. Chúng ta sẽ
dùng coset vì hai coset bất kì của nhóm hoặc là không giao nhau, hoặc là trùng nhau.

Chọn 𝑘1 = 2 và 𝑘2 = 3 thì ta có các coset

1𝐻 = {1, 4, 16, 13}, 𝑘1𝐻 = {2, 8, 15, 9}, 𝑘2𝐻 = {3, 12, 14, 5}.

Với vector a = {𝑎1, 𝑎2, 𝑎3, 𝑎4}, ta mong muốn 𝑓a(ℎ𝑖) = 𝑎𝑖 với ℎ𝑖 ∈ 𝐻, nghĩa là 𝑓a(1) = 3, 𝑓a(4) = 4,
𝑓a(16) = 5 và 𝑓a(13) = 9. Sử dụng đa thức nội suy Lagrange có thể tìm được hàm 𝑓a(𝑥) = 1+13𝑥+3𝑥2+3𝑥3.

Tương tự ta cũng tìm được đa thức nội suy cho các vector còn lại (tất cả đều dùng 𝐻).

𝑓a(𝑥) = 1 + 13𝑥+ 3𝑥2 + 3𝑥3

𝑓b(𝑥) = 7 + 3𝑥+ 14𝑥2 + 13𝑥2

𝑓c(𝑥) = 6 + 5𝑥+ 11𝑥2 + 4𝑥3

𝑓qL(𝑥) = 13 + 𝑥+ 4𝑥2 + 16𝑥3

𝑓qR(𝑥) = 13 + 𝑥+ 4𝑥2 + 16𝑥3

𝑓qO(𝑥) = 16

𝑓qM(𝑥) = 5 + 16𝑥+ 13𝑥3 + 𝑥3

𝑓qC(𝑥) = 0

Một vấn đề xảy ra là, bốn cổng plonk ở trên là rời nhau và không liên quan gì nhau. Do đó chúng ta cần
một phương án để "nối" output từ cổng này thành input của cổng kia.
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Để làm việc này, ta đánh nhãn vector a bởi 𝐻, vector b bởi 𝑘1𝐻 và vector c bởi 𝑘2𝐻. Cụ thể ta có ánh xạ

𝑎1 = 𝑏1 1→ 2
𝑎2 = 𝑏2 4→ 8
𝑎3 = 𝑏3 16→ 15
𝑎4 = 𝑐1 13→ 3
𝑏1 = 𝑎1 2→ 1
𝑏2 = 𝑎2 8→ 4
𝑏3 = 𝑎3 15→ 16
𝑏4 = 𝑐2 9→ 12
𝑐1 = 𝑎4 3→ 13
𝑐2 = 𝑏4 12→ 8
𝑐3 = 𝑐4 14→ 5
𝑐4 = 𝑐3 5→ 14

Gọi 𝜎1, 𝜎2, 𝜎3 lần lượt là output khi ánh xạ tác động lên 𝐻, 𝑘1𝐻, 𝑘2𝐻. Theo bảng trên thì 𝜎1 =
(2, 8, 15, 3), 𝜎2 = (1, 4, 16, 12), 𝜎3 = (13, 8, 5, 14).

Mỗi tác động như vậy thực chất tương ứng với một đa thức bậc 3.

Gọi 𝑆𝜎1
là đa thức từ 𝐻 tới 𝜎1. Sử dụng nội suy Lagrange ta tính được 𝑆𝜎1

= 7 + 13𝑥+ 10𝑥2 + 6𝑥3.

Tương tự, gọi 𝑆𝜎2 là đa thức từ 𝑘1𝐻 tới 𝜎2 và 𝑆𝜎3 là đa thức từ 𝑘2𝐻 tới 𝜎3. Ta tính được 𝑆𝜎2 = 4+13𝑥2+𝑥3

và 𝑆𝜎3
= 6 + 7𝑥+ 3𝑥2 + 14𝑥3.

Đến đây ta có đủ thành phần để tạo proof, gồm 5 vòng.

Round 1

Round 1 bao gồm các bước:

• tạo random các phần tử 𝑏1, . . . , 𝑏6 ∈ F17;

• tính các đa thức 𝑎(𝑥), 𝑏(𝑥), 𝑐(𝑥) theo công thức

𝑎(𝑥) = (𝑏1𝑥+ 𝑏2) · 𝑍𝐻 + 𝑓a(𝑥)

𝑏(𝑥) = (𝑏3𝑥+ 𝑏4) · 𝑍𝐻 + 𝑓b(𝑥)

𝑐(𝑥) = (𝑏5𝑥+ 𝑏6) · 𝑍𝐻 + 𝑓c(𝑥).

Output là [𝑎(𝑠)], [𝑏(𝑠)], [𝑐(𝑠)], trong đó 𝑍𝐻 là đa thức sao cho mọi phần tử của subgroup 𝐻 là nghiệm của
𝑍𝐻 . Do các phần tử trong 𝐻 là nghiệm của 𝑥4 = 1 (mod 17) nên 𝑍𝐻 = 𝑥4 − 1.

Giả sử ta chọn (ngẫu nhiên) các phần tử 𝑏1 = 7, 𝑏2 = 4, 𝑏3 = 11, 𝑏4 = 12, 𝑏5 = 16, 𝑏6 = 2. Khi đó

𝑍𝐻(𝑥) = 𝑥4 − 1

𝑎(𝑥) = · · · = 14 + 6𝑥+ 3𝑥2 + 3𝑥3 + 4𝑥4 + 7𝑥5

𝑏(𝑥) = · · · = 12 + 9𝑥+ 14𝑥2 + 13𝑥3 + 12𝑥4 + 11𝑥5

𝑐(𝑥) = · · · = 4 + 6𝑥+ 11𝑥2 + 4𝑥3 + 2𝑥4 + 16𝑥5.

Tiếp theo ta tính [𝑎(𝑠)], [𝑏(𝑠)], [𝑐(𝑠)] là các điểm trên đường cong sử dụng SRS ban đầu và hệ số của các đa
thức 𝑎(𝑥), 𝑏(𝑥), 𝑐(𝑥). Cụ thể prover sẽ tính

[𝑎(𝑠)] = 14 · (1, 2) + 6 · (68, 74) + 3 · (65, 98)
+ 3 · (18, 49) + 4 · (1, 99) + 7 · (68, 27) = (91, 66).

Tương tự cho [𝑏(𝑠)] và [𝑐(𝑠)]. Như vậy ta có

[𝑎(𝑠)] = (91, 66), [𝑏(𝑠)] = (26, 45), [𝑐(𝑠)] = (91, 35).
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Round 2

Round 2 được thực hiện qua các bước:

• random các phần tử 𝑏7, 𝑏8, 𝑏9 ∈ F17;

• nhận challenge từ verifier là 𝛽, 𝛾 ∈ F17;

• tính 𝑧(𝑥) theo công thức:

𝑧(𝑥) = (𝑏7𝑥
2 + 𝑏8𝑥+ 𝑏9) · 𝑍𝐻(𝑥) + acc(𝑥).

Ở round này, chúng ta commit một đa thức 𝑧(𝑥) để encode cho việc copy contrains (nối các dây của cổng)
bên trên. Đa thức acc(𝑥) sẽ được đề cập sau.

Các giá trị challenge 𝛽, 𝛾 phụ thuộc vào protocol là interactive (tương tác) hay non-interactive.

• trong protocol interactive, verifier chọn các giá trị này và gửi cho prover để prover tạo ra proof;

• trong protocol non-interactive, các giá trị này sinh ra từ quá trình tính toán của prover và đi qua một
hàm hash mật mã.

Trong cả hai trường hợp, giá trị này là không thể đoán trước và cần được tính giống nhau (về hàm hash, về
trường) ở cả hai phía. Do đó quá trình này còn được gọi là biến đổi Fiat-Shamir có thể biến interactive
thành non-interactive protocol.

Trước tiên ta cần tìm hiểu cơ chế interactive, ở đó verifier gửi các challenge cho prover.

Giả sử 𝛽 = 12, 𝛾 = 13.

Hàm 𝑧(𝑥) ở trên được xây dựng từ các accumulator vector, định nghĩa như sau:

acc0 = 1

acc𝑖 = acc𝑖−1 ·
(︂

(𝑎𝑖 + 𝛽 · 𝑤𝑖−1 + 𝛾) · (𝑏𝑖 + 𝛽𝑘1𝑤
𝑖−1 + 𝛾) · (𝑐𝑖 + 𝛽𝑘2𝑤

𝑖−1 + 𝛾)

(𝑎𝑖 + 𝛽𝑆𝜎1
(𝑤𝑖−1) + 𝛾) · (𝑏𝑖 + 𝛽𝑘1𝑆𝜎2

(𝑤𝑖−1) + 𝛾) · (𝑐𝑖 + 𝛽𝑘2𝑆𝜎3
(𝑤𝑖−1) + 𝛾)

)︂
Do cách định nghĩa 𝑆𝜎 ở trên mà sẽ có những phần ở tử và mẫu giản lược nhau, và tất nhiên là một số thì
không.

Bằng tính toán trực tiếp thu được

acc0 = 1, acc1 = 3, acc2 = 9, acc3 = 4.

Khi đó đa thức acc(𝑥) tương ứng với đa thức nội suy từ nguồn là subgroup 𝐻 = {1, 4, 16, 13} và ảnh tương
ứng là vector acc = (1, 3, 9, 4).

Nói cách khác là acc(1) = 1, acc(4) = 3, acc(16) = 9 và acc(13) = 4. Từ đó ta có

acc(𝑥) = 16𝑥+ 5𝑥2 + 14𝑥3.

Thay vào công thức tính 𝑧(𝑥) ta có

𝑧(𝑥) =(14𝑥2 + 11𝑥+ 7)(𝑥4 − 1) + 16𝑥+ 5𝑥2 + 14𝑥3

=10 + 5𝑥+ 8𝑥2 + 14𝑥3 + 7𝑥4 + 11𝑥5 + 14𝑥6.

Cuối cùng thay giá trị secret 𝑠 vào 𝑧(𝑥) ta có 𝑧(𝑠) = 𝑧(2) = 11 và tính [𝑧(𝑠)] = 11(1, 2) = (32, 59).
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Round 3

Round này chứa một lượng lớn tính toán. Chúng ta sẽ tính đa thức 𝑡(𝑥) bậc 3𝑛+ 5 với 𝑛 là số lượng cổng.
Đa thức 𝑡(𝑥) sẽ chứa mạch và tất cả assignment cùng lúc.

Quá trình ở round 3 gồm:

• tính quotient challenge 𝛼 ∈ F17;

• tính quotient polynomial 𝑡(𝑥)

𝑡(𝑥) = (𝑎(𝑥)𝑏(𝑥)𝑞𝑀 (𝑥) + 𝑎(𝑥)𝑞𝐿(𝑥) + 𝑏(𝑥)𝑞𝑅(𝑥) + 𝑐(𝑥)𝑞𝑂(𝑥) + PI(𝑥) + 𝑞𝐶(𝑥))
1

𝑍𝐻(𝑥)

+ ((𝑎(𝑥) + 𝛽𝑥+ 𝛾)(𝑏(𝑥) + 𝛽𝑘1𝑥+ 𝛾)(𝑐(𝑥) + 𝛽𝑘2𝑥+ 𝛾)𝑧(𝑥))
𝛼

𝑍𝐻(𝑥)

− ((𝑎(𝑥) + 𝛽𝑆𝜎1(𝑥) + 𝛾)(𝑏(𝑥) + 𝛽𝑆𝜎2(𝑥) + 𝛾)(𝑐(𝑥) + 𝛽𝑆𝜎3(𝑥) + 𝛾)𝑧(𝑥𝑤))
𝛼

𝑍𝐻(𝑥)

+(𝑧(𝑥)− 1)𝐿1(𝑥)
𝛼2

𝑍𝐻(𝑥)

• tách 𝑡(𝑥) thành các đa thức bậc nhỏ hơn 𝑛+ 2 là 𝑡10(𝑥), 𝑡mid(𝑥) và 𝑡ni(𝑥) sao cho

𝑡(𝑥) = 𝑡10(𝑥) + 𝑥𝑛+2𝑡mid(𝑥) + 𝑥2𝑛+4𝑡ni(𝑥).

Đầu ra của round 3 là [𝑡10(𝑠)], [𝑡mid(𝑥)] và [𝑡ni(𝑥)].

Dòng cuối có 𝐿1(𝑥) sẽ được định nghĩa dưới đây.

𝐿1(𝑥) là cơ sở của đa thức nội suy từ 𝐻. Với 𝐿1(1) = 1, các giá trị còn lại cho ảnh bằng 0. Khi đó 𝐿1(𝑥)
tương ứng vector (1, 0, 0, 0) nên 𝐿1(𝑥) = 13 + 13𝑥+ 13𝑥3 + 13𝑥3.

Verifier chọn số 𝛼 (ngẫu nhiên) và gửi cho prover.

Round 4

• verifier chọn một số z và gửi cho prover;

• prover khi đó cần tính

𝑎̄ = 𝑎(z) 𝑏̄ = 𝑏(z) 𝑐 = 𝑐(z)
𝑆𝜎1 = 𝑆𝜎1(z) 𝑆𝜎2 = 𝑆𝜎2(z)
𝑡 = 𝑡(z)

𝑧𝑤 = 𝑧(z𝑤)

• tính đa thức linearization
𝑟(𝑥) =𝑎̄𝑏̄𝑞𝑀 (𝑥) + 𝑎̄𝑞𝐿(𝑥) + 𝑏̄𝑞𝑅(𝑥) + 𝑐𝑞𝑂(𝑥) + 𝑞𝐶(𝑥)

+((𝑎̄+ 𝛽z+ 𝛾)(𝑏̄+ 𝛽𝑘1z+ 𝛾)(𝑐+ 𝛽𝑘2z+ 𝛾) · 𝑧(𝑥))𝛼
−((𝑎̄+ 𝛽𝑆𝜎1

+ 𝛾)(𝑏̄+ 𝛽𝑆𝜎2
+ 𝛾)𝛽𝑧𝑤 · 𝑆𝜎3

(𝑠))𝛼

+𝑧(𝑥)𝐿1(z)𝛼
2

• tính linearization evaluation 𝑟 = 𝑟(z).

Output của round 5 là các giá trị

(𝑎̄, 𝑏̄, 𝑐, 𝑆𝜎1 , 𝑆𝜎2 , 𝑧𝑤, 𝑡, 𝑧).
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Round 5

Verifier chọn số ngẫu nhiên 𝑣 ∈ F17 và gửi cho prover.

• tính đa thức đầu cho proof là 𝑊z(𝑥) như sau

𝑊z(𝑥) =
1

𝑥− z

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑡10(𝑥) + z𝑛+2𝑡mid(𝑥) + z2𝑛+4𝑡ni(𝑥)− 𝑡
+𝑣(𝑟(𝑥)− 𝑟)
+𝑣2(𝑎(𝑥)− 𝑎̄)
+𝑣3(𝑏(𝑥)− 𝑏̄)
+𝑣4(𝑐(𝑥)− 𝑐)
+𝑣5(𝑆𝜎1

(𝑥)− 𝑆𝜎1
)

+𝑣6(𝑆𝜎2(𝑥)− 𝑆𝜎2)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
• tính đa thức tiếp theo cho proof là 𝑊z𝑤(𝑥):

𝑊z𝑤(𝑥) =
𝑧(𝑥)− 𝑧𝑤
𝑥− z𝑤

.

Output của round 5 là [𝑤z], [𝑤z𝑤].

Proof

Proof thu được là vector 𝜋SNARK như sau

𝜋SNARK = ([𝑎], [𝑏], [𝑐], [𝑧], [𝑡10], [𝑡mid], [𝑡ni], [𝑊z], [𝑊z𝑤], 𝑎̄, 𝑏̄, 𝑐, 𝑆𝜎1
, 𝑆𝜎2

, 𝑟, 𝑧𝑤).

Code mẫu với SageMath

from sage.all import *

F101 = GF(101)['xn']; xn = F101.gen()
F101_2 = GF(101**2, name='yn', modulus=xn**2 + 2)

Ec = EllipticCurve(F101_2, [0, 3])

G1 = Ec(1, 2)
G2 = Ec(36, 31*xn)

s = 2
n = 4
SRS = []
for i in range(n+3):

SRS.append(s**i * G1)
for i in range(2):

SRS.append(s**i * G2)

print([srs.xy() for srs in SRS])

F17 = GF(17)
Pol = PolynomialRing(F17, 'x')
x = Pol.gen()

(continues on next page)
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Z_H = x**4 - 1

k1, k2 = 2, 3
H = [F17(i) for i in [1, 4, 16, 13]]
assert set(H) == set([z[0] for z in Z_H.roots()])
k1_H = [F17(k1 * h) for h in H]
k2_H = [F17(k2 * h) for h in H]

print(f"k1 H = {k1_H}, k2 H = {k2_H}")

ai = [3, 4, 5, 9]
bi = [3, 4, 5, 16]
ci = [9, 16, 25, 25]
qLi = [0, 0, 0, 1]
qRi = [0, 0, 0, 1]
qOi = [-1, -1, -1, -1]
qMi = [1, 1, 1, 0]
qCi = [0, 0, 0, 0]

fa = Pol.lagrange_polynomial(list(zip(H, ai)))
fb = Pol.lagrange_polynomial(list(zip(H, bi)))
fc = Pol.lagrange_polynomial(list(zip(H, ci)))
fqL = Pol.lagrange_polynomial(list(zip(H, qLi)))
fqR = Pol.lagrange_polynomial(list(zip(H, qRi)))
fqO = Pol.lagrange_polynomial(list(zip(H, qOi)))
fqM = Pol.lagrange_polynomial(list(zip(H, qMi)))
fqC = Pol.lagrange_polynomial(list(zip(H, qCi)))

sigma_1 = list(map(F17, [2, 8, 15, 3]))
sigma_2 = list(map(F17, [1, 4, 16, 12]))
sigma_3 = list(map(F17, [13, 8, 5, 14]))

S_sig_1 = Pol.lagrange_polynomial(list(zip(H, sigma_1)))
S_sig_2 = Pol.lagrange_polynomial(list(zip(k1_H, sigma_2)))
S_sig_3 = Pol.lagrange_polynomial(list(zip(k2_H, sigma_3)))

# Dưới đây là kết quả tính theo ví dụ, khác phần trên
S_sig_2 = x**3 + 13*x**2 + 4
S_sig_3 = 14*x**3 + 3*x**2 + 7*x + 6

# Round 1

b_coeffs = [7, 4, 11, 12, 16, 2]

ax = (b_coeffs[0] * x + b_coeffs[1]) * Z_H + fa
bx = (b_coeffs[2] * x + b_coeffs[3]) * Z_H + fb
cx = (b_coeffs[4] * x + b_coeffs[5]) * Z_H + fc

ass = sum(i * j for i, j in zip(ax.coefficients(), SRS))
bss = sum(i * j for i, j in zip(bx.coefficients(), SRS))
css = sum(i * j for i, j in zip(cx.coefficients(), SRS))

(continues on next page)
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print(ass.xy(), bss.xy(), css.xy())

# Round 2

b_coeffs.extend([14, 11, 7])

beta_, gamma_ = 12, 13

w = 4 # Choose from H
acc = [1]
for i in range(1, len(H)):

numerator_ = (ai[i-1] + beta_ * w**(i-1) + gamma_)
numerator_ *= (bi[i-1] + beta_ * k1 * w**(i-1) + gamma_)
numerator_ *= (ci[i-1] + beta_ * k2 * w**(i-1) + gamma_)

denominator_ = (ai[i-1] + beta_ * S_sig_1(w**(i-1)) + gamma_)
denominator_ *= (bi[i-1] + beta_ * S_sig_2(w**(i-1)) + gamma_)
denominator_ *= (ci[i-1] + beta_ * S_sig_3(w**(i-1)) + gamma_)

acc.append(acc[-1] * F17(numerator_) / F17(denominator_))

accx = Pol.lagrange_polynomial(list(zip(H, acc)))
print(accx)

zx = (b_coeffs[6] * x**2 + b_coeffs[7] * x + b_coeffs[8]) * Z_H + accx
zs = zx(s) * G1
print(f"[z(s)] = {zs.xy()}")

alpha = 15

L1x = Pol.lagrange_polynomial(list(zip(H, [1, 0, 0, 0])))

tx = (ax * bx * fqM + ax * fqL + bx * fqR + cx * fqO + 0 + fqC)
tx += (ax + beta_ * x + gamma_) * (bx + beta_ * k1 * x + gamma_) * (cx + beta_ * k2 * x␣
→˓+ gamma_) * zx * alpha
tx -= (ax + beta_ * S_sig_1 + gamma_) * (bx + beta_ * S_sig_2 + gamma_) * (cx + beta_ *␣
→˓S_sig_3 + gamma_) * zx(w * x) * alpha
tx += (zx - 1) * L1x * alpha * alpha

#print(tx.coefficients(sparse=False))

print(tx % Z_H)

tx //= (x**4 - 1)

tx_c = tx.coefficients(sparse=False)

#print(tx_c)

t10 = Pol(tx_c[0:6])
tmid = Pol(tx_c[6:12])
tni = Pol(tx_c[12:18])

(continues on next page)
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t10s = t10(s) * G1
tmids = tmid(s) * G1
tnis = tni(s) * G1

zz = 5

abar = ax(zz)
bbar = bx(zz)
cbar = cx(zz)
S_sig_1_bar = S_sig_1(zz)
S_sig_2_bar = S_sig_2(zz)
tbar = tx(zz)
zwbar = zx(w * zz)

rx = abar * bbar * fqM + abar * fqL + bbar * fqR + cbar * fqO + fqC
rx += (abar + beta_ * zz + gamma_) * (bbar + beta_ * k1 * zz + gamma_) * (cbar + beta_ *␣
→˓k2 * zz + gamma_) * zx * alpha
rx -= (abar + beta_ * S_sig_1_bar + gamma_) * (bbar + beta_ * S_sig_2_bar + gamma_) *␣
→˓beta_ * zwbar * S_sig_3 * alpha
rx += zx * L1x(zz) * alpha**2

rbar = rx(zz)

print(abar, bbar, cbar, S_sig_1_bar, S_sig_2_bar, zwbar, tbar, rbar)

v = F17(12)

wzx = t10 + zz**(n+2) * tmid + zz**(2*n+4) * tni - tbar
wzx += v * (rx - rbar)
wzx += v**2 * (ax - abar)
wzx += v**3 * (bx - bbar)
wzx += v**4 * (cx - cbar)
wzx += v**5 * (S_sig_1 - S_sig_1_bar)
wzx += v**6 * (S_sig_2 - S_sig_2_bar)
wzx //= (x - zz)

wzwx = (zx - zwbar) // (x - zz * w)

f__ = lambda fx, srs: sum(i * j for i, j in zip(fx.coefficients(sparse=False), srs))

a__ = f__(ax, SRS)
b__ = f__(bx, SRS)
c__ = f__(cx, SRS)
z__ = f__(zx, SRS)
t10__ = f__(t10, SRS)
tmid__ = f__(tmid, SRS)
tni__ = f__(tni, SRS)
wz__ = f__(wzx, SRS)
wzw__ = f__(wzwx, SRS)

(continues on next page)
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pi_snark = [a__, b__, c__, z__, t10__, tmid__, tni__, wz__, wzw__, abar, bbar, cbar, S_
→˓sig_1_bar, S_sig_2_bar, rbar, zwbar]
print(pi_snark)
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4
Lời giải cho những vấn đề

4.1 Lời giải các bài tập trong sách tham khảo

4.1.1 Abstract Algebra: Theory and Applications
Lời giải cho quyển sách Abstract Algebra: Theory and Applications của Thomas W. Judson [8].

Chương 3. Groups

INFO-CIRCLE Exercise (Bài 7)

Đặt 𝑆 = R ∖ {−1} và định nghĩa toán tử hai ngôi trên 𝑆 là 𝑎 ⋆ 𝑏 = 𝑎+ 𝑏+ 𝑎𝑏. Chứng minh rằng (𝑆, ⋆) là
nhóm Abel.

Để chứng minh (𝑆, ⋆) là nhóm ta chứng minh ba tiên đề của nhóm.

1. Giả sử tồn tại phần tử đơn vị 𝑒, khi đó 𝑒⋆𝑠 = 𝑠⋆𝑒 = 𝑠 với mọi 𝑠 ∈ 𝑆. Nghĩa là 𝑒+𝑠+𝑒𝑠 = 𝑠+𝑒+𝑠𝑒 = 𝑠.
Vậy 𝑒+ 𝑠𝑒 = 0 mà 𝑠 ̸= −1 nên 𝑒 = 0

2. Với 𝑒 = 0, giả sử với mọi 𝑠 ∈ 𝑆 có nghịch đảo 𝑠′. Do 𝑠⋆𝑠′ = 𝑠′⋆𝑠 = 𝑒 nên 𝑠+𝑠′+𝑠𝑠′ = 𝑠′+𝑠+𝑠′𝑠 = 𝑒 = 0,
tức là 𝑠′(1 + 𝑠) = −𝑠. Vậy 𝑠′ = −𝑠

1 + 𝑠

3. Với mọi 𝑎, 𝑏, 𝑐 ∈ 𝑆,

𝑎 ⋆ (𝑏 ⋆ 𝑐) = 𝑎 ⋆ (𝑏+ 𝑐+ 𝑏𝑐) = 𝑎+ (𝑏+ 𝑐+ 𝑏𝑐) + 𝑎(𝑏+ 𝑐+ 𝑏𝑐)

= 𝑎+ 𝑏+ 𝑐+ 𝑎𝑏+ 𝑏𝑐+ 𝑐𝑎+ 𝑎𝑏𝑐

và

(𝑎 ⋆ 𝑏) ⋆ 𝑐 = (𝑎+ 𝑏+ 𝑎𝑏) ⋆ 𝑐 = 𝑎+ 𝑏+ 𝑎𝑏+ 𝑐+ 𝑐(𝑎+ 𝑏+ 𝑏𝑐)

= 𝑎+ 𝑏+ 𝑐+ 𝑎𝑏+ 𝑏𝑐+ 𝑐𝑎+ 𝑎𝑏𝑐.

Như vậy 𝑎 ⋆ (𝑏 ⋆ 𝑐) = (𝑎 ⋆ 𝑏) ⋆ 𝑐, do đó ⋆ có tính kết hợp.

Vậy (𝑆, ⋆) là nhóm.
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INFO-CIRCLE Exercise (Bài 39)

Gọi 𝐺 là tập các ma trận 2× 2 với dạng (︂
cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

)︂
với 𝜃 ∈ R. Chứng minh rằng 𝐺 là subgroup của 𝑆𝐿2(R).

Với 𝜃1, 𝜃2 ∈ R, ta có (︂
cos 𝜃1 − sin 𝜃1
sin 𝜃1 cos 𝜃1

)︂(︂
cos 𝜃2 − sin 𝜃2
sin 𝜃2 cos 𝜃2

)︂
=

(︂
cos 𝜃1 cos 𝜃2 − sin 𝜃1 sin 𝜃2 − cos 𝜃1 sin 𝜃2 − sin 𝜃1 cos 𝜃2
sin 𝜃1 cos 𝜃2 + cos 𝜃1 sin 𝜃2 − sin 𝜃1 sin 𝜃2 + cos 𝜃1 cos 𝜃2

)︂
=

(︂
cos(𝜃1 + 𝜃2) − sin(𝜃1 + 𝜃2)
sin(𝜃1 + 𝜃2) cos(𝜃1 + 𝜃2)

)︂
,

suy ra định thức của tích hai ma trận là

det
(︂(︂

cos(𝜃1 + 𝜃2) − sin(𝜃1 + 𝜃2)
sin(𝜃1 + 𝜃2) cos(𝜃1 + 𝜃2)

)︂)︂
=1 · 1 = 1.

Như vậy phép nhân hai ma trận có dạng trên đóng trên 𝑆𝐿2(R).

Phần tử đơn vị là
(︂
1 0
0 1

)︂
tương ứng với 𝜃 = 0.

Phần tử nghịch đảo là
(︂
cos(−𝜃) − sin(−𝜃)
sin(−𝜃) cos(−𝜃)

)︂
suy ra từ công thức định thức ban nãy.

Cuối cùng, phép nhân ma trận có tính kết hợp. Như vậy 𝐺 là subgroup của 𝑆𝐿2(R).

INFO-CIRCLE Exercise (Bài 47)

Đặt 𝐺 là nhóm và 𝑔 ∈ 𝐺. Chứng minh rằng

𝑍(𝐺) = {𝑥 ∈ 𝐺 : 𝑔𝑥 = 𝑥𝑔 ∀ 𝑔 ∈ 𝐺}

là subgroup của 𝐺. Subgroup này gọi là center của 𝐺.

Giả sử trong 𝐺 có hai phần tử là 𝑥1 và 𝑥2 thuộc 𝑍(𝐺). Khi đó

𝑥1𝑔 = 𝑔𝑥1 và 𝑥2𝑔 = 𝑔𝑥2 với mọi 𝑔 ∈ 𝐺.

Xét phần tử 𝑥1𝑥2, ta có

(𝑥1𝑥2)𝑔 = 𝑥1(𝑥2𝑔) = 𝑥1(𝑔𝑥2) = (𝑔𝑥1)𝑥2 = 𝑔(𝑥1𝑥2)

với mọi 𝑔 ∈ 𝐺. Do đó 𝑥1𝑥2 ∈ 𝑍(𝐺) nên 𝑍(𝐺) là subgroup.

INFO-CIRCLE Exercise (Bài 49)

Cho ví dụ về nhóm vô hạn mà mọi nhóm con không tầm thường của nó đều vô hạn.
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Ví dụ tập Z và phép cộng số nguyên. Khi đó mọi nhóm con của Z có dạng 𝑛Z với 𝑛 ∈ Z. Ví dụ

• 2Z = {· · · ,−4,−2, 0, 2, 4, · · · } với phần tử sinh là 2;

• 𝑛Z = {· · · ,−2𝑛,−𝑛, 0, 𝑛, 2𝑛, · · · } với phần tử sinh là 𝑛.

INFO-CIRCLE Exercise (Bài 54)

Cho 𝐻 là subgroup của 𝐺 và

𝐶(𝐻) = {𝑔 ∈ 𝐺 : 𝑔ℎ = ℎ𝑔 ∀ ℎ ∈ 𝐻}.

Chứng minh rằng 𝐶(𝐻) là subgroup của 𝐺. Subgroup này được gọi là centralizer của 𝐻 trong 𝐺.

Gọi 𝑔1 và 𝑔2 thuộc 𝐶(𝐻). Khi đó 𝑔1ℎ = ℎ𝑔1 và 𝑔2ℎ = ℎ𝑔2 với mọi ℎ ∈ 𝐻.

Xét phần tử 𝑔1𝑔2, với mọi ℎ ∈ 𝐻 ta có

(𝑔1𝑔2)ℎ = 𝑔1(𝑔2ℎ) = 𝑔1(ℎ𝑔2) = (𝑔1ℎ)𝑔2 = (ℎ𝑔1)𝑔2 = ℎ(𝑔1𝑔2).

Như vậy 𝑔1𝑔2 ∈ 𝐶(𝐻), từ đó 𝐶(𝐻) là subgroup của 𝐺

Chương 5. Permutation Groups

INFO-CIRCLE Exercise (Bài 13)

Đặt 𝜎 = 𝜎1 · · ·𝜎𝑚 ∈ 𝑆𝑛 là tích của các cycle độc lập. Chứng minh rằng order của 𝜎 là LCM của độ dài
các cycle 𝜎1, · · · , 𝜎𝑚.

Đặt 𝑙𝑖 là độ dài cycle 𝜎𝑖 (𝑖 = 1, · · ·𝑚). Khi đó 𝜎𝑘𝑖𝑙𝑖
𝑖 sẽ ở dạng các cycle độ dài 1 (𝑘𝑖 ∈ Z).

Từ đó, 𝜎𝑙 = 𝜎𝑙
1 · · ·𝜎𝑙

𝑚 = (1) · · · (𝑛) nếu 𝑙 = 𝑘1𝑙1 = · · · 𝑘𝑚𝑙𝑚. Số 𝑙 nhỏ nhất thỏa mãn điều kiện này là
lcm(𝑙1, · · · , 𝑙𝑚) (đpcm).

INFO-CIRCLE Exercise (Bài 23)

Nếu 𝜎 là chu trình với độ dài lẻ, chứng minh rằng 𝜎2 cũng là chu trình.

Giả sử 𝜎 = (𝑔1, 𝑔2, · · · , 𝑔𝑛−1, 𝑔𝑛) với 𝑛 lẻ.

Khi đó

𝜎2 = (𝑔1, 𝑔3, · · · , 𝑔𝑛, 𝑔2, 𝑔4, · · · , 𝑔𝑛−1)

cũng là chu trình.

INFO-CIRCLE Exercise (Bài 30)

Cho 𝜏 = (𝑎1, 𝑎2, · · · , 𝑎𝑘) là chu trình độ dài 𝑘.

1. Chứng minh rằng với mọi hoán vị 𝜎 thì

𝜎𝜏𝜎−1 = (𝜎(𝑎1), 𝜎(𝑎2), · · · , 𝜎(𝑎𝑘))

là chu trình độ dài 𝑘.
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2. Gọi 𝜇 là chu trình độ dài 𝑘. Chứng minh rằng tồn tại hoán vị 𝜎 sao cho 𝜎𝜏𝜎−1 = 𝜇.

Để chứng minh hai mệnh đề trên ta cần chú ý một số điều.

1. Ta thấy rằng bất kì phần tử nào khác 𝑎1, 𝑎2, · · · , 𝑎𝑘 thì khi qua 𝜏 không đổi, do đó khi đi qua 𝜎𝜏𝜎−1

thì chỉ đi qua 𝜎𝜎−1 và cũng không đổi. Nói cách khác các phần tử 𝑎1, 𝑎2, · · · , 𝑎𝑘 vẫn nằm trong chu
trình nên ta có đpcm.

2. Từ câu (a), với 𝜇 = (𝑏1, 𝑏2, · · · , 𝑏𝑘) thì ta chọn 𝜎 sao cho 𝑏𝑖 = 𝜎(𝑎𝑖).

Chương 6. Cosets

INFO-CIRCLE Exercise (Bài 11)

Gọi 𝐻 là subgroup của nhóm 𝐺 và giả sử 𝑔1, 𝑔2 ∈ 𝐺. Chứng minh các mệnh đề sau là tương đương:

1. 𝑔1𝐻 = 𝑔2𝐻

2. 𝐻𝑔−1
1 = 𝐻𝑔−1

2

3. 𝑔1𝐻 ⊆ 𝑔2𝐻

4. 𝑔2 ∈ 𝑔1𝐻

5. 𝑔−1
1 𝑔2 ∈ 𝐻

Từ (1) ra (2): Ta đã biết các coset là rời nhau hoặc trùng nhau, do đó với mọi 𝑔1ℎ ∈ 𝑔1𝐻, tồn tại 𝑔2ℎ′ ∈ 𝑔2𝐻
mà 𝑔1ℎ = 𝑔2ℎ

′, suy ra (𝑔1ℎ)
−1 = (𝑔2ℎ

′)−1 hay ℎ−1𝑔−1
1 = ℎ′1𝑔−1

2 (đpcm).

Từ (1) ra (3): Hiển nhiên.

Từ (1) ra (4): Với mọi 𝑔1ℎ ∈ 𝑔1𝐻, tồn tại 𝑔2ℎ′ ∈ 𝑔2𝐻 sao cho 𝑔1ℎ = 𝑔2ℎ
′, hay 𝑔2 = 𝑔1ℎℎ

′−1, đặt ℎ′′ = ℎℎ′−1

thì ℎ′′ ∈ 𝐻 (𝐻 là nhóm con) nên 𝑔1ℎ′′ ∈ 𝑔1𝐻, suy ra 𝑔2 ∈ 𝑔1𝐻.

Từ (1) ra (5): Tương tự, ta có 𝑔1ℎ = 𝑔2ℎ
′, suy ra ℎℎ′−1 = 𝑔−1

1 𝑔2 ∈ 𝐻.

INFO-CIRCLE Exercise (Bài 16)

Nếu 𝑔ℎ𝑔−1 ∈ 𝐻 với mọi 𝑔 ∈ 𝐺 và ℎ ∈ 𝐻, chứng minh rằng right coset trùng với left coset.

Do 𝑔ℎ𝑔−1 ∈ 𝐻 nên tồn tại ℎ′ ∈ 𝐻 sao cho 𝑔ℎ𝑔−1 = ℎ′. Tương đương 𝑔ℎ = ℎ′𝑔 với mọi ℎ ∈ 𝐻 nên 𝑔𝐻 = 𝐻𝑔.
Điều này đúng với mọi 𝑔 ∈ 𝐺 nên các right coset trùng left coset.

INFO-CIRCLE Exercise (Bài 17)

Giả sử [𝐺 : 𝐻] = 2. Chứng minh rằng nếu 𝑎, 𝑏 không thuộc 𝐻 thì 𝑎𝑏 ∈ 𝐻.

Ta biết rằng 2 coset ứng với 2 phần tử 𝑔1, 𝑔2 bất kì là trùng nhau hoặc rời nhau.

Do đó với 𝑒𝐻 = 𝐻, ta suy ra 2 coset của 𝐺 là 𝐻 và 𝐺 ∖𝐻.

Vì 𝑎, 𝑏 ̸∈ 𝐻 nên coset của chúng trùng nhau. Và nghịch đảo của 𝑎 cũng nằm trong 𝐺 ∖𝐻 vì nếu nghịch đảo
của 𝑎 nằm trong 𝐻 thì 𝑎 cũng phải nằm trong 𝐻.

Từ đó suy ra 𝑎−1𝐻 = 𝑏𝐻, nghĩa là tồn tại hai phần tử ℎ1, ℎ2 ∈ 𝐻 sao cho 𝑎−1ℎ1 = 𝑏ℎ2, tương đương
ℎ1ℎ

−1
2 = 𝑎𝑏 ∈ 𝐻 (đpcm).
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INFO-CIRCLE Exercise (Bài 21)

Gọi 𝐺 là cyclic group với order 𝑛. Chứng minh rằng có đúng 𝜑(𝑛) phần tử sinh của 𝐺.

Gọi 𝑔 là một phần tử sinh của 𝐺. Khi đó 𝑔 sinh ra tất cả phần tử trong 𝐺, hay nói cách khác các phần tử
trong 𝐺 có dạng 𝑔𝑖 với 0 ≤ 𝑖 < 𝑛.

Như vậy một phần tử ℎ = 𝑔𝑖 cũng là phần tử sinh của 𝐺 khi và chỉ khi gcd(𝑖, 𝑛) = 1 và có 𝜑(𝑛) số 𝑖 như
vậy (đpcm).

Chương 9. Isomorphism

INFO-CIRCLE Exercise (Bài 18)

Chứng minh rằng subgroup của Q* gồm các phần tử có dạng 2𝑚3𝑛 với 𝑚,𝑛 ∈ Z là internal direct product
tới Z× Z

Xét ánh xạ 𝜙 : Q* → Z × Z, 𝜙(2𝑚3𝑛) = (𝑚,𝑛).

Hàm này là well-defined vì với 𝑚 cố định thì mỗi phần tử 2𝑚3𝑛 chỉ cho ra một phần tử (𝑚,𝑛). Tương tự
với cố định 𝑛.

Hàm này là đơn ánh (one-to-one) vì với 𝑚1 = 𝑚2 và 𝑛1 = 𝑛2 thì 2𝑚13𝑛1 = 2𝑚23𝑛2 .

Hàm này cũng là toàn ánh vì với mỗi cặp (𝑚,𝑛) ta đều tính được 2𝑚3𝑛.

Vậy hàm 𝜙 là song ánh.

Thêm nữa,

𝜙(2𝑚13𝑛1 · 2𝑚23𝑛2) = 𝜙(2𝑚1+𝑚23𝑛1+𝑛2)

= (𝑚1 +𝑚2, 𝑛1 + 𝑛2) = (𝑚1, 𝑛1) + (𝑚2, 𝑛2)

= 𝜙(2𝑚13𝑛1)𝜙(2𝑚23𝑛2).

Vậy 𝜙 là homomorphism, và là song ánh nên là isomorphism.

INFO-CIRCLE Exercise (Bài 20)

Chứng minh hoặc bác bỏ: mọi nhóm Abel có order chia hết bởi 3 chứa một subgroup có order là 3.

Gọi order của nhóm Abel là 𝑛 = 3𝑘, và 𝑔 là phần tử sinh của nhóm Abel đó. Như vậy 𝑔𝑛 = 𝑔3𝑘 = 𝑒.

Nếu ta chọn ℎ = 𝑔𝑘 thì ℎ3 = 𝑒, khi đó subgroup được sinh bởi ℎ có order 3 (đpcm).

INFO-CIRCLE Exercise (Bài 21)

Chứng minh hoặc bác bỏ: mọi nhóm không phải Abel có order chia hết bởi 6 chứa một subgroup có order
6.

Với 𝒮3 có order là 6 nhưng không có nhóm con nào order 6 (nhóm con chỉ có order 1, 2 hoặc 3) (bác bỏ).
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INFO-CIRCLE Exercise (Bài 22)

Gọi 𝐺 là group với order 20. Nếu 𝐺 có các subgroup 𝐻 và 𝐾 với order 4 và 5 mà ℎ𝑘 = 𝑘ℎ với mọi ℎ ∈ 𝐻
và 𝑘 ∈ 𝐾, chứng minh rằng

Ta chứng minh 𝐻 ∩𝐾 = {𝑒}. Giả sử tồn tại phần tử 𝑚 ∈ 𝐻 ∩𝐾, khi đó do 𝑚 ∈ 𝐻 nên 𝑚𝑘 = 𝑘𝑚 với mọi
𝑘 ∈ 𝐾. Tuy nhiên 𝑚 ∈ 𝐾 do đó điều này xảy ra khi và chỉ khi 𝑚 = 𝑒.

Như vậy 𝐻 ∩𝐾 = {𝑒}.

Chương 11. Homomorphism

INFO-CIRCLE Exercise (Bài 1)

Chứng minh rằng

det(𝐴𝐵) = det(𝐴) det(𝐵)

với 𝐴,𝐵 ∈ 𝐺𝐿2(R). Điều này chứng tỏ rằng định thức là homomorphism từ 𝐺𝐿2(R) tới R*.

Đặt 𝐴 =

(︂
𝑎11 𝑎12
𝑎21 𝑎22

)︂
và 𝐵 =

(︂
𝑏11 𝑏12
𝑏21 𝑏22

)︂
. Khi đó

𝐴𝐵 =

(︂
𝑎11𝑏11 + 𝑎12𝑏21 𝑎11𝑏12 + 𝑎12𝑏22
𝑎21𝑏11 + 𝑎22𝑏21 𝑎21𝑏12 + 𝑎22𝑏22

)︂
Như vậy ta có

det(𝐴𝐵) =(𝑎11𝑏11 + 𝑎12𝑏21)(𝑎21𝑏12 + 𝑎22𝑏22)

−(𝑎11𝑏12 + 𝑎12𝑏22)(𝑎21𝑏11 + 𝑎22𝑏21)

=((((((𝑎11𝑎21𝑏11𝑏12 + 𝑎11𝑎22𝑏11𝑏22 + 𝑎12𝑎21𝑏12𝑏21 +
hhhhhh𝑎12𝑎22𝑏21𝑏22

−((((((𝑎11𝑎21𝑏11𝑏12 − 𝑎11𝑎22𝑏12𝑏21 − 𝑎12𝑎21𝑏11𝑏22 −
hhhhhh𝑎12𝑎22𝑏21𝑏22.

Tương tự,

det(𝐴) det(𝐵) =(𝑎11𝑎22 − 𝑎12𝑎21)(𝑏11𝑏22 − 𝑏12𝑏21)
=𝑎11𝑎22𝑏11𝑏22 − 𝑎11𝑎22𝑏12𝑏21
−𝑎12𝑎21𝑏11𝑏22 + 𝑎12𝑎21𝑏12𝑏21.

Như vậy det(𝐴𝐵) = det(𝐴) det(𝐵) và do đó ánh xạ det từ 𝐺𝐿2(R) tới R* là homomorphism.

INFO-CIRCLE Exercise (Bài 4)

Xét 𝜑 : Z→ Z cho bởi 𝜑(𝑛) = 7𝑛. Chứng minh rằng 𝜑 là homomorphism. Tìm hạt nhân và ảnh của 𝜑.

Ta có

𝜑(𝑎+ 𝑏) = 7(𝑎+ 𝑏) = 7𝑎+ 7𝑏 = 𝜑(𝑎) + 𝜑(𝑏)

với mọi 𝑎, 𝑏 ∈ Z. Do đó 𝜑 là homomorphism.

Hạt nhân của 𝜑 là tập hợp các số 𝑛 để 𝜑(𝑛) = 0, hay 7𝑛 = 0. Như vậy 𝑛 = 0 nên ker𝜑 = {0}.
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Ảnh của 𝜑 là tập {. . . ,−2 · 7,−7, 0, 7, 2 · 7, . . .}.

INFO-CIRCLE Exercise (Bài 8)

Nếu 𝐺 là nhóm Abel và 𝑛 ∈ N, chứng minh rằng 𝜑 : 𝐺→ 𝐺 xác định bởi 𝑔 ↦→ 𝑔𝑛 là homomorphism.

Với mọi 𝑔, ℎ ∈ 𝐺 thì 𝜑(𝑔ℎ) = (𝑔ℎ)𝑛. Do 𝐺 là nhóm Abel nên ta có (𝑔ℎ)𝑛 = 𝑔𝑛ℎ𝑛 = 𝜑(𝑔)𝜑(ℎ). Như vậy 𝜑 là
đồng cấu nhóm.

INFO-CIRCLE Exercise (Bài 9)

Nếu 𝜑 : 𝐺→ 𝐻 là homomorphism và 𝐺 là nhóm Abel, chứng minh rằng 𝜑(𝐺) cũng là nhóm Abel.

Với mọi 𝑔, ℎ ∈ 𝐺, do 𝜑 là homomorphism nên 𝜑(𝑔ℎ) = 𝜑(𝑔)𝜑(ℎ). Do 𝐺 là nhóm Abel nên 𝑔ℎ = ℎ𝑔 với mọi
𝑔, ℎ ∈ 𝐺, suy ra 𝜑(𝑔ℎ) = 𝜑(ℎ𝑔). Tương đương với 𝜑(𝑔)𝜑(ℎ) = 𝜑(ℎ)𝜑(𝑔) nên 𝜑(𝐺) cũng là nhóm Abel.

INFO-CIRCLE Exercise (Bài 10)

Nếu 𝜑 : 𝐺→ 𝐻 là homomorphism và 𝐺 là nhóm cyclic, chứng minh rằng 𝜑(𝐺) cũng là nhóm cyclic.

Tương tự câu 9.

INFO-CIRCLE Exercise (Bài 20)

Cho homomorphism 𝜑 : 𝐺 → 𝐻 và định nghĩa quan hệ ∼ trên 𝐺 theo quy tắc 𝑎, 𝑏 ∈ 𝐺 có quan hệ với
nhau nếu 𝜑(𝑎) = 𝜑(𝑏) và kí hiệu là 𝑎 ∼ 𝑏. Chứng minh đây là quan hệ tương đương và mô tả cách xây
dựng các lớp tương đương.

Do 𝜑 là ánh xạ nên 𝜑(𝑎) = 𝜑(𝑎) với mọi 𝑎 ∈ 𝐺, suy ra ∼ có tính phản xạ.

Nếu 𝑎 ∼ 𝑏 thì 𝜑(𝑎) = 𝜑(𝑏). Tương đương với 𝜑(𝑏) = 𝜑(𝑎) nên 𝑏 ∼ 𝑎. Như vậy quan hệ trên có tính đối xứng.

Nếu 𝑎 ∼ 𝑏 thì 𝜑(𝑎) = 𝜑(𝑏), và nếu 𝑏 ∼ 𝑐 thì 𝜑(𝑏) = 𝜑(𝑐). Suy ra 𝜑(𝑎) = 𝜑(𝑏) = 𝜑(𝑐) nên 𝑎 ∼ 𝑐. Như vậy
quan hệ có tính bắc cầu.

Kết luận: quan hệ ∼ xác định như trên là quan hệ tương đương.

Để xây dựng các lớp tương đương, đặt 𝐼 = {𝑖1, 𝑖2, . . . , 𝑖𝑚} là ảnh của homomorphism 𝜑. Rõ ràng 𝐼 ⊂ 𝐻.
Khi đó các lớp tương đương ứng với các phần tử 𝑖1, 𝑖2, . . . , 𝑖𝑚, hay

𝑖̄𝑗 = {𝑔 ∈ 𝐺 : 𝜑(𝑔) = 𝑖𝑗}, 1 6 𝑖 6 𝑚.

4.1.2 Курс высшей математики: Теория вероятностей
Lời giải cho quyển sách [40]. Đây là quyển mình được học trên trường.

Xác suất không liên tục

Bài 1. Có 10 đội được chia ngẫu nhiên làm hai nhóm. Tính xác xuất để hai đội mạnh nhất vào hai nhóm
khác nhau? ... cùng một nhóm? ... cùng vào nhóm thứ nhất?

Giải.

4.1. Lời giải các bài tập trong sách tham khảo 449



Math Book

1. Một đội mạnh có 𝐶1
2 cách chọn, đội còn lại sẽ vào nhóm còn lại. Tiếp theo, chọn 4 đội cho nhóm đầu

có 𝐶4
8 cách, 4 đội cho nhóm còn lại có 𝐶4

4 cách. Không gian mẫu là 𝐶5
10 · 𝐶5

5 . Vậy đáp án là 5

9
.

2. Hai đội mạnh vào cùng một nhóm, có 𝐶1
2 cách. Chọn 3 đội cho nhóm đó có 𝐶3

8 cách. Nhóm còn lại sẽ
có 𝐶5

5 cách. Không gian mẫu là 𝐶5
10 · 𝐶5

5 . Vậy đáp án là 4

9
.

3. Hai đội mạnh đều vào nhóm đầu nên chỉ có 1 cách chọn. Chọn 3 đội còn lại của nhóm đầu có 𝐶3
8 cách.

Chọn 5 đội cho nhóm còn lại có 𝐶5
5 cách. Không gian mẫu là 𝐶5

10 · 𝐶5
5 . Vậy đáp án là 2

9
.

Bài 2. Một bộ bài đầy đủ có 52 lá. Lấy ngẫu nhiên ra ba lá. Tính xác suất để ba lá đó là 3, 7 và át? Tính
xác suất để ba lá đó được lấy theo thứ tự trên?

Giải.

1. Không gian mẫu là 𝐶3
52. Lấy một trong bốn con 3 có 𝐶1

4 cách, tương tự cho lấy con 7 có 𝐶1
4 cách và

lấy con át có 𝐶1
4 cách. Vậy đáp án là 4 · 4 · 4

𝐶3
52

=
16

5525
.

2. Không gian mẫu là 𝐴3
52 vì có xét thứ tự. Cách chọn ba lá bài vẫn như trước. Vậy đáp án là

4 · 4 · 4
𝐴3

52

=
8

16575
.

Bài 3. Trên đoạn thẳng 𝑂𝐴 độ dài 𝐿 chọn ngẫu nhiên hai điểm 𝐵 và 𝐶, điều kiện là 𝐶 nằm bên phải so
với 𝐵. Tính xác suất để độ dài 𝐵𝐶 nhỏ hơn độ dài 𝑂𝐵.

Giải.

O B C A

Gọi 𝐿 là độ dài đoạn 𝑂𝐴. Đặt 𝑥 là độ dài 𝑂𝐵 và 𝑦 là độ dài 𝐵𝐶. Khi đó các độ dài này phải thỏa mãn các
phương trình ⎧⎪⎨⎪⎩

𝑦 < 𝑥

0 < 𝑥+ 𝑦 < 𝐿

𝑥 > 0, 𝑦 > 0

Xác suất trên tương ứng biểu diễn hình học. Khi đó xác suất là tỉ lệ diện tích:

1. Không gian mẫu là tam giác vuông nên diện tích là 𝐿2

2
.

2. Vùng giới hạn bởi các đường thẳng 𝑦 = 0, 𝑦 = 𝑥 và 𝑥+ 𝑦 = 𝐿 là tam giác với diện tích là
𝐿 · 𝐿

2
2

=
𝐿2

4
.

Đáp án: 1

2
.

Bài 4. Có 10 bilet nằm trên bàn giám thị được đánh số từ 1 tới 10. Tính xác suất để các sinh viên lấy bilet
theo thứ tự từ 1 tới 10.

Giải. Không gian mẫu là 10! cách lấy 10 bilet theo tứ tự bất kì.

Để lấy 10 bilet theo thứ tự, chỉ có duy nhất một cách lấy lần lượt 1, 2, ...

Đáp án: 1

10!
.

Bài 5. Bốn người vào thang máy ở tầng 1 của tòa nhà 9 tầng. Biết rằng xác suất mỗi người rời khỏi thang
máy là như nhau cho các tầng từ 2 tới 9. Tính xác suất để: a) mọi người rời thang máy ở các tầng khác
nhau; b) mọi người rời thang máy cao hơn tầng 5; c) ở tầng 3 không ai rời thang máy.
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Giải. Không gian mẫu là 84 vì mỗi người đều có 8 cách chọn ra các tầng từ 2 tới 9.

a) Chọn 4 tầng mà mỗi người sẽ ra, có 𝐴4
8 cách vì thứ tự có thể khác nhau. Đáp án là 𝐴4

8

84
=

105

256
.

b) Tầng cao hơn 5 có 4 phương án 6, 7, 8, 9. Khi đó mỗi người có 4 cách chọn nên bốn người có 44 cách

chọn. Đáp án là 44

84
=

1

16
.

c) Do không ai rời thang máy tầng 3 nên mỗi người có 7 cách chọn là 2, 4, 5, 6, 7, 8 và 9. Do đó số cách

chọn của bốn người là 74. Đáp án là 74

84
=

2401

4096
.

Bài 6. Lấy ngẫu nhiên bốn chữ số và xếp chúng theo vị trí bất kì. Tính xác suất để thu được số có 4 chữ
số? Tính xác suất để thu được số có 4 chữ số chia hết cho 5?

Giải. Không gian mẫu là 104 vì có 10 chữ số từ 0 tới 9.

1. Để tạo thành số có 4 chữ số thì chữ số đầu phải khác 0 nên có 9 cách chọn. Ba vị trí còn lại mỗi vị trí
10 cách chọn. Như vậy số cách chọn là 9 · 103 nên đáp án là 9

10
.

2. Tương tự, để tạo thành số có 4 chữ số thì chữ số đầu có 9 cách chọn. Vị trí cuối phải là 0 hoặc 5 để
chia hết cho 5. Hai chữ số ở giữa tùy ý nên có 102 cách. Như vậy số cách chọn là 9 · 2 · 102, nên đáp
án là 9

50
.

Bài 7. Có 20 bilet exam trên bàn giám thị theo thứ tự ngẫu nhiên. 10 sinh viên lần lượt bốc bilet ngẫu
nhiên. Tính xác suất để bilet số 1 và 2 không được chọn.

Giải. Không gian mẫu là 𝐴10
20 do các sinh viên bốc lần lượt nên sẽ có thứ tự.

Biến cố bilet số 1 và 2 không được chọn, như vậy sẽ còn 18 trường hợp và 10 sinh viên sẽ bốc ngẫu nhiên 10
bilet trong này. Do đó có 𝐴10

18 cách.

Đáp án: 𝐴
10
18

𝐴10
20

=
9

38
.

Bài 8. Trong hộp có 6 quả bóng trắng, 4 quả bóng đen và 2 quả bóng đỏ. Lấy ngẫu nhiên 4 quả bóng.
Tính xác suất để trong số 4 quả đó chỉ có bóng đen và bóng đỏ.

Giải. Có tất cả 6 + 4 + 2 = 12 quả bóng. Không gian mẫu là 𝐶4
12.

Bóng đen và bóng đỏ có tất cả 4 + 2 = 6 quả. Lấy 4 trong số đó có 𝐶4
6 cách.

Đáp án: 𝐶4
6

𝐶4
12

=
1

33
.

Bài 9. Có 10 quyển sách, trong đó có 3 quyển màu đỏ, được xếp theo thứ tự ngẫu nhiên trên kệ. Tính xác
suất để 3 quyển màu đỏ nằm liền kề nhau.

Giải. Không gian mẫu là 10!.

Nếu xem 3 quyển đỏ là cùng một khối thì lúc này trên kệ có 8 quyển. Số cách chọn là 8!. Bên trong khối
đó, 3 quyển màu đỏ có thể xếp theo thứ tự bất kì nên có 3! hoán vị. Như vậy tổng số cách xếp là 8! · 3!.

Đáp án là 8! · 3!
10!

=
1

15
.

Bài 10. Gieo ba con súc sắc. Tính xác suất các biến cố: 𝐴 - các súc sắc cho các số khác nhau; 𝐵 - các súc
sắc ra cùng số.

Giải. Không gian mẫu là 63.

1. Các súc sắc cho số khác nhau nên có 𝐴3
6 cách chọn vì có tính hoán vị. Đáp án là 𝑃 (𝐴) = 𝐴3

6

63
=

5

9
.
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2. Các súc sắc ra cùng số có 6 trường hợp. Đáp án là 𝑃 (𝐵) =
6

63
=

1

36
.

Bài 11. Trong tủ có 5 đôi tất. Lấy ngẫu nhiên 2 chiếc tất. Tính xác suất để 2 chiếc tất đó cùng đôi.

Giải. Không gian mẫu 𝐶2
10.

Lấy 2 chiếc cùng đôi nghĩa là lấy một trong 5 đôi. Vậy có 5 cách chọn.

Đáp án: 5

𝐶2
10

=
1

9
.

Bài 13. Trong nhóm có 4 nam và 4 nữ được chia thành hai nhóm nhỏ, mỗi nhóm 4 người. Tính xác suất
để ở mỗi nhóm nhỏ có 2 nam và 2 nữ.

Giải. Do có tất cả 8 người nên để chia thành hai nhóm nhỏ thì ta chọn 4 người cho nhóm đầu, có 𝐶4
8 cách.

Nhóm thứ hai có 𝐶4
4 cách. Tuy nhiên có khả năng bị lặp (chọn A-B rồi C-D hoàn toàn giống chọn C-D rồi

A-B). Do đó không gian mẫu cần chia 2!, nên suy ra |Ω| = 𝐶4
8 · 𝐶4

4

2!
= 35 cách.

Tương tự, ta chọn 2 nam cho nhóm đầu thì có 𝐶2
4 cách và cho nhóm thứ hai có 𝐶2

2 cách. Như vậy có 6 cách
chia 4 nam vào 2 nhóm. Nữ cũng vậy, có 6 cách. Theo bên trên, hai nhóm này có thể bị lặp nên cần phải
chia 2!, suy ra số cách chia mỗi nhóm 2 nam 2 nữ là 6 · 6

2!
= 18.

Đáp án: 18

35
.

Bài 14. Bên trong hình tròn bán kính 𝑅 chọn ngẫu nhiên một điểm. Tính xác suất để điểm đó: a) nằm
bên trong hình vuông nội tiếp; b) nằm bên trong tam giác đều nội tiếp.

Giải. Bài này sử dụng xác suất hình học. Khi đó không gian mẫu là diện tích hình tròn bán kính 𝑅, hay
|Ω| = 𝜋𝑅2.

a) Biến cố điểm nằm trong hình vuông nội tiếp có xác suất bằng diện tích hình vuông chia diện tích hình
tròn. Hình vuông nội tiếp đường tròn bán kính 𝑅 có đường chéo bằng 2𝑅 nên cạnh là 𝑅

√
2. Đáp án

là 2𝑅2

𝜋𝑅2
=

2

𝜋
.

b) Tương tự, tam giác nội tiếp thì cạnh nối từ tâm tới đỉnh là 𝑅, bằng 2𝑅/3 độ dài đường cao nên suy ra

đường cao là 3𝑅/2, suy ra cạnh là 𝑅
√
3. Diện tích tam giác nội tiếp là 𝑅

√
3 · 3𝑅/2
2

=
3
√
3 ·𝑅2

4
nên

đáp án là 3
√
3

4𝜋
.

Bài 15. Trong một ngày có hai chuyến tàu cập cảng để dỡ hàng. Chuyến tàu thứ nhất cần 6 tiếng để dỡ
hàng, trong khi chuyến tàu thứ hai cần 8 tiếng. Hai chuyến tàu đến cảng không phụ thuộc vào nhau. Tính
xác suất để không chuyến tàu nào phải chờ chuyến tàu kia dỡ hàng xong mới được cập cảng.

Giải. Gọi 𝑥 là thời gian chuyến tàu đầu cập cảng. Do mất 6 giờ để dỡ hàng nên tàu phải cập cảng trước 18
giờ. Như vậy 0 6 𝑥 6 18.

Tương tự, gọi 𝑦 là thời gian chuyến tàu thứ hai cập cảng, suy ra 0 6 𝑦 6 16.

Đến đây ta có hai trường hợp:

1. Chuyến tàu đầu cập cảng trước. Khi đó chuyến tàu thứ hai phải đến sau khi chuyến tàu đầu dỡ hàng
xong. Do đó 𝑦 > 𝑥+ 6.

2. Chuyến tàu thứ hai cập cảng trước. Tương tự, chuyến tàu đầu phải cập cảng sau khi chuyến thứ hai
dỡ hàng xong. Do đó 𝑥 > 𝑦 + 8.

Không gian mẫu là diện tích hình chữ nhật giới hạn bởi 𝑥 = 0, 𝑥 = 18, 𝑦 = 0 và 𝑦 = 16.
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Không gian biến cố nằm trong hình giới hạn bởi các đường thẳng 𝑥 = 0, 𝑥 = 18, 𝑦 = 0, 𝑦 = 16, 𝑥 + 6 = 𝑦
và 𝑥− 8 = 𝑦.

Đáp án: 25

72
.

Quy tắc cộng và nhân xác suất

Bài 1. Xác suất bóng đèn hoạt động tốt trong khoảng thời gian xác định của mỗi phần tử là 0, 8. Một hệ
thống có ba phần tử như hình. Tính độ hoạt động tốt trong mỗi phần tử.

Giải. Nào vẽ hình rồi giải sau :)))

Bài 2. Trong hộp có 7 quả bóng trắng và 3 quả bóng đen. Lấy ngẫu nhiên lần lượt từng quả đến khi lấy
được bóng đen. Tính xác suất đến khi dừng lại lấy được 4 quả bóng nếu: a) lấy có trả lại; b) lấy không trả
lại.

Giải. Không gian mẫu gồm các cách lấy ra 4 quả bóng.

a) Khi lấy có trả lại, ở mỗi lần lấy có 10 cách chọn nên không gian mẫu |Ω| = 104. Theo đề bài, nếu lấy
có trả lại 4 quả bóng, 3 quả đầu là bóng trắng và có 73 cách chọn. Quả bóng cuối màu đen, có 3 cách
chọn. Như vậy có 73 · 3 cách chọn. Đáp án là 1029

10000
.

b) Khi lấy không trả lại, không gian mẫu là số cách lấy 4 quả bóng từ 10 quả bóng có thứ tự nên
|Ω| = 𝐴4

10. Số cách chọn 4 quả sao cho 3 quả đầu màu trắng là 𝐴3
7, và quả cuối màu đen là 𝐴1

3. Đáp

án là 𝐴3
7 ·𝐴1

3

𝐴4
10

=
1

8
.

Bài 3. Trong một bộ domino có 28 quân lấy ngẫu nhiên 7 quân. Tính xác suất có ít nhất một quân có nút
6.

Giải. Gọi 𝐴 là biến cố ít nhất một quân có nút 6. Khi đó 𝐴 là biến cố không có quân nào có nút 6.

Không gian mẫu là 𝐴7
28.

Do 𝐴 không chứa các quân có nút 6 nên sẽ có 28− 7 = 21 quân (bỏ các cặp 0-6, 1-6, ..., 6-6).

Suy ra 𝑃 (𝐴) = 𝐴7
21

𝐴7
28

=
323

3289
.

Đáp án: 𝑃 (𝐴) = 1− 𝑃 (𝐴) = 2966

3289
.

Bài 4. Tung 4 cục súc sắc. Tính xác suất để chúng ra các mặt khác nhau.

Giải. Đáp án: 𝐴
4
6

64
=

5

18
.

Bài 5. Trong hộp có 5 quả bóng trắng, 7 quả bóng đỏ và 8 quả bóng xanh. Lấy ngẫu nhiên ra 2 quả. Tính
xác suất để hai quả đó cùng màu.

Giải. Gọi 𝐴 - biến cố lấy hai quả bóng cùng màu.

Gọi 𝐴1, 𝐴2, 𝐴3 lần lượt là biến cố lấy hai quả bóng trắng, hai quả bóng đỏ và hai quả bóng xanh.

Khi đó 𝐴 = 𝐴1 ∪𝐴2 ∪𝐴3.

Đáp án:

𝑃 (𝐴) = 𝑃 (𝐴1) + 𝑃 (𝐴2) + 𝑃 (𝐴3) =
𝐶2

5 + 𝐶2
7 + 𝐶2

8

𝐶2
5+7+8

=
59

190
.

Bài 6. Hai cung thủ bắn tên đồng thời độc lập nhau. Xác suất mỗi người bắn trúng là 0, 2. Tính xác suất
để chỉ một người bắn trúng.

4.1. Lời giải các bài tập trong sách tham khảo 453



Math Book

Giải. Chọn một trong hai người bắn trúng, có 2 cách.

Nếu một người bắn trúng thì xác suất là 0, 2. Người còn lại sẽ bắn trượt với xác suất 0, 8.

Đáp án: 2 · 0, 2 · 0, 8 = 0, 32.

Bài 7. 20 đội bóng tham gia giải đấu. Trong giải đấu có 4 giải thưởng sẽ được trao cho 4 đội xuất sắc nhất.
Giả sử 20 đội được chia thành 4 nhóm được đánh số, mỗi nhóm 5 đội. Tính xác suất để mỗi nhóm có một
đội đạt giải? Tính xác suất để nhóm đầu không có đội nào đạt giải.

Giải. Số cách chọn 5 đội cho nhóm đầu là 𝐶5
20, cho nhóm thứ hai là 𝐶5

15, cho nhóm thứ ba là 𝐶5
10 và nhóm

cuối là 𝐶5
5 . Do có xét thứ tự nhóm nên vẫn tính các hoán vị. Ta suy ra

|Ω| = 𝐶5
20 · 𝐶5

15 · 𝐶5
10 · 𝐶5

5 .

Trong 4 đội đạt giải, chọn một đội cho vào nhóm 1 thì có 4 cách chọn. Tiếp theo chọn 4 đội trong 16 đội
không đạt giải vào nhóm 1 thì có 𝐶4

16 cách. Tương tự cho các nhóm 2, 3, 4 nên đáp án là

𝑃 (𝐴) =
4 · 𝐶4

16 · 3 · 𝐶4
12 · 2 · 𝐶4

8 · 1 · 𝐶4
4

𝐶5
20 · 𝐶5

15 · 𝐶5
10 · 𝐶5

5

=
125

969

Nếu nhóm đầu không có đội nào đạt giải, chọn 5 trong số 16 đội không đạt giải thì có 𝐶5
16 cách. Lúc này

còn lại 15 đội. Chọn 5 đội cho nhóm thứ 2, 5 đội cho nhóm thứ 3 và 5 đội cho nhóm thứ 4 có 𝐶5
15 ·𝐶5

10 ·𝐶5
5

cách. Đáp án câu (b) là

𝑃 (𝐵) =
𝐶5

16 · 𝐶5
15 · 𝐶5

10 · 𝐶5
5

𝐶5
20 · 𝐶5

15 · 𝐶5
10 · 𝐶5

5

=
91

323

Bài 8. Trong hộp đầu có 2 quả bóng trắng và 3 quả bóng đen, trong hộp thứ hai có 1 trắng và 2 xanh,
trong hộp thứ ba có 3 trắng và 1 đỏ. Từ mỗi hộp lấy ngẫu nhiên một quả bóng. Tính xác suất các biến số
sau: 𝐴 - { chỉ lấy ra một bóng trắng }; 𝐵 - { lấy ít nhất một bóng trắng }; 𝐶 - { lấy ra các màu khác nhau
}.

Giải. Không gian mẫu là |Ω| = (2 + 3) · (1 + 2) · (3 + 1) = 60.

Đặt 𝐴1, 𝐴2, 𝐴3 lần lượt là biến cố quả bóng trắng lấy từ hộp 1, 2 và 3. Khi đó 𝐴 = 𝐴1 ∪𝐴2 ∪𝐴3.

• Nếu quả bóng trắng lấy từ hộp 1 thì có 2 cách chọn. Ở hộp thứ hai và thứ ba phải lấy ra quả khác
màu trắng nên có 2 · 1 cách chọn. Suy ra 𝑃 (𝐴1) =

2 · 2 · 1
60

=
1

15
.

• Nếu quả bóng trắng lấy từ hộp 2 thì có 1 cách chọn. Ở hộp đầu và hộp thứ ba phải lấy ra quả khác
màu trắng nên có 3 · 1 cách. Vậy 𝑃 (𝐴2) =

1 · 3 · 1
60

=
1

20
.

• Nếu quả bóng trắng lấy từ hộp 3 thì có 3 cách chọn. Ở hộp đầu và hộp thứ hai lấy ra quả khác màu
trắng có 3 · 2 cách chọn. Vậy 𝑃 (𝐴3) =

3 · 3 · 2
60

=
3

10
.

Như vậy

𝑃 (𝐴) = 𝑃 (𝐴1) + 𝑃 (𝐴2) + 𝑃 (𝐴3) =
1

15
+

1

20
+

3

10
=

5

12
.

Do 𝐵 là biến cố lấy ít nhất một bóng trắng nên 𝐵̄ là biến cố không lấy ra bóng trắng nào. Khi đó ở hộp 1 có
3 cách chọn (đen), hộp 2 có 2 cách chọn (xanh) và hộp 3 có 1 cách chọn (đỏ), suy ra 𝑃 (𝐵̄) =

3 · 2 · 1
60

=
1

10
.

Như vậy 𝑃 (𝐵) = 1− 𝑃 (𝐵̄) =
9

10
.

Khi lấy ra ba quả bóng khác màu nhau có các trường hợp theo thứ tự hộp là:

• trắng-xanh-đỏ: có 2 · 2 · 1 cách chọn
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• đen-trắng-đỏ: có 3 · 1 · 1 cách chọn

• đen-xanh-trắng: có 3 · 2 · 3 cách chọn

• đen-xanh-đỏ: có 3 · 2 · 1 cách chọn

Như vậy

𝑃 (𝐶) =
2 · 2 · 1 + 3 · 1 · 1 + 3 · 2 · 3 + 3 · 2 · 1

60
=

31

60
.

Bài 9. Một bộ bài gồm 36 lá. Lấy ngẫu nhiên hai lá. Tính xác suất để hai lá đó có màu đỏ.

Giải. Không gian mẫu |Ω| = 𝐶2
26.

Lấy hai trong 36/2 = 18 lá đỏ có 𝐶2
18 cách.

Đáp án: 𝐶
2
18

𝐶2
26

=
17

70
.

Bài 10. Trong thùng có 3 bóng đèn hỏng và 7 bóng đèn tốt. Lấy ngẫu nhiên các bóng lần lượt đến khi lấy
được 2 bóng tốt thì dừng. Tính xác suất để lấy một nửa số bóng đèn.

Giải. Không gian mẫu là 𝐴5
10.

Trong số bốn bóng đèn đầu sẽ có một bóng tốt và 3 bóng hỏng. Bóng đèn thứ 5 sẽ là bóng tốt. Như vậy
ta chọn vị trí cho bóng tốt trong 4 vị trí đầu, có 4 cách chọn. Chọn bóng tốt cho vị trí đó có 7 cách chọn.
Chọn 3 bóng hỏng cho 3 vị trí còn lại có thứ tự, có 𝐴3

3 cách.

Chọn bóng đèn tốt cho vị trí thứ 5 có 6 cách chọn.

Đáp án: 4 · 7 ·𝐴3
3 · 6

𝐴5
10

=
1

30
.

Quy tắc cộng và nhân xác suất (tiếp theo)

Bài 1. Từ một bộ bài lấy ngẫu nhiên lần lượt bốn lá. Tính xác suất để tất cả các lá khác chất nhau? Tính
xác suất để tất cả các lá khác số nhau?

Giải. Bộ bài có 36 lá (bài Nga) nên có không gian mẫu |Ω| = 𝐴4
36.

Gọi 𝐴 là biến cố tất cả các lá khác chất nhau.

• Chọn chất cho lá thứ nhất có 4 cách chọn. Chọn lá thứ nhất có 9 cách chọn (trong chất đó).

• Chọn chất cho lá thứ hai có 4 cách chọn. Chọn lá thứ hai có 9 cách chọn (trong chất đó).

• Tương tự cho lá thứ ba và thứ tư.

Như vậy |Ω𝐴| = 4! · 94.

Đáp án là 𝑃 (𝐴) = |Ω𝐴|
|Ω|

=
729

6545
.

Gọi 𝐵 là biến cố tất cả các lá có số khác nhau.

• Chọn số cho lá thứ nhất có 9 cách chọn. Chọn chất cho lá đó có 4 cách chọn.

• Chọn số cho lá thứ hai có 8 cách chọn. Chọn chất cho lá đó có 4 cách chọn.

• Tương tự cho lá thứ ba và thứ tư.

Như vậy |Ω𝐵 | = 𝐴4
9 · 44.

Đáp án là 𝑃 (𝐵) =
|Ω𝐵 |
|Ω|

=
512

935
.
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Bài 2. Trong rổ có 10 quả bóng tennis, 7 quả mới và 3 quả đã qua sử dụng. Lấy ngẫu nhiên 2 quả từ rổ
cho trận đấu rồi trả lại. Tới trận đấu thứ hai cũng lấy ngẫu nhiên 2 quả. Tính xác suất để ở trận thứ hai
lấy được 2 quả mới.

Giải. Sau khi chơi xong trận đầu thì những quả bóng mới sẽ trở thành bóng đã qua sử dụng.

Đặt 𝐵 là biến cố trận thứ hai lấy được 2 quả mới.

Đặt 𝐴1, 𝐴2 và 𝐴3 lần lượt là biến cố trận đầu lấy được 2 quả bóng mới, 1 mới 1 đã qua sử dụng, và 2 quả
đã qua sử dụng. Ba biến cố này hợp thành biến cố đầy đủ cho việc lấy 2 quả ở trận đầu.

Theo công thức xác suất toàn phần:

𝑃 (𝐵) = 𝑃 (𝐴1)𝑃 (𝐵|𝐴1) + 𝑃 (𝐴2)𝑃 (𝐵|𝐴2) + 𝑃 (𝐴3)𝑃 (𝐵|𝐴3).

Nếu ở trận đầu lấy 2 quả mới, ta có 𝑃 (𝐴1) =
𝐶2

7

𝐶2
10

=
7

15
. Sau khi trận đầu kết thúc, số bóng mới là 7−2 = 5

và số bóng đã qua sử dụng là 3 + 2 = 5 nên 𝑃 (𝐵|𝐴1) =
𝐶2

5

𝐶2
10

=
2

9
.

Nếu ở trận đầu lấy 1 quả mới và 1 quả đã qua sử dụng, ta có 𝑃 (𝐴2) =
𝐶1

7 · 𝐶1
3

𝐶2
10

=
7

15
. Sau khi trận đầu kết

thúc, số bóng mới là 6 và số bóng đã qua sử dụng là 4 nên 𝑃 (𝐵|𝐴2) =
𝐶2

6

𝐶2
10

=
1

3
.

Nếu ở trận đầu lấy 2 quả đã qua sử dụng thì 𝑃 (𝐴3) =
𝐶2

3

𝐶2
10

=
1

15
. Sau khi trận đầu kết thúc, số bóng mới

vẫn là 7 và số bóng đã qua sử dụng vẫn là 3 nên 𝑃 (𝐵|𝐴3) =
𝐶2

7

𝐶2
10

=
7

15
.

Đáp án:

𝑃 (𝐵) =
7

15
· 2
9
+

7

15
· 1
3
+

1

15
· 7
15

=
196

675
≈ 0, 29.

Bài 3. Trên mỗi cánh máy bay có 2 động cơ. Xác suất bị lỗi của mỗi động cơ trong một chuyến bay là 𝑝.
Chuyến bay sẽ thành công nếu ở mỗi cánh có ít nhất một động cơ hoạt động bình thường. Tính xác suất
chuyến bay thành công.

Giải. Gọi 𝐴 là biến cố ở một cánh có ít nhất một động cơ hoạt động, suy ra 𝐴 là biến cố không động cơ
nào hoạt động ở cả một cánh.

Như vậy 𝑃 (𝐴) = 𝑝2 nên 𝑃 (𝐴) = 1 − 𝑝2. Áp dụng cho hai bên cánh (theo quy tắc nhân) ta có đáp án là
(1− 𝑝2)2.

Bài 4. Sinh viên biết 20 trong 30 câu hỏi. Để qua bài thi cần trả lời đúng 2 câu hỏi bắt buộc hoặc trả lời
đúng 1 trong 2 câu bắt buộc cộng thêm 1 câu hỏi phụ. Tính xác suất để sinh viên vượt qua bài thi?

Giải. Ở đây cần hiểu là sinh viên biết 20 câu trong số 30 câu, 10 câu kia là câu hỏi phụ. Khi đó có hai
trường hợp:

Trường hợp 1 là sinh viên trả lời đúng 2 câu trong số 20 câu sinh viên biết nên xác suất là 𝐴2
20

𝐴2
30

.

Trường hợp 2 là sinh viên trả lời đúng 1 trong 2 câu bắt buộc (có 𝐴2
20 · 2 cách chọn) và 1 câu hỏi phụ (10

cách chọn) nên xác suất là 𝐴2
20 · 2 · 10
𝐴3

30

. Tổng số câu sinh viên trả lời là 3.

Đáp án: 𝐴
2
20

𝐴2
30

+
𝐴2

20 · 2 · 10
𝐴3

30

=
152

203
.
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4.1.3 An Introduction to Mathematical Cryptography
Lời giải cho quyển sách [36] của Hoffstein.

Trong phần này, bài giải mình sẽ viết tiếng Việt còn đề bài là tiếng Anh (mình lười nên chép lại từ sách :v).

Chapter 2. Discrete Logarithms and Diffie-Hellman

INFO-CIRCLE Exercise (Câu 2.3)

Let 𝑔 be a primitive root of F𝑝.

(a) Suppose that 𝑥 = 𝑎 and 𝑥 = 𝑏 are both integer solutions to the congruence 𝑔𝑥 ≡ ℎ (mod 𝑝). Prove
that 𝑎 ≡ 𝑏 (mod 𝑝− 1). Explain why this implies that the map (2.1) on page 64 is well-defined

(b) Prove that log𝑔(ℎ1ℎ2) = log𝑔(ℎ1) + log𝑔(ℎ2) for all ℎ1, ℎ2 ∈ F*
𝑝

(c) Prove that log𝑔(ℎ𝑛) = 𝑛 log𝑔(ℎ) for all ℎ ∈ F*
𝑝 and 𝑛 ∈ Z

Các tính chất cơ bản của hàm Euler.

(a) Cả 𝑎 and 𝑏 là nghiệm của đồng dư 𝑔𝑥 ≡ ℎ (mod 𝑝) nên 𝑔𝑎 ≡ ℎ (mod 𝑝) và 𝑔𝑏 ≡ ℎ (mod 𝑝).

Suy ra ta có 𝑔−𝑏 ≡ ℎ−1 (mod 𝑝).

Ta nhân kết quả với đồng dư đầu thì được 𝑔𝑎𝑔−𝑏 ≡ ℎℎ−1 ≡ 1 (mod 𝑝), hay 𝑔𝑎−𝑏 ≡ 1 (mod 𝑝).

Do 𝑔 là primitive root of F𝑝 tên ta có 𝜑(𝑝) | (𝑎− 𝑏), tương đương với (𝑝− 1) | (𝑎− 𝑏).

Như vậy 𝑎− 𝑏 ≡ 0 (mod 𝑝− 1) hay 𝑎 ≡ 𝑏 (mod 𝑝− 1) (đpcm).

(b) Giả sử ℎ1 ≡ 𝑔𝑥1 (mod 𝑝) và ℎ2 ≡ 𝑔𝑥2 (mod 𝑝).

Suy ra 𝑥1 = log𝑔 ℎ1 và 𝑥2 = log𝑔 ℎ2 (1).

Do ℎ1ℎ2 ≡ 𝑔𝑥1+𝑥2 (mod 𝑝) nên 𝑥1 + 𝑥2 = log𝑔(ℎ1ℎ2) (2).

Từ (1) và (2), log𝑔 ℎ1 + log𝑔 ℎ2 = log𝑔(ℎ1ℎ2).

(c) tương tự (b).

INFO-CIRCLE Exercise (Câu 2.5)

Let 𝑝 be an odd prime and let 𝑔 be a primitive root modulo 𝑝.

Prove that 𝑎 has a square root modulo 𝑝 if and only if its discrete logarithm log𝑔(𝑎) modulo 𝑝−1 is even.

Ta có 𝑔𝑝−1 ≡ 1 (mod 𝑝) do 𝑔 là primitive root modulo 𝑝.

Điều kiện đủ. Nếu 𝑎 là số chính phương modulo 𝑝 thì tồn tại số 𝑏 sao cho 𝑏 ≡ 𝑎2 (mod 𝑝), suy ra

log𝑔 𝑎 = log𝑔(𝑏2) = 2 log𝑔 𝑏 (mod 𝑝− 1),

như vậy log𝑔 𝑎 chẵn.

Điều kiện cần. Nếu log𝑔 𝑎 modulo 𝑝− 1 chẵn.

Điều này xảy ra khi

log𝑔 𝑎 = 2 log𝑔 𝑏 (mod 𝑝− 1)
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với số 𝑏 ∈ F𝑝 nào đó, suy ra

log𝑔 𝑎 = log𝑔(𝑏2) (mod 𝑝− 1),

hay 𝑎 ≡ 𝑏2 (mod 𝑝− 1).

Như vậy 𝑎 có căn bậc hai modulo 𝑝− 1.

INFO-CIRCLE Exercise (Câu 2.10)

The exercise describes a public key cryptosystem that requires Bob and Alice to exchange several
messages. We illustrate the system with an example.

Bob and Alice fix a publicly known prime 𝑝 = 32611, and all of other numbers used are private.

Alice takes her message 𝑚 = 11111, chooses a random exponent 𝑎 = 3589, and sends the number 𝑢 = 𝑚𝑎

(mod 𝑝) = 15950 to Bob.

Bob chooses a random exponent 𝑏 = 4037 and sends 𝑣 = 𝑢𝑏 (mod 𝑝) = 15422 back to Alice.

Alice then computes 𝑤 = 𝑣15619 ≡ 27257 (mod 32611) and sends 𝑤 = 27257 to Bob.

Finally, Bob computes 𝑤31883 (mod 32611) and recovers the value 11111 of Alice's message.

(a) Explain why this algorithm works. In particular, Alice uses the numbers 𝑎 = 3589 and 15619 as
exponents. How are they related? Similarly, how are Bob's exponents 𝑏 = 4037 and 31883 related?

(b) Formulate a general version of this cryptosystem, i.e., using variables, and show how it works in
general.

(c) What is the disadvantage of this cryptosystem over Elgamal? (Hint. How many times must Alice
and Bob exchange data?)

(d) Are there any advantages of this cryptosystem over Elgamal? In particular, can Eve break it if
she can solve the discrete logarithm problem? Can Eve break it if she can solve the Diffie-Hellman
problem?

(a) Ta có

3589 · 15619 ≡ 4073 · 31883 ≡ 1 (mod 𝑝− 1).

(b) Alice chọn 𝑎 và 𝑎′ sao cho 𝑎𝑎′ ≡ 1 (mod 𝑝− 1).

Tương tự, Bob chọn 𝑏 và 𝑏′ sao cho 𝑏𝑏′ ≡ 1 (mod 𝑝− 1).

Do đó ta có 𝑎𝑎′ = 𝑘(𝑝− 1) + 1 và 𝑏𝑏′ = 𝑙(𝑝− 1) + 1.

⇒ 𝑣 ≡ 𝑢𝑏 ≡ (𝑚𝑎)𝑏 ≡ 𝑚𝑎𝑏 (mod 𝑝)

⇒ 𝑤 ≡ 𝑣𝑎
′
≡ (𝑚𝑎𝑏)𝑎

′
≡ 𝑚𝑎𝑎′𝑏 (mod 𝑝)

⇒ 𝑤𝑏′ ≡ 𝑚𝑎𝑎′𝑏𝑏′ ≡ 𝑚[𝑘(𝑝−1)+1]𝑥[𝑙(𝑝−1)+1] ≡ 𝑚𝐷(𝑝−1)+1 ≡ 𝑚 (mod 𝑝).

INFO-CIRCLE Exercise (Câu 2.11)

The group 𝑆3 consists of the following six distinct elements

𝑒, 𝜎, 𝜎2, 𝜏, 𝜎𝜏, 𝜎2𝜏
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where 𝑒 is the identity element and multiplication is performed using the rules

𝜎3 = 𝑒, 𝜏2 = 𝑒, 𝜏𝜎 = 𝜎2𝜏

Compute the following values in the group 𝑆3:

(a) 𝜏𝜎2

(b) 𝜏(𝜎𝜏)

(c) (𝜎𝜏)(𝜎𝜏)

(d) (𝜎𝜏)(𝜎2𝜏)

Is 𝑆3 a commutative group?

(a)

𝜏𝜎2 = 𝜏𝜎𝜎 = 𝜎2𝜏𝜎 = 𝜎𝜎2𝜏 = 𝜎3𝜏 = 𝑒𝜏 = 𝜏.

(b)

𝜏(𝜎𝜏) = (𝜏𝜎)𝜏 = 𝜎2𝜏𝜏 = 𝜎2𝜏2 = 𝜎2𝑒 = 𝜎2.

(c)

(𝜎𝜏)(𝜎𝜏) = 𝜎(𝜏𝜎)𝜏 = 𝜎(𝜎2𝜏)𝜏 = 𝜎3𝜏2 = 𝑒𝑒 = 𝑒.

(d)

(𝜎𝜏)(𝜎2𝜏) = (𝜎𝜏)(𝜏𝜎) = 𝜎𝜏2𝜎 = 𝜎𝑒𝜎 = 𝜎2.

𝑆3 không là nhóm giao hoán vì:

𝜎𝜏 = 𝜎𝜏, 𝜏𝜎 = 𝜎2𝜏,

đây là hai phần tử phân biệt trong 𝑆3.

INFO-CIRCLE Exercise (Câu 2.12)

Let 𝐺 be a group, let 𝑑 > 1 be an integer, and define a subset of 𝐺 by

𝐺[𝑑] = {𝑔 ∈ 𝐺 : 𝑔𝑑 = 𝑒}

(a) Prove that if 𝑔 is in 𝐺[𝑑], then 𝑔−1 is in 𝐺[𝑑]

(b) Suppose that 𝐺 is commutative. Prove that is 𝑔1 and 𝑔2 are in 𝐺[𝑑], then their product 𝑔1 ⋆ 𝑔2 is
in 𝐺[𝑑]

(c) Deduce that if 𝐺 is commutative, then 𝐺[𝑑] is a group.

(d) Show by an example that is 𝐺 is not a commutative group, then 𝐺[𝑑] need not be a group. (Hint.
Use Exercise 2.11.)

(a) Vì 𝑔 ⋆ 𝑔−1 = 𝑒 nên

𝑔 ⋆ 𝑒 ⋆ 𝑔−1 = 𝑒

⇒𝑔 ⋆ 𝑔 ⋆ 𝑔−1 ⋆ 𝑔−1 = 𝑒

⇒𝑔2 ⋆ (𝑔−1)2 = 𝑒.
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Thực hiện thêm 𝑑− 2 lần nữa và ta nhận được

𝑔𝑑 ⋆ (𝑔−1)𝑑 = 𝑒

⇒𝑒 ⋆ (𝑔−1)2 = 𝑒

⇒(𝑔−1)2 = 𝑒

⇒𝑔−1 ∈ 𝐺[𝑑]

(b) Ta có 𝑔𝑑1 = 𝑒 and 𝑔𝑑2 = 𝑒.

Do 𝐺 là nhóm hoán vị nên 𝑔𝑑1 ⋆ 𝑔𝑑2 = (𝑔1 ⋆ 𝑔2)
𝑑, suy ra (𝑔1 ⋆ 𝑔2)

𝑑 = 𝑒 ⋆ 𝑒 = 𝑒.

Như vậy 𝑔1 ⋆ 𝑔2 ∈ 𝐺[𝑑].

(c) Từ câu (b), ta có với mọi 𝑔1, 𝑔2 ∈ 𝐺[𝑑], thì 𝑔1 ⋆ 𝑔2 ∈ 𝐺[𝑑].

Do 𝑒 là phần tử đơn vị của 𝐺 nên cũng là phần tử đơn vị của 𝐺[𝑑].

Từ câu (a) ta chứng minh được sự tồn tại của phần tử nghịch đảo.

Với 𝑎, 𝑏, 𝑐 ∈ 𝐺[𝑑] thì 𝑎𝑑 = 𝑏𝑑 = 𝑐𝑑 = 𝑒.

Ta có 𝑏𝑑 ⋆ 𝑐𝑑 = (𝑏 ⋆ 𝑐)𝑑 do tính giao hoán, suy ra

𝑎𝑑 ⋆ (𝑏𝑑 ⋆ 𝑐𝑑) = 𝑎𝑑 ⋆ (𝑏 ⋆ 𝑐)𝑑 = (𝑎 ⋆ 𝑏 ⋆ 𝑐)𝑑

= (𝑎 ⋆ 𝑏)𝑑 ⋆ 𝑐𝑑 = (𝑎𝑑 ⋆ 𝑏𝑑) ⋆ 𝑐𝑑.

Như vậy ta chứng minh được tính kết hợp. Và từ đó 𝐺[𝑑] là nhóm.

(d) Sử dụng kết quả câu 2.11

𝑆3[2] = {𝜏, 𝜎𝜏, 𝜎2, 𝜏, 𝑒}.

Vì

(𝜎𝜏)𝜏 = 𝜎𝜏2 = 𝜎 /∈ 𝑆3[2]

nên 𝑆3[2] không là nhóm.

INFO-CIRCLE Exercise (Câu 2.13)

Let 𝐺 and 𝐻 be groups. A function 𝜑 : 𝐺→ 𝐻 is called a (group) homomorphism if it satisfies

𝜑(𝑔1 ⋆ 𝑔2) = 𝜑(𝑔1) ⋆ 𝜑(𝑔2) for all 𝑔1, 𝑔2 ∈ 𝐺

(Note that the product 𝑔1 ⋆ 𝑔2 uses the group law in the group 𝐺, while the product 𝜑(𝑔1) ⋆ 𝜑(𝑔2) uses
the group law in the group 𝐻.)

(a) Let 𝑒𝐺 be the identity element of 𝐺, let 𝑒𝐻 be identity element of 𝐻, and the 𝑔 ∈ 𝐺. Prove that

𝜑(𝑒𝐺) = 𝑒𝐻 and 𝜑(𝑔−1) = 𝜑(𝑔)−1

(b) Let 𝐺 be a commutative group. Prove that the map 𝜑 : 𝐺 → 𝐺 defined by 𝜑(𝑔) = 𝑔2 is
a homomorphism. Give an example of a noncommutative group for which this map is not a
homomorphism.

(c) Same question as (b) for the map 𝜑(𝑔) = 𝑔−1.

(a) Với mọi 𝑔 ∈ 𝐺 thì 𝑔 = 𝑔 ⋆ 𝑒 = 𝑒 ⋆ 𝑔. Suy ra
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𝜑(𝑔) = 𝜑(𝑔 ⋆ 𝑒𝐺) = 𝜑(𝑒𝐺 ⋆ 𝑔)

⇐⇒ 𝜑(𝑔) = 𝜑(𝑔) ⋆ 𝜑(𝑒𝐺) = 𝜑(𝑒𝐺) ⋆ 𝜑(𝑔)

Do 𝜑(𝑔) ∈ 𝐻, 𝜑(𝑒𝐺) là phần tử đơn vị của 𝐻, nói cách khác là 𝜑(𝑒𝐺) = 𝑒𝐻 .

Trong nhóm 𝐺, 𝑔 ⋆ 𝑔−1 = 𝑒𝐺. Suy ra

𝜑(𝑔 ⋆ 𝑔−1) = 𝜑(𝑒𝐺)

⇐⇒ 𝜑(𝑔) ⋆ 𝜑(𝑔−1) = 𝜑(𝑒𝐺)

⇐⇒ 𝜑(𝑔) ⋆ 𝜑(𝑔−1) = 𝑒𝐻

⇐⇒ 𝜑(𝑔−1) = 𝜑(𝑔)−1

(b) 𝜑 : 𝐺→ 𝐺, 𝜑(𝑔) = 𝑔2. Với mọi 𝑔1, 𝑔2 ∈ 𝐺, do 𝐺 là nhóm giao hoán nên

𝜑(𝑔1 ⋆ 𝑔2) = (𝑔1 ⋆ 𝑔2)
2 = 𝑔21 ⋆ 𝑔

2
2

Ta có 𝑔21 ⋆ 𝑔22 = 𝜑(𝑔1) ⋆ 𝜑(𝑔2) nên 𝜑(𝑔1 ⋆ 𝑔2) = 𝜑(𝑔1) ⋆ 𝜑(𝑔2). Như vậy 𝐺 là homomorphism.

Xét nhóm ở Câu 2.11 và ánh xạ 𝜑 : 𝐺→ 𝐺, 𝜑(𝑔) = 𝑔2.

Khi đó

𝜑(𝑒) = 𝑒2 = 𝑒, 𝜑(𝜎) = 𝜎2,

𝜑(𝜏) = 𝜏2 = 𝑒, 𝜑(𝜎𝜏) = (𝜎𝜏)2 = 𝑒.

Vì

𝜑(𝜎𝜏) = 𝑒 ̸= 𝜎2 = 𝜑(𝜎)𝜑(𝜏),

nên 𝐺 không là homomorphism.

(c) 𝜑 : 𝐺→ 𝐺, 𝜑(𝑔) = 𝑔−1.

Với mọi 𝑔1, 𝑔2 ∈ 𝐺 thì 𝑔1𝑔−1
1 = 𝑒 và 𝑔2𝑔−1

2 = 𝑒

Do đó 𝑔1𝑔−1
1 𝑔2𝑔

−1
2 = 𝑒, mà 𝐺 là nhóm hoán vị nên (𝑔1𝑔2)(𝑔

−1
1 𝑔−1

2 ) = 𝑒, tương đương với 𝑔−1
1 𝑔−1

2 = (𝑔1𝑔2)
−1.

Như vậy

𝜑(𝑔1𝑔2) = (𝑔1𝑔2)
−1 = 𝑔−1

1 𝑔−1
2 = 𝜑(𝑔1)𝜑(𝑔2)

Kết luận: 𝐺 là homomorphism.

Xét nhóm ở Câu 2.11 và ánh xạ 𝜑 : 𝐺→ 𝐺, 𝜑(𝑔) = 𝑔−1. Ta có

𝜎𝜎2 = 𝑒 = 𝜎2𝜎 = 𝑒, 𝜏2 = 𝑒, (𝜎𝜏)2 = 𝑒, (𝜎2𝜏)2 = 𝑒,

suy ra

𝜑(𝜎𝜏) = 𝜎𝜏, 𝜑(𝜎) = 𝜎2, 𝜑(𝜏) = 𝜏

Vì 𝜑(𝜎𝜏) = 𝜎𝜏 ̸= 𝜎2𝜏 = 𝜑(𝜎)𝜑(𝜏) nên 𝐺 không là homomorphism.

INFO-CIRCLE Exercise (Câu 2.14)

Prove that each of the following maps is a group homomophism.

(a) The map 𝜑 : Z→ Z/𝑁Z that sends 𝑎 ∈ 𝑍 to 𝑎 mod 𝑁 in Z/𝑁Z.

(b) The map 𝜑 : R* → 𝐺𝐿2(R) defined by 𝜑(𝑎) =
(︂
𝑎 0
0 𝑎−1

)︂
.

(c) The discrete logarithm map log𝑔 : F*
𝑝 → Z/(𝑝− 1)Z, where 𝑔 is a primitive root modulo 𝑝.
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(a) Với mọi 𝑎, 𝑏 ∈ Z,

𝜑(𝑎𝑏) = (𝑎𝑏) (mod 𝑁)

= (𝑎 mod 𝑁) (𝑏 mod 𝑁) (mod 𝑁)

= 𝜑(𝑎)𝜑(𝑏)

Do đó 𝜑 là homomorphism.

(b) Với mọi 𝑎, 𝑏 ∈ R* thì

𝜑(𝑎𝑏) =

(︂
𝑎𝑏 0
0 (𝑎𝑏)−1

)︂
Ta có

𝜑(𝑎)𝜑(𝑏) =

(︂
𝑎 0
0 𝑎−1

)︂(︂
𝑏 0
0 𝑏−1

)︂
=

(︂
𝑎𝑏 0
0 𝑎−1𝑏−1

)︂
Trong R* ta có tính chất (𝑎𝑏)−1 = 𝑎−1𝑏−1, do đó 𝜑(𝑎𝑏) = 𝜑(𝑎)𝜑(𝑏). Suy ra 𝜑 là homomorphism.

(c) Ta chọn ánh xạ 𝜑(𝑎) = 𝑥 thỏa mãn 𝑔𝑥 ≡ 𝑎 (mod 𝑝).

Khi đó, với mọi 𝑎, 𝑏 ∈ F*
𝑝, 𝜑(𝑎) = 𝑥, hay 𝑔𝑥 ≡ 𝑎 (mod 𝑝), và 𝜑(𝑏) = 𝑦, hay 𝑔𝑦 ≡ 𝑏 (mod 𝑝).

Ta có 𝜑(𝑎)𝜑(𝑏) = 𝑥+ 𝑦 vì 𝑥, 𝑦 ∈ Z/(𝑝− 1)Z, đây là phép cộng trong modulo 𝑝− 1.

Ta lại có 𝑔𝑥+𝑦 ≡ 𝑎𝑏 (mod 𝑝), suy ra 𝜑(𝑎𝑏) = 𝑥+ 𝑦. Như vậy 𝜑(𝑎)𝜑(𝑏) = 𝜑(𝑎𝑏) và 𝜑 là homomorphism.

INFO-CIRCLE Exercise (Câu 2.15)

(a) Prove that GL2(F𝑝) is a group.

(b) Show that GL2(F𝑝) is a noncommutative group for every prime 𝑝.

(c) Describe GL2(F𝑝) completely. That is, list its elements and describe the multiplication table.

(d) How many elements are there in the group GL2(F𝑝)?

(e) How many elements are there in the group GL𝑛(F𝑝)?

(a) Nếu 𝐴 và 𝐵 là hai ma trận thuộc GL2(F𝑝) thì 𝐴𝐵 cũng thuộc 𝐺𝐿2(F𝑝) do det(𝐴𝐵) = det(𝐴) · det(𝐵)
khác 0.

Phần tử đơn vị là 𝐸 =

(︂
1 0
0 1

)︂
.

Với mọi 𝐴 ∈ 𝐺𝐿2(F𝑝), do det𝐴 ̸= 0 nên luôn tồn tại nghịch đảo của 𝐴 trong 𝐺𝐿2(F𝑝).

Với mọi 𝐴,𝐵,𝐶 ∈ 𝐺𝐿2(F𝑝) ta đều có (𝐴𝐵)𝐶 = 𝐴(𝐵𝐶) vì phép nhân ma trận có tính kết hợp.

Kết luận: 𝐺𝐿2(F𝑝) là nhóm.

Giả sử ta có 𝐴 =

(︂
𝑎11 𝑎12
𝑎21 𝑎22

)︂
và 𝐵 =

(︂
𝑏11 𝑏12
𝑏21 𝑏22

)︂
với 𝐴,𝐵 ∈ 𝐺𝐿2(F𝑝).

Phần tử ở hàng 1 và cột 1 của tích 𝐴𝐵 là (𝑎11𝑏11 + 𝑎12𝑏21) (mod 𝑝).

Phần tử ở hàng 1 và cột 1 của tích 𝐵𝐴 là (𝑏11𝑎11 + 𝑏12𝑎21) (mod 𝑝).

Nếu ta chọn 𝑎12 ̸≡ 𝑏−1
21 𝑎21𝑏21 (mod 𝑝) thì 𝐴𝐵 ̸= 𝐵𝐴, do đó nhóm không có tính giao hoán.

(c) Ta liệt kê tất cả ma trận:
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𝐴1 =

(︂
0 1
1 0

)︂
, 𝐴2 =

(︂
0 1
1 1

)︂
, 𝐴3 =

(︂
1 0
0 1

)︂
,

𝐴4 =

(︂
1 0
1 1

)︂
, 𝐴5 =

(︂
1 1
0 1

)︂
, 𝐴6 =

(︂
1 1
1 0

)︂
.

Bảng phép nhân sẽ như sau:

𝐴1 𝐴2 𝐴3 𝐴4 𝐴5 𝐴6

𝐴1 𝐴3 𝐴5 𝐴1 𝐴6 𝐴2 𝐴4

𝐴2 𝐴4 𝐴6 𝐴2 𝐴5 𝐴1 𝐴3

𝐴3 𝐴1 𝐴2 𝐴3 𝐴4 𝐴5 𝐴6

𝐴4 𝐴2 𝐴1 𝐴4 𝐴3 𝐴6 𝐴5

𝐴5 𝐴6 𝐴4 𝐴5 𝐴2 𝐴3 𝐴1

𝐴6 𝐴5 𝐴3 𝐴6 𝐴1 𝐴4 𝐴2

(d) Hàng đầu 𝑢1 là vector bất kì thuộc F2
𝑝 ngoại trừ (0, 0). Do đó ta có 𝑝2 − 1 cách chọn.

Hàng thứ hai 𝑢2 là vector bất kì ngoại trừ một bội của hàng đầu. Do đó ta có 𝑝2 − 𝑝 cách (loại các cách
chọn 𝑖 · 𝑢1 với 𝑖 = 0, 1, . . . , 𝑝− 1).

Kết luận: có (𝑝2 − 1)(𝑝2 − 𝑝) phần tử trong 𝐺𝐿2(F𝑝).

(e) Tương tự (d), ta chọn hàng đầu 𝑢1 là bất kì vector nào ngoại từ (0, 0). Ta có 𝑝𝑛 − 1 cách chọn.

Hàng thứ hai 𝑢2 là bất kì vector nào ngoại trừ bội của hàng đầu, nghĩa là loại các tổ hợp 𝑖 · 𝑢1 với
𝑖 = 0, 1, . . . , 𝑝− 1. Ta có 𝑝𝑛 − 𝑝 cách chọn.

Hàng thứ ba 𝑢3 là bất kì vector nào ngoại trừ các tổ hợp tuyến tính của 𝑢1 và 𝑢2. Số lượng tổ hợp tuyến
tính 𝑎1 · 𝑢1 + 𝑎2 · 𝑢2 chính là số lượng cặp (𝑎1, 𝑎2) và ta có 𝑝2 trường hợp (vì 𝑎1, 𝑎2 ∈ F𝑝). Như vậy hàng
thứ ba có 𝑝𝑛 − 𝑝2 cách chọn.

Tổng quát, vector thứ 𝑛 (hàng thứ 𝑛) là bất kì vector nào ngoại trừ tổ hợp tuyến tính của các vector trước
đó 𝑢1, 𝑢2, ..., 𝑢𝑛−1. Như vậy ta có 𝑝𝑛 − 𝑝𝑛−1 cách chọn.

Kết luận: có tất cả (𝑝𝑛 − 1)(𝑝𝑛 − 𝑝) · · · (𝑝𝑛 − 𝑝𝑛−1) phần tử trong 𝐺𝐿𝑛(F𝑝).

INFO-CIRCLE Exercise (Câu 2.18)

Solve each of the following simultaneous systems of congruences (or explain why no solutions exists).

(a) 𝑥 ≡ 3 (mod 7) and 𝑥 ≡ 4 (mod 9)

(b) 𝑥 ≡ 137 (mod 423) and 𝑥 ≡ 87 (mod 191)

(d) 𝑥 ≡ 5 (mod 9), 𝑥 ≡ 6 (mod 10) and 𝑥 ≡ 7 (mod 11)

(e) 𝑥 ≡ 37 (mod 43), 𝑥 ≡ 22 (mod 49) and 𝑥 ≡ 18 (mod 71)

(a) Vì 𝑁 = 7 · 9 = 63, đặt 𝑇1 = 63/7 = 9, 𝑇−1
1 mod 7 = 4, 𝑇2 = 63/9 = 7, 𝑇−1

2 mod 9 = 4.

⇒ 𝑥 ≡ 3 · 9 · 4 + 4 · 7 · 4 ≡ 220 ≡ 31 (mod 63)

(b) Vì 𝑁 = 423 · 191 = 90793, đặt 𝑇1 = 𝑁/423 = 191, 𝑇−1
1 mod 423 = 392, 𝑇2 = 𝑁/191 = 423,

𝑇−1
2 mod 191 = 14.

⇒ 𝑥 ≡ 137 · 191 · 392 + 87 · 423 · 14 ≡ 27209 (mod 𝑁)

(c) Không thể tính vì gcd(451, 697) = 41 ̸= 1.

(d) Vì 𝑁 = 9 · 10 · 11 = 990, đặt 𝑇1 = 𝑁/9 = 110, 𝑇−1
1 mod 9 = 5, 𝑇2 = 𝑁/10 = 99, 𝑇−1

2 mod 10 = 9,
𝑇3 = 𝑁/11 = 90, 𝑇−1

3 mod 11 = 6
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⇒ 𝑥 ≡ 5 · 110 · 5 + 6 · 99 · 9 + 7 · 90 · 6 ≡ 986 (mod 𝑁)

(e) Vì 𝑁 = 43 · 49 · 71 = 149597, đặt 𝑇1 = 𝑁/43 = 3479, 𝑇−1
1 mod 43 = 32, 𝑇2 = 𝑁/49 = 3053,

𝑇−1
2 mod 49 = 36, 𝑇3 = 𝑁/71 = 2107, 𝑇−1

3 mod 71 = 37

⇒ 𝑥 ≡ 37 · 3479 · 32 + 22 · 3053 · 36 + 18 · 2107 · 37 ≡ 11733 (mod 𝑁)

INFO-CIRCLE Exercise (Câu 2.19)

Solve the 1700-year-old Chinese remainder problem from the Sun Tzu Suan Ching stated on page 84.⎧⎪⎨⎪⎩
𝑥 ≡ 2 (mod 3)

𝑥 ≡ 3 (mod 5)

𝑥 ≡ 2 (mod 7)

.

Đáp án: 𝑥 ≡ 23 (mod 105).

INFO-CIRCLE Exercise (Câu 2.21.)

(a) Let 𝑎, 𝑏, 𝑐 be positive integers and suppose that

𝑎 | 𝑐, 𝑏 | 𝑐, and gcd(𝑎, 𝑏) = 1

Prove that 𝑎𝑏 | 𝑐

(b) Let 𝑥 = 𝑐 and 𝑥 = 𝑐′ be two solutions to the system of simultaneous congruences in the Chinese
remainder theorem. Prove that

𝑐 ≡ 𝑐′ (mod 𝑚1𝑚2...𝑚𝑘)

(a) Do 𝑎 | 𝑐 nên tồn tại 𝑘 ∈ Z sao cho 𝑐 = 𝑘𝑎.

Do 𝑏 | 𝑐 nên tồn tại 𝑙 ∈ Z sao cho 𝑐 = 𝑙𝑏.

Như vậy 𝑘𝑎 = 𝑙𝑏.

Tuy nhiên do gcd(𝑎, 𝑏) = 1 nên 𝑎 | 𝑙, hay 𝑙 = 𝑚𝑎 với 𝑚 ∈ Z

Như vậy 𝑐 = 𝑙𝑏 = 𝑙𝑚𝑎, hay 𝑎𝑏 | 𝑐.

(b) Nếu 𝑐 ≡ 𝑐′(≡ 𝑎𝑖) (mod 𝑚)𝑖 thì 𝑐 ≡ 𝑐′ (mod 𝑚1𝑚2 · · ·𝑚𝑘).

INFO-CIRCLE Exercise (Câu 2.24)

Let 𝑝 be an odd prime, let 𝑎 be an integer that is not divisible by 𝑝, and let 𝑏 is a square root of 𝑎 modulo
𝑝. This exercise investigates the square root of 𝑎 modulo powers of 𝑝

(a) Prove that for some choise of 𝑘, the number 𝑏+𝑘𝑝 is a square root of 𝑎 modulo 𝑝2, i.e., (𝑏+𝑘𝑝)2 ≡ 𝑎
(mod 𝑝2)

(b) The number 𝑏 = 537 is a square root of 𝑎 = 476 modulo the prime 𝑝 = 1291. Use the idea in (a) to
compute a square root of 476 modulo 𝑝2

(c) Suppose that 𝑏 is a square root of 𝑎 modulo 𝑝𝑛. Prove that for some choice of 𝑗, the number 𝑏+ 𝑗𝑝𝑛
is a square root of 𝑎 modulo 𝑝𝑛+1
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(d) Explain why (c) implies the following statements: If 𝑝 is an odd prime and if 𝑎 has a square root
modulo 𝑝, then 𝑎 has a square root modulo 𝑝𝑛 for every power of 𝑝. Is this true if 𝑝 = 2?

(e) Use the method in (c) to compute the square root of 3 modulo 133, given that 92 ≡ 3 (mod 13)

(a) Đặt 𝑓(𝑏𝑛) = 𝑏2𝑛 − 𝑎 (mod 𝑝𝑛) với 𝑏1 = 𝑏. Suy ra 𝑓(𝑏1) = 𝑏2 − 𝑎 ≡ 0 (mod 𝑝).

Ta cần tìm 𝑏2 thỏa 𝑓(𝑏2) = 𝑏22 − 𝑎 ≡ 0 (mod 𝑝2).

Nói cách khác, 𝑏2 = 𝑏1 + 𝑘𝑝 nên suy ra

𝑓(𝑏1 + 𝑘𝑝) = (𝑏1 + 𝑘𝑝)2 − 𝑎 = 𝑏21 + 2𝑏1𝑘𝑝+ (𝑘𝑝)2 − 𝑎 ≡ 0 (mod 𝑝2)

Tương đương với

2𝑏1𝑘 ≡ −(𝑏21 − 𝑎)/𝑝 (mod 𝑝2),

vì 𝑏21 − 𝑎 ≡ 0 (mod 𝑝).

Do 2𝑏1 ̸≡ 0 (mod 𝑝2) nên tồn tại 𝑘 thỏa mãn đẳng thức.

(b) Ta có công thức

𝑘 = −(𝑏2 − 𝑎)/𝑝× (2𝑏)−1 (mod 𝑝2)

(c) Ta chứng minh theo quy nạp với mọi 𝑛 > 1, tồn tại 𝑏𝑛 ∈ Z sao cho

𝑓(𝑏𝑛) = 𝑏2𝑛 − 𝑎 ≡ 0 (mod 𝑝𝑛)
𝑏𝑛 = 𝑏 (mod 𝑝𝑛)

Trường hợp 𝑛 = 1 là điều kiện ban đầu với 𝑏1 = 𝑏. Giả sử mệnh đề đúng tới 𝑛, nghĩa là:

𝑓(𝑏𝑛) = 𝑏2𝑛 − 𝑎 (mod 𝑝𝑛)
𝑏𝑛 = 𝑏 (mod 𝑝𝑛)

Xét 𝑏𝑛+1

𝑓(𝑏𝑛+1) = 𝑏2𝑛+1 − 𝑎 ≡ 0 (mod 𝑝𝑛+1).

Ta viết 𝑏𝑛+1 = 𝑏𝑛 + 𝑝𝑛𝑡𝑛.

⇒ 𝑓(𝑏𝑛+1) = 𝑏2𝑛 + 2𝑏𝑛𝑝
𝑛𝑡𝑛 + 𝑝2𝑛𝑡2𝑛 − 𝑎 ≡ 0 (mod 𝑝𝑛+1)

⇒ 𝑏2𝑛 + 2𝑏𝑛𝑝
𝑛𝑡𝑛 − 𝑎 ≡ 0 (mod 𝑝𝑛+1) (vì 2𝑛 > 𝑛+ 1)

⇒ 2𝑏𝑛𝑡𝑛 ≡ −(𝑏2𝑛 − 𝑎)/𝑝𝑛 (mod 𝑝𝑛+1) từ (2)

Nghiệm 𝑡𝑛 tồn tại vì ta đã giả sử 2𝑏𝑛 ≡ 0 (mod 𝑝𝑛). Như vậy

𝑓(𝑏𝑛+1) ≡ 0 (mod 𝑝𝑛+1), và 𝑏𝑛+1 ≡ 𝑏𝑛 (mod 𝑝𝑛).

Chứng minh này dùng cho 𝑏+ 𝑗𝑝𝑛 modulo 𝑝𝑛, không phải cho 𝑝𝑛+1.

(d) Sử dụng quy nạp. Đặc biệt, nếu 𝑝 = 2 thì mọi số nguyên đều thỏa.

INFO-CIRCLE Exercise (Câu 2.31)

Let 𝑅 and 𝑆 be rings. A functions 𝜑 : 𝑅→ 𝑆 is called a (ring) homomorphism if it satisfies

𝜑(𝑎+ 𝑏) = 𝜑(𝑎) + 𝜑(𝑏) and 𝜑(𝑎 ⋆ 𝑏) = 𝜑(𝑎) ⋆ 𝜑(𝑏)

for all 𝑎, 𝑏 ∈ 𝑅.
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(a) Let 0𝑅, 0𝑆 , 1𝑅 and 1𝑆 denote the additive and multiplicative identities of 𝑅 and 𝑆, respectively.
Prove that

𝜑(0𝑅) = 0𝑆 , 𝜑(1𝑅) = 1𝑆 , 𝜑(−𝑎) = −𝜑(𝑎), 𝜑(𝑎−1) = 𝜑(𝑎)−1

where the last equality holds for those 𝑎 ∈ 𝑅 that have a multiplicative inverse.

(b) Let 𝑝 be a prime, and let 𝑅 be a ring with the property that 𝑝𝑎 = 0 for every 𝑎 ∈ 𝑅. (Here 𝑝𝑎
means to add 𝑎 to itself 𝑝 times.) Prove that the map

𝜑 : 𝑅→ 𝑅, 𝜑(𝑎) = 𝑎𝑝

is a ring homomorphism. It is called the Frobenius homomorphism.

Điều kiện đề bài là 𝜑(𝑎+ 𝑏) = 𝜑(𝑎) + 𝜑(𝑏) và 𝜑(𝑎 ⋆ 𝑏) = 𝜑(𝑎) ⋆ 𝜑(𝑏) với mọi 𝑎, 𝑏 ∈ 𝑅.

(a) Trong 𝑅, với mọi 𝑎 ∈ 𝑅 ta có

𝑎+ 0𝑅 = 0𝑅 + 𝑎 = 𝑎.

Suy ra

𝜑(𝑎) = 𝜑(𝑎+ 0𝑅) = 𝜑(0𝑅 + 𝑎),

hay

𝜑(𝑎) = 𝜑(𝑎) + 𝜑(0𝑅) = 𝜑(0𝑅) + 𝜑(𝑎).

Đặt 𝜑(𝑎) = 𝑏 ∈ 𝑆. Khi đó

𝑏 = 𝑏+ 𝜑(0𝑅) = 𝜑(0𝑅) + 𝑏

nên suy ra 𝜑(0𝑅) = 0𝑆 .

Trong 𝑅, với mọi 𝑎 ∈ 𝑅 thì

𝑎 ⋆ 1𝑅 = 1𝑅 ⋆ 𝑎 = 𝑎.

Khi đó

𝜑(𝑎 ⋆ 1𝑅) = 𝜑(1𝑅 ⋆ 𝑎) = 𝜑(𝑎)

nên suy ra

𝜑(𝑎) ⋆ 𝜑(1𝑅) = 𝜑(1𝑅) ⋆ 𝜑(𝑎) = 𝜑(𝑎),

hay 𝜑(1𝑅) = 1𝑆 .

Với 𝜑(−𝑎) = −𝜑(𝑎), trong 𝑅 ta có

𝑎+ (−𝑎) = (−𝑎) + 𝑎 = 0𝑅,

suy ra

𝜑(𝑎+ (−𝑎)) = 𝜑((−𝑎) + 𝑎) = 𝜑(0𝑅),

tương đương với

𝜑(𝑎) + 𝜑(−𝑎) = 𝜑(−𝑎) + 𝜑(𝑎) = 𝜑(0𝑅) = 0𝑆 .
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Như vậy 𝜑(−𝑎) = −𝜑(𝑎).

Với 𝜑(𝑎−1) = 𝜑(𝑎)−1, trong 𝑅 ta có

𝑎 ⋆ 𝑎−1 = 𝑎−1 ⋆ 𝑎 = 1𝑅,

suy ra

𝜑(𝑎 ⋆ 𝑎−1) = 𝜑(𝑎−1 ⋆ 𝑎) = 𝜑(1𝑅),

tương đương với

𝜑(𝑎) ⋆ 𝜑(𝑎−1) = 𝜑(𝑎−1) ⋆ 𝜑(𝑎) = 𝜑(1𝑅) = 1𝑆 .

Như vậy 𝜑(𝑎−1) = 𝜑(𝑎)−1.

(b) Ánh xạ 𝜑 : 𝑅→ 𝑅 cho bởi 𝜑(𝑎) = 𝑎𝑝, suy ra

𝜑(𝑎+ 𝑏) = (𝑎+ 𝑏)𝑝 =

𝑝∑︁
𝑖=0

(︂
𝑝

𝑖

)︂
𝑎𝑖𝑏𝑝−1.

Vì 𝑝 |
(︂
𝑝

𝑖

)︂
=

𝑝!

(𝑝− 𝑖)! · 𝑖!
(𝑝 là số nguyên tố) nên suy ra với mọi 1 6 𝑖 6 𝑝− 1, ta có

(︂
𝑝

𝑖

)︂
= 0 (do 𝑝𝑎 = 0).

⇒ 𝜑(𝑎+ 𝑏) = 𝑎𝑝 + 𝑏𝑝 = 𝜑(𝑎) + 𝜑(𝑏) (1)

⇒ 𝜑(𝑎𝑏) = (𝑎𝑏)𝑝 = 𝑎𝑝𝑏𝑝 = 𝜑(𝑎)𝜑(𝑏) (2)

Từ (1) và (2) ta thu được ring homomorphism.

INFO-CIRCLE Exercise (Câu 2.32)

Prove Proposition 2.41

Vì 𝑎1 ≡ 𝑎2 (mod 𝑚) nên 𝑚 | (𝑎1 − 𝑎2).

Nói cách khác là tồn tại 𝑘 ∈ 𝑅 sao cho 𝑎1 − 𝑎2 = 𝑘 ⋆ 𝑚.

Tương tự, tồn tại 𝑙 ∈ 𝑅 sao cho 𝑏1 − 𝑏2 = 𝑙 ⋆ 𝑚.

Từ đó

𝑎1 − 𝑎2 + 𝑏1 − 𝑏2 = (𝑘 + 𝑙) ⋆ 𝑚,

tương đương với

𝑚 | (𝑎1 + 𝑏1 − (𝑎2 + 𝑏2)),

hay

𝑎1 + 𝑏1 ≡ 𝑎2 + 𝑏2 (mod 𝑚).

Tương tự cho 𝑎1 − 𝑏1 ≡ 𝑎2 − 𝑏2 (mod 𝑚).

Đối với phép nhân, do {︃
𝑎1 = 𝑎2 + 𝑘 ⋆ 𝑚

𝑏1 = 𝑏2 + 𝑙 ⋆ 𝑚
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ta có

𝑎1 ⋆ 𝑏1 = (𝑎2 + 𝑘 ⋆ 𝑚)(𝑏2 + 𝑙 ⋆ 𝑚)

= 𝑎2 ⋆ 𝑏2 + 𝑎2 ⋆ 𝑙 ⋆ 𝑚+ 𝑘 ⋆ 𝑏2 ⋆ 𝑚+ 𝑘 ⋆ 𝑙 ⋆ 𝑚2,

suy ra 𝑚 | (𝑎1 ⋆ 𝑏1 − 𝑎2 ⋆ 𝑏2) hay nói cách khác là

𝑎1 ⋆ 𝑏1 ≡ 𝑎2 ⋆ 𝑏2 (mod 𝑚).

INFO-CIRCLE Exercise (Câu 2.33)

Prove Proposition 2.43

Theo Câu 2.32, nếu ta có 𝑎′ ∈ 𝑎̄ thì tương đương 𝑎′ ≡ 𝑎 (mod 𝑚).

Tương tự, nếu ta có 𝑏′ ∈ 𝑏̄ thì tương đương 𝑏′ ≡ 𝑏 (mod 𝑚).

Như vậy, theo Câu 2.32 thì

𝑎′ + 𝑏′ ≡ 𝑎+ 𝑏 (mod 𝑚), 𝑎′ ⋆ 𝑏′ ≡ 𝑎 ⋆ 𝑏 (mod 𝑚)

Nói cách khác

𝑎′ + 𝑏′ ∈ 𝑎+ 𝑏 và 𝑎′ ⋆ 𝑏′ ∈ 𝑎 ⋆ 𝑏,

nói cách khác phép tính cộng và nhân đóng trên 𝑅 (closed).

Với mọi 𝑎 ∈ 𝑅 ta có

𝑎+ 0 = 𝑎+ 0 = 𝑎 = 0 + 𝑎 = 0 + 𝑎

Như vậy phần tử trung hòa của phép cộng là 0.

Với mọi 𝑎 ∈ 𝑅 thì

𝑎+𝑚− 𝑎 = 𝑎+𝑚− 𝑎 = 0 = 𝑚− 𝑎+ 𝑎,

suy ra 𝑚− 𝑎 là phần tử đối của phần tử 𝑎 trong phép cộng.

Phép cộng trong modulo cũng có tính kết hợp

𝑎+ (𝑏+ 𝑐) = 𝑎+ 𝑏+ 𝑐 = 𝑎+ 𝑏+ 𝑐 = 𝑎+ 𝑏+ 𝑐 = (𝑎+ 𝑏) + 𝑐

Với mọi 𝑎, 𝑏 ∈ 𝑅

𝑎+ 𝑏 = 𝑎+ 𝑏 = 𝑏+ 𝑎 = 𝑏+ 𝑎

nên phép cộng modulo có tính giao hoán.

Vì 𝑎 ⋆ 1 ≡ 𝑎 (mod 𝑚) với mọi 𝑎 ∈ 𝑅 nên

𝑎 ⋆ 1 = 𝑎 ⋆ 1 = 𝑎 = 1 ⋆ 𝑎 = 1 ⋆ 𝑎.

Suy ra phần tử đơn vị của phép nhân là 1.
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Với mọi 𝑎, 𝑏, 𝑐 ∈ 𝑅 ta có 𝑎(𝑏𝑐) = (𝑎𝑏)𝑐 (mod 𝑚). Suy ra tính kết hợp của phép nhân

𝑎 ⋆ (𝑏 ⋆ 𝑐) = 𝑎 ⋆ 𝑏𝑐 = 𝑎𝑏𝑐 = 𝑎𝑏 ⋆ 𝑐 = (𝑎 ⋆ 𝑏) ⋆ 𝑐.

Vì

𝑎 ⋆ 𝑏 = 𝑎 ⋆ 𝑏 = 𝑏 ⋆ 𝑎 = 𝑏 ⋆ 𝑎

ta có tính giao hoán của phép nhân.

Tính phân phối giữa phép nhân và phép cộng:

𝑎 ⋆ (𝑏+ 𝑐) = 𝑎 ⋆ 𝑏+ 𝑐 = 𝑎(𝑏+ 𝑐) = 𝑎𝑏+ 𝑎𝑐 = 𝑎𝑏+ 𝑎𝑐 = 𝑎 ⋆ 𝑏+ 𝑎 ⋆ 𝑐.

Như vậy, 𝑅/(𝑚) là vành (cụ thể vừa là vành với đơn vị vừa là vành giao hoán).

INFO-CIRCLE Exercise (Câu 2.34)

Let F be a field and let a and b be nonzero polynomials in F[𝑥]

(a) Prove that deg(a · b) = deg(a) + deg(b)

(b) Prove that a has a multiplicative inverse in F[𝑥] if and only if a is in F, i.e., if and only if a is a
constant polynomial

(c) Prove that every nonzero element of F[𝑥] can be factored into a product of irreducible polynomials.
(Hint. Use (a), (b) and induction on the degree of the polynomial.)

(d) Let 𝑅 be ring Z/6Z. Give an example to show that (a) is false for some polynomials a and b in
𝑅[𝑥].

(a) Đặt

a = 𝑎𝑛𝑥
𝑛 + 𝑎𝑛−1𝑥

𝑛−1 + · · ·+ 𝑎1𝑥+ 𝑎0,

với 𝑎𝑖 ∈ F và deg(a) = 𝑛.

Đặt

𝑏 = 𝑏𝑚𝑥
𝑚 + 𝑏𝑚−1𝑥

𝑚−1 + · · ·+ 𝑏1𝑥+ 𝑏0,

với 𝑏𝑖 ∈ F và deg(b) = 𝑚.

Hạng tử với bậc cao nhất trong phép nhân a · b là 𝑥𝑛+𝑚, do đó

deg(a · b) = 𝑛+𝑚 = deg(a) + deg(b).

(b) Với

a = 𝑎𝑛𝑥
𝑛 + 𝑎𝑛−1𝑥

𝑛−1 + · · ·+ 𝑎1𝑥+ 𝑎0

Giả sử a có nghịch đảo trong F[𝑥] là đa thức

b = 𝑏𝑚𝑥
𝑚 + 𝑏𝑚−1𝑥

𝑚−1 + · · ·+ 𝑏1𝑥+ 𝑏0.

Vì

ab =

𝑛∑︁
𝑖=0

𝑎𝑖𝑥𝑖

𝑚∑︁
𝑗=0

𝑏𝑗𝑥
𝑗 =

𝑛∑︁
𝑖=0

𝑚∑︁
𝑗=0

𝑎𝑖𝑏𝑗𝑥
𝑖+𝑗 = 1.

Đồng nhất hệ số ta có 𝑎0𝑏0 = 1, các tích khác bằng 0. Như vậy a là đa thức hằng.
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(d) a = 2𝑥2 + 3𝑥+ 1, b = 3𝑥+ 2.

Trong Z/6Z các hệ số được modulo cho 6 và ta có

ab = 𝑥2 + 3𝑥+ 2

Như vậy deg(ab) = 2 < 3 = deg(a) + deg(b)

INFO-CIRCLE Exercise (Câu 2.37)

Prove that the polynomial 𝑥3 + 𝑥+ 1 is irreducible in F2[𝑥]

Nếu 𝑓(𝑥) = 𝑥3 + 𝑥+ 1 có nhân tử nào khác 1 và chính nó thì đa thức đó phải có bậc nhỏ hơn 3.

Các đa thức như vậy trong F2[𝑥] là

0, 𝑥+ 1, 𝑥2, 𝑥2 + 1, 𝑥2 + 𝑥, 𝑥2 + 𝑥+ 1, 𝑥.

Tuy nhiên 𝑓(𝑥) không chia hết cho bất kì đa thức nào kể trên nên 𝑓(𝑥) là đa thức tối giản.

INFO-CIRCLE Exercise (Câu 2.39)

The field F7[𝑥]/(𝑥
2 + 1) is a field with 49 elements, which for the moment we donote by F49

Using example 2.58, every element in F7[𝑥]/(𝑥
2 +1) has form 𝑓(𝑥) = 𝑎+ 𝑏𝑥, so in F49 it has form 𝑎+ 𝑏𝑖

(here 𝑖2 = −1)

(a) Is 2 + 5𝑥 is a primitive root in F49? No because (2 + 5𝑥)8 = 1

(b) Is 2 + 𝑥 is a primitive root in F49? Yes

(c) Is 1 + 𝑥 is a primitive root in F49? No because (1 + 𝑥)24 = 1

Chapter 3. Integer Factorization and RSA

INFO-CIRCLE Exercise (Câu 3.4)

Euler's phi function 𝜑(𝑁) is the function defined by

𝜑(𝑁) = |{0 6 𝑘 < 𝑁 : gcd(𝑘,𝑁) = 1}|.

Chứng minh định lý Euler đã có trong bài viết về hàm Euler.

INFO-CIRCLE Exercise (Câu 3.5)

Properties of Euler's phi function

If 𝑝 and 𝑞 are distinct primes, how is 𝜑(𝑝𝑞) related to 𝜑(𝑝) and 𝜑(𝑞)?

Chứng minh tính chất nhân tính của hàm Euler đã có ở bài viết về hàm Euler.

470 Chapter 4. Lời giải cho những vấn đề



Math Book

INFO-CIRCLE Exercise (Câu 3.6)

Let 𝑁 , 𝑐, and 𝑒 be positive integers satisfying the conditions gcd(𝑁, 𝑐) = 1 and gcd(𝑒, 𝜑(𝑁)) = 1.

Explain how to solve the congruence 𝑥𝑒 ≡ 𝑐 (mod 𝑁) assuming that you know the value of 𝜑(𝑁)

Vì gcd(𝑒, 𝜑(𝑁)) = 1, ta có thể tìm số 𝑑 ∈ Z sao cho 𝑒𝑑 ≡ 1 (mod 𝜑(𝑁)) với thuật toán Euclid mở rộng.

Khi đó 𝑒𝑑 = 𝑘𝜑(𝑁) + 1 với 𝑘 ∈ Z.

Vì gcd(𝑁, 𝑐) = 1 nên gcd(𝑁, 𝑥) = 1, hay

𝑐𝑑 = (𝑥𝑒)
𝑑
= 𝑥𝑒𝑑 = 𝑥𝑘𝜑(𝑁)+1 = (𝑥𝑘)𝜑(𝑁)𝑥,

và ta đã biết (𝑥𝑘)𝜑(𝑁) ≡ 1 (mod 𝑁) từ Câu 3.4.

Như vậy 𝑐𝑑 ≡ 𝑥 (mod 𝑁).

INFO-CIRCLE Exercise (Câu 3.11)

Alice chooses two large primes 𝑝 and 𝑞 and she publishes 𝑁 = 𝑝𝑞. It is assumed that 𝑁 is hard to factor.
Alice also chooses three random numbers 𝑔, 𝑟1, and 𝑟2 modulo 𝑁 and computes

𝑔1 ≡ 𝑔𝑟1(𝑝−1) (mod 𝑁) and 𝑔2 ≡ 𝑔𝑟2(𝑞−1) (mod 𝑁)

Her public key is the triple (𝑁, 𝑔1, 𝑔2) and her private key is the pair of primes (𝑝, 𝑞).

Now Bob wants to send the message 𝑚 to Alice, where 𝑚 is a number modulo 𝑁 . He chooses two random
integers 𝑠1 and 𝑠2 modulo 𝑁 and computes

𝑐1 ≡ 𝑚𝑔𝑠11 (mod 𝑁) and 𝑐2 ≡ 𝑚𝑔𝑠22 (mod 𝑁)

Bob sends the ciphertext (𝑐1, 𝑐2) to Alice.

Decryption is extreamly fast and essy. Alice uses the Chinese remainder theorem to solve the pair of
congruences

𝑥 ≡ 𝑐2 (mod 𝑝) and 𝑥 ≡ 𝑐2 (mod 𝑞)

Prove that Alice's solution 𝑥 is equal to Bob's plaintext 𝑚.

Ta có

𝑐1 ≡ 𝑚𝑔𝑠11 (mod 𝑁) ≡ 𝑚𝑔𝑠11 (mod 𝑝) ≡ 𝑚 (mod 𝑝)

do 𝑔𝑠11 = (𝑔𝑠1𝑟11 )(𝑝−1) ≡ 1 (mod 𝑝).

Tương tự ta có 𝑐2 ≡ 𝑚 (mod 𝑞).

Nghiệm của hệ đồng dư là

𝑥 ≡ 𝑐1𝑞𝑞′ + 𝑐2𝑝𝑝
′ (mod 𝑁)

với 𝑝𝑝′ + 𝑞𝑞′ = 1.

⇒ 𝑥 ≡ 𝑚𝑝𝑝′ +𝑚𝑞𝑞′ ≡ 𝑚(𝑝𝑝′ + 𝑞𝑞′) ≡ 𝑚 (mod 𝑁)
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Ta có

𝑔1 ≡ 𝑔𝑟1(𝑝−1) (mod 𝑁) ≡ 𝑔𝑟1(𝑝−1) (mod 𝑝) ≡ 1 (mod 𝑝).

Suy ra 𝑝 = gcd(𝑔1 − 1, 𝑁). Tương tự, 𝑞 = gcd(𝑔2 − 1, 𝑁).

Như vậy ta đã khôi phục lại private key.

INFO-CIRCLE Exercise (Câu 3.13)

Find 𝑥, 𝑦 such that 𝑥𝑒1 + 𝑦𝑒2 = 1 = gcd(𝑒1, 𝑒2).

⇒ 𝑚 = 𝑐𝑥1𝑐
𝑦
2 = 𝑚𝑒1𝑥+𝑒2𝑦 = 𝑚 (mod 𝑁)

INFO-CIRCLE Exercise (Câu 3.14.)

[Exercise]

Because 3, 11 and 17 are primes number, 𝑎 ≡ 𝑎3 (mod 3), 𝑎 ≡ 𝑎11 (mod 11), 𝑎 ≡ 𝑎17 (mod 17). We have
system congruence

𝑎 ≡ 𝑎3 (mod 3)

𝑎 ≡ 𝑎11 (mod 11)

𝑎 ≡ 𝑎17 (mod 17)

Consider that 𝑎3 ≡ 𝑎 (mod 3), 𝑎32 ≡ 𝑎3 ≡ 𝑎 (mod 3), · · ·, 𝑎3𝑖 ≡ 𝑎 (mod 3). And 561 = 2·35+2·33+2·32+31,
𝑎561 ≡ 𝑎2 · 𝑎2 · 𝑎2 · 𝑎 ≡ 𝑎9 ≡ 𝑎 (mod 3).

Similarly, 𝑎561 ≡ 𝑎 (mod 11), 𝑎561 ≡ 𝑎 (mod 17). From system congruence:

𝑎561 ≡ 𝑎 (mod 3)

𝑎561 ≡ 𝑎 (mod 11)

𝑎561 ≡ 𝑎 (mod 17)

Using CRT, 𝑎561 = (187 · 1 · 𝑎+ 51 · 8 · 𝑎+ 33 · 16 · 𝑎) (mod 561) = 𝑎 (mod 561)

Suppose that 𝑛 is even (𝑛 > 4), we have

(𝑛− 1)𝑛−1 = (−1)𝑛−1 = −1 (mod 𝑛),

but 𝑎𝑛−1 ≡ 1 (mod 𝑛) for all 𝑎, which is contrary. So 𝑛 must be odd.

Suppose that 𝑛 = 𝑝𝑒11 𝑝
𝑒2
2 · · · 𝑝𝑒𝑟𝑟 (𝑝𝑖 is odd prime). Because 𝑎𝑝𝑒−1(𝑝−1) ≡ 1 (mod 𝑝𝑒) and 𝑎𝑛−1 ≡ 1 (mod 𝑛),

we have 𝑎𝑛−1 ≡ 1 (mod 𝑝𝑒).

⇒ 𝑝𝑒−1(𝑝− 1) | (𝑛− 1)⇒ 𝑝𝑒−1 | (𝑛− 1), but 𝑝𝑒−1 | 𝑛, which is contrary if 𝑒 > 2. Hence 𝑒 must be 1.

Therefore 𝑛 = 𝑝1𝑝2 · · · 𝑝𝑟
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INFO-CIRCLE Exercise (Câu 3.37)

[EXERCISE]

(︁
𝑎

𝑝−1
2

)︁2
≡ 𝑎𝑝−1 ≡ 1 (mod 𝑝)

⇒
(︂
𝑎

𝑝

)︂
= ±1

⇒
(︁
𝑎

𝑝−1
2 − 1

)︁(︁
𝑎

𝑝−1
2 + 1

)︁
≡ 0 (mod 𝑝)

⇒ 𝑎
𝑝−1
2 ≡ ±1 (mod 𝑝).

If 𝑎 is quadratic residue, then 𝑎 ≡ 𝑏2 (mod 𝑝)

⇒ 𝑎
𝑝−1
2 ≡ (𝑏2)

𝑝−1
2 = 𝑏𝑝−1 ≡ 1 (mod 𝑝)

If 𝑎
𝑝−1
2 ≡ 1 (mod 𝑝)

Let 𝑔 be generator modulo 𝑝, then 𝑎 ≡ 𝑔𝑚 (mod 𝑝)

If 𝑚 is even ⇒ 𝑎 ≡ 𝑔2𝑘 (mod 𝑝)⇒ 𝑎
𝑝−1
2 ≡ 1 (mod 𝑝)

If 𝑚 is odd ⇒ 𝑎 = 𝑔2𝑘+1 (mod 𝑝) ⇒ 𝑎
𝑝−1
2 ≡ 𝑔(2𝑘+1) 𝑝−1

2 ≡ 𝑔𝑝−1𝑔
𝑝−1
2 ≡ 𝑔

𝑝−1
2 ̸≡ 1 (mod 𝑝), because 𝑝 − 1 is

smallest number that 𝑔𝑝−1 ≡ 1 (mod 𝑝)

From (a) and (b)
(︀−1

𝑝

)︀
≡ (−1)

𝑝−1
2 (mod 𝑝), if 𝑝 = 4𝑘+1⇒ (−1)

𝑝−1
2 ≡ (−1)2𝑘 ≡ 1 (mod 𝑝) \ If 𝑝 = 4𝑘+3⇒

(−1)
𝑝−1
2 ≡ (−1)2𝑘+1 ≡ −1 (mod 𝑝)

INFO-CIRCLE Exercise (Câu 3.38)

Prove that the three parts of the quadratic reciprocity theorem are equivalent to the following three
concise formulas, where 𝑝 and 𝑞 are odd primes.(︁

−1
𝑝

)︁
= (−1)

𝑝−1
2 .

With 𝑝 ≡ 1 (mod 4)⇒
(︁

−1
𝑝

)︁
= 1 = (−1)

𝑝−1
2 (mod 𝑝).

Similarly with 𝑝 ≡ 3 (mod 4)
(︁

2
𝑝

)︁
= (−1)

𝑝2−1
8 .

First we need a lemma (Gauss lemma): suppose 𝑝 is an odd prime, and 𝑎 ∈ Z, gcd(𝑎, 𝑝) = 1. Consider the
set

𝑎, 2𝑎, 3𝑎, · · · , 𝑝− 1

2
𝑎.

If 𝑠 of those residues are greater than 𝑝
2 , then

(︀
𝑎
𝑝

)︀
= (−1)𝑠

INFO-CIRCLE Proof of lemma

Among smallest residues of 𝑎, 2𝑎, 3𝑎, ..., 𝑝− 1

2
𝑎, suppose that 𝑢1, 𝑢2, ..., 𝑢𝑠 are residues greater than 𝑝

2
,

and 𝑣1, 𝑣2, ..., 𝑣𝑡 are residues smaller than 𝑝
2 .
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Because gcd(𝑗𝑎, 𝑝) = 1 for all 𝑗, where 1 6 𝑗 6
𝑝− 1

2
, all 𝑢𝑖, 𝑣𝑗 ̸= 0, then

𝑢𝑖, 𝑣𝑗 ∈ {1, 2, · · · , 𝑝− 1}.

We will prove that, the set

{𝑝− 𝑢1, 𝑝− 𝑢2, · · · , 𝑝− 𝑢𝑠, 𝑣1, 𝑣2, · · · , 𝑣𝑡}

is a permutation of {1, 2, · · · , 𝑝−1
2 }

It is clear that there are no 2 numbers 𝑢𝑖 or 2 numbers 𝑣𝑗 simultaneously congruent modulo 𝑝. Because
if 𝑚𝑎 ≡ 𝑛𝑎 (mod 𝑝) and gcd(𝑎, 𝑝) = 1, then 𝑚 ≡ 𝑛 (mod 𝑝) and it is contrast with 𝑚,𝑛 6 𝑝− 1

2
.

Similarly, we see that there are no numbers 𝑝− 𝑢𝑖 congruent with 𝑣𝑗 , so

(𝑝− 𝑢1)(𝑝− 𝑢2) · · · (𝑝− 𝑢𝑠)𝑣1𝑣2 · · · 𝑣𝑡 ≡
(︂
𝑝− 1

2

)︂
! (mod 𝑝).

On the other hand, 𝑢1, 𝑢2, ..., 𝑢𝑠, 𝑣1, 𝑣2, ..., 𝑣𝑡 are smallest residues of 𝑎, 2𝑎, 3𝑎, ..., 𝑝− 1

2
, so

𝑢1𝑢2 · · ·𝑢𝑠𝑣1𝑣2 · · · 𝑣𝑡 ≡ 𝑎
𝑝−1
2

(︂
𝑝− 1

2

)︂
! (mod 𝑝).

Therefore

(−1)𝑠𝑎
𝑝−1
2

(︂
𝑝− 1

2

)︂
! ≡

(︂
𝑝− 1

2

)︂
! (mod 𝑝)

And because

gcd(𝑝,
(︂
𝑝− 1

2

)︂
!) = 1⇒ (−1)𝑠𝑎

𝑝−1
2 ≡ 1 (mod 𝑝),

then

𝑎
𝑝−1
2 ≡ (−1)𝑠 (mod 𝑝),

(︂
𝑎

𝑝

)︂
= 𝑎

𝑝−1
2 ,

and
(︀
𝑎
𝑝

)︀
= (−1)𝑠 (mod 𝑝).

Return to problem: using theorem above, we need to find the number of residues, which are greater than 𝑝
2

among 1 · 2, 2 · 2, · · ·, 𝑝−1
2 · 2. Therefore we only need to know which numbers are greater than 𝑝

2

⇒ there are 𝑠 = 𝑝−1
2 −

[︀
𝑝
4

]︀
⇒
(︁

2
𝑝

)︁
= (−1)

𝑝−1
2 −

[︀ 𝑝
4

]︀
With 𝑝 ≡ 1, 3, 5, 7 (mod 8), we have

𝑝− 1

2
−
[︁𝑝
4

]︁
≡ 𝑝2 − 1

8
(mod 2)

⇒
(︂
2

𝑝

)︂
= (−1)

𝑝2−1
8

(︂
𝑝

𝑞

)︂(︂
𝑞

𝑝

)︂
= (−1)

𝑝−1
2 · 𝑞−1

2
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We need a lemma: Suppose 𝑝 is an odd prime, 𝑎 is odd and gcd(𝑎, 𝑝) = 1, then
(︁

𝑎
𝑝

)︁
= (−1)𝑇 (𝑎,𝑝), with

𝑇 (𝑎, 𝑝) =

𝑝−1
2∑︁

𝑗=1

[︂
𝑗𝑎

𝑝

]︂
.

INFO-CIRCLE Proof of lemma

Consider smallest residues of 𝑎, 2𝑎, 3𝑎, · · ·, 𝑝−1
2 · 𝑎. As Gauss's lemma, 𝑢1, 𝑢2, · · ·, 𝑢𝑠, 𝑣1, 𝑣2, · · ·, 𝑣𝑡 are

residues greater and less than 𝑝
2 respectively. According to Euclidean divisor:

𝑗𝑎 = 𝑝

[︂
𝑗𝑎

𝑝

]︂
+ remainder,

remainder is 𝑢𝑖 or 𝑣𝑗 . We have such 𝑝−1
2 equations and add them together

⇒

𝑝−1
2∑︁

𝑗=1

𝑗𝑎 =

𝑝−1
2∑︁

𝑗=1

𝑝

[︂
𝑗𝑎

𝑝

]︂
+

𝑠∑︁
𝑖=1

𝑢𝑖 +

𝑡∑︁
𝑗=1

𝑣𝑗

As we pointed out in Gauss's lemma, the set 𝑝 − 𝑢1, 𝑝 − 𝑢2, · · ·, 𝑝 − 𝑢𝑠, 𝑣1, 𝑣2, · · ·, 𝑣𝑡 is a permutation
of the set 1, 2, · · ·, 𝑝−1

2

𝑝−1
2∑︁

𝑗=1

𝑗 =

𝑠∑︁
𝑖=1

(𝑝− 𝑢𝑖) +
𝑡∑︁

𝑗=1

𝑣𝑡 = 𝑝𝑠−
𝑠∑︁

𝑖=1

𝑢𝑖 +

𝑡∑︁
𝑗=1

𝑣𝑡

⇒

𝑝−1
2∑︁

𝑗=1

𝑗𝑎−

𝑝−1
2∑︁

𝑗=1

𝑗 =

𝑝−1
2∑︁

𝑗=1

𝑝

[︂
𝑗𝑎

𝑝

]︂
− 𝑝𝑠+ 2

𝑠∑︁
𝑖=1

𝑢𝑖

From formula of 𝑇 (𝑎, 𝑝), (𝑎− 1)
∑︀ 𝑝−1

2
𝑗=1 𝑗 = 𝑝𝑇 (𝑎, 𝑝)− 𝑝𝑠+ 2

∑︀𝑠
𝑖=1 𝑢𝑖

Because 𝑎, 𝑝 are odd, 𝑇 (𝑎, 𝑝) ≡ 𝑠 (mod 2). From Gauss's lemma we finish.

Return to problem: Consider pairs (𝑥, 𝑦), where 1 6 𝑥 6 𝑝−1
2 and 1 6 𝑦 6 𝑞−1

2 , there are 𝑝−1
2 ·

𝑞−1
2 pairs.

We divide those pairs into 2 groups, depending on the magnitude of 𝑝𝑥 and 𝑞𝑦.

Because 𝑝, 𝑞 are two different primes, 𝑝𝑥 ̸= 𝑞𝑦, ∀(𝑥, 𝑦).

We consider pairs with 𝑞𝑥 > 𝑝𝑦. With every fixed element of 𝑥 (1 6 𝑥 6 𝑝−1
2 ), exist

[︁
𝑞𝑥
𝑝

]︁
elements 𝑦

satisfying 1 6 𝑦 6 𝑞𝑥
𝑝 . Therefore, there are

∑︀ 𝑝−1
2

𝑖=1

[︁
𝑖𝑞
𝑝

]︁
pairs. When 𝑞𝑥 < 𝑝𝑦, similarly, there are

∑︀ 𝑞−1
2

𝑗=1

[︁
𝑗𝑝
𝑞

]︁
pairs. Because there are 𝑝−1

2 ·
𝑞−1
2 pairs, we have equation

𝑝−1
2∑︁

𝑖=1

[︂
𝑖𝑞

𝑝

]︂
+

𝑞−1
2∑︁

𝑗=1

[︂
𝑗𝑝

𝑞

]︂
=
𝑝− 1

2
· 𝑞 − 1

2

From definition of 𝑇 (𝑝, 𝑞), we have result

(−1)𝑇 (𝑝,𝑞)+𝑇 (𝑞,𝑝) = (−1)
𝑝−1
2 · 𝑞−1

2
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INFO-CIRCLE Exercise (Câu 3.39)

Let 𝑝 be a prime satisfying 𝑝 ≡ 3 (mod 4).

Let 𝑎 be a quadratic residue modulo 𝑝. Prove that the number

𝑏 ≡ 𝑎
𝑝+1
4 (mod 𝑝)

has the property that 𝑏2 ≡ 𝑎 (mod 𝑝). (Hint. Write 𝑝+ 1

2
as 1 +

𝑝− 1

2
and use Exercise 3.37.) This

gives an easy way to take square roots modulo 𝑝 for primes that are congruent to 3 modulo 4.

Dùng Câu 3.37, 𝑎
𝑝−1
2 ≡ 1 (mod 𝑝) vì 𝑎 là thặng dư chính phương modulo 𝑝.

Khi đó

𝑏2 ≡ 𝑎
𝑝+1
2 ≡ 𝑎1+

𝑝−1
2 ≡ 𝑎 · 𝑎

𝑝−1
2 ≡ 𝑎 · 1 ≡ 1 (mod 𝑝)

INFO-CIRCLE Exercise (Câu 3.40)

Let 𝑝 be and odd prime, let 𝑔 ∈ F*
𝑝 be a primitive root, and let ℎ ∈ F*

𝑝. Write 𝑝− 1 = 2𝑠𝑚 with 𝑚 odd
and 𝑠 > 1, and write the binary expansion of log𝑔(ℎ) as

𝑙𝑜𝑔𝑔(ℎ) = 𝜀0 + 2𝜀1 + 4𝜀2 + 8𝜀3 + · · · with 𝜀0, 𝜀1, · · · ∈ {0, 1}

Give an algorithm that generalizes Example 3.69 and allows you to rapidly compute 𝜀0, 𝜀1, · · · , 𝜀𝑠−1,
thereby proving that the first 𝑠 bits of the discrete logarithm are insecure.

INFO-CIRCLE Algorithm 2 (Thuật toán tìm 𝑠 least significant bit (LSB) của 𝑥 trong 𝑔𝑥 ≡ ℎ (mod 𝑝))

Input: 𝑔, ℎ, 𝑝 (𝑝− 1 = 2𝑠𝑚)

Output: 𝑠 least significant bits của 𝑥 trong 𝑔𝑥 ≡ ℎ (mod 𝑝)

1. Ta sẽ tìm mảng 𝜀0, 𝜀1, · · · , 𝜀𝑠−1

2. For 𝑖 = 0, . . . , 𝑠− 1

1. If ℎ là thặng dư chính phương

1. 𝜀𝑖 = 0, ℎ =
√
ℎ (mod 𝑝)

2. ElseIf 𝜀𝑖 = 1

1. ℎ =
√︀
𝑔−1ℎ (mod 𝑝)

3. EndIf

3. EndFor

INFO-CIRCLE Exercise (Câu 3.41)

Let 𝑝 be a prime satisfying 𝑝 ≡ 1 (mod 3). We say that 𝑎 is a cubic residue modulo :math:`p` if 𝑝 - 𝑎
and there is an integer 𝑐 satisfying 𝑎 ≡ 𝑐3 (mod 𝑝).
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(a) Let 𝑎 and 𝑏 be cubic residues modulo 𝑝. Prove that 𝑎𝑏 is a cubic residue modulo 𝑝.

(b) Give an example to show that (unlike the case with quadratic residues) it is possible for none of 𝑎,
𝑏 and 𝑎𝑏 to the a cubic residue modulo 𝑝

(c) Let 𝑔 be a primitive root modulo 𝑝. Prove that 𝑎 is a cubic residue modulo 𝑝 if and only if 3 | log𝑔(𝑎),
where log𝑔(𝑎) is the discrete logarithm of 𝑎 to the base 𝑔.

(d) Suppose instead that 𝑝 ≡ 2 (mod 3). Prove that for every integer 𝑎 there is an integerr 𝑐 satisfying
𝑎 ≡ 𝑐3 (mod 𝑝). In other words, if 𝑝 ≡ 2 (mod 3), show that every number is a cube modulo 𝑝.

(a) Ta có 𝑎 ≡ 𝑥3 (mod 𝑝) và 𝑦 ≡ 𝑦3 (mod 𝑝) với 𝑥 và 𝑦 nào đó thuộc F𝑝.

Suy ra 𝑎𝑏 ≡ 𝑥3𝑦3 = (𝑥𝑦)3 (mod 𝑝) cũng là thặng dư bậc ba.

(b) Gọi 𝑔 là primitive root modulo 𝑝.

Ta chọn 𝑎 ≡ 𝑔3𝑘+1 (mod 𝑝) và 𝑏 ≡ 𝑔3𝑘′+1 (mod 𝑝).

Khi đó 𝑎𝑏 ≡ 𝑔(3𝑘+1)+(3𝑘′+1) ≡ 𝑔3(𝑘+𝑘′)+2 (mod 𝑝) không phải thặng dư bậc ba.

(c) Quên làm.

Điều kiện đủ. Nếu 𝑎 là thặng dư bậc ba modulo 𝑝, giả sử 𝑎 ≡ 𝑐3 (mod 3) và 𝑐 ≡ 𝑔𝑢 = (mod 𝑝).

Khi đó 𝑎 = 𝑔3𝑢 (mod 𝑝) và theo định lý Lagrange thì 3 | log𝑔(𝑎).

Điều kiện cần. Nếu 3 | log𝑔(𝑎) thì làm ngược lại bước chứng minh điều kiện đủ.

(d) Vì 𝑝 ≡ 2 (mod 3) nên gcd(𝑝− 1, 3) = 1. Khi đó tồn tại phần tử 𝑑 là nghịch đảo của 3 modulo 𝑝− 1.

Suy ra phương trình 𝑥3 ≡ 𝑎 (mod 𝑝) có nghiệm 𝑎𝑑 = 𝑥 (mod 𝑝).

Nói cách khác mọi phần tử đều là số bậc ba modulo 𝑝.

Chapter 4. Digital Signatures

INFO-CIRCLE Exercise (Câu 4.1)

Đáp án: 𝑑 = 561517, 𝑁 = 661643, 𝑠𝑖𝑔 = 206484.

INFO-CIRCLE Exercise (Câu 4.3)

Đáp án 𝑝 = 212081, 𝑞 = 128311 nên

𝑑 = 18408628619⇒ 𝑆 = 𝐷𝑑 (mod 𝑁) = 22054770669.

INFO-CIRCLE Exercise (Câu 4.4)

Đáp án: with 𝑐 = 𝑚𝑒𝐵 (mod 𝑁𝐵) and 𝑠 = 𝐻𝑎𝑠ℎ(𝑚)𝑑𝐴 (mod 𝑁𝐴)

𝑐𝑑𝐵 = 𝑚𝑒𝐵 ·𝑑𝐵 (mod 𝑁𝐵) = 𝑚, 𝑠𝑒𝐴 = 𝐻𝑎𝑠ℎ(𝑚)𝑑𝐴·𝑒𝐴 (mod 𝑁𝐴) = 𝐻𝑎𝑠ℎ(𝑚).

Hence this method works.
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INFO-CIRCLE Exercise (Câu 4.5)

Đáp án: với 𝐴 = 𝑔𝑎 (mod 𝑝) = 2065, ta tính

𝑆1 = 𝑔𝑘 (mod 𝑝) = 3534, 𝑆2 = (𝐷 − 𝑎 · 𝑆1)𝑘
−1 (mod 𝑝− 1) = 5888.

Hence signature is (𝑆1, 𝑆2) = (3534, 5888)

INFO-CIRCLE Exercise (Câu 4.6)

Đáp án: 𝐴𝑆1 · 𝑆𝑆2
1 ≡ 𝑔𝐷 (mod 𝑝), so (𝑆"

1, 𝑆
"
2) is valid signature.

INFO-CIRCLE Exercise (Câu 4.8)

Đáp án: 𝑆1 = 𝑆′
1 = 𝑔𝑘 (mod 𝑝), from here Eve can know at first glance that the same random element

𝑘 is used

With 𝑆2 = (𝐷 − 𝑎𝑆1)𝑘
−1 (mod 𝑝− 1), 𝑆′

2 = (𝐷′ − 𝑎𝑆′
1)𝑘

−1 (mod 𝑝− 1), then

𝑆2 − 𝑆′
2 ≡ (𝐷 −𝐷′)𝑘−1 (mod 𝑝− 1)`(𝑎𝑠 : 𝑚𝑎𝑡ℎ : `𝑎𝑆1 = 𝑎𝑆2`)

𝑘 = (𝐷 −𝐷′)(𝑆2 − 𝑆′
2)

−1 (mod 𝑝− 1).

Here we get 𝐷 − 𝑎𝑆1 = 𝑆2𝑘 (mod 𝑝− 1)

⇒

{︃
𝑎 = (𝐷 − 𝑆2𝑘)𝑆1−1 (mod 𝑝− 1)

𝑎 = (𝐷′ − 𝑆′
2𝑘)𝑆

−1
1 (mod 𝑝− 1)

.

INFO-CIRCLE Exercise (Câu 4.9)

Đáp án: 𝑝 ≡ 1 (mod 𝑞), 1 6 𝑎 6 𝑞 − 1, 𝐴 = 𝑔𝑎 (mod 𝑝), 𝑆1 = (𝑔𝑘 mod 𝑝) mod 𝑞, 𝑆2 = (𝐷 + 𝑎𝑆1)𝑘
−1

(mod 𝑞)

Verify: 𝑉1 = 𝐷 ·𝑆−1
2 (mod 𝑞), 𝑉2 = 𝑆1𝑆

−1
2 (mod 𝑞). We need to prove that (𝑔𝑉1 ·𝐴𝑉2 mod 𝑝) mod 𝑞 = 𝑆1

Here we have

𝑔𝑉1 ·𝐴𝑉2 ≡ 𝑔𝐷·𝑆−1
2 · 𝑔𝑎𝑆1𝑆

−1
2 (mod 𝑝)

≡ 𝑔(𝐷+𝑎𝑆1)𝑆
−1
2 (mod 𝑝)

≡ 𝑔𝑘 (mod 𝑝)

Hence (𝑔𝑉1𝐴𝑉2 mod 𝑝) mod 𝑞 = 𝑆1.

INFO-CIRCLE Exercise (Câu 4.10)

Đáp án: (𝑝, 𝑞, 𝑔) = (22531, 751, 4488). Public key 𝐴 = 22476 is not valid.
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INFO-CIRCLE Exercise (Câu 4.11)

Đáp án: 𝐴 = 𝑔𝑎 (mod 𝑝). 𝐴 = 31377, 𝑔 = 21947, 𝑝 = 103687, then

𝑎 = 602, 𝑆1 = (𝑔𝑘 mod 𝑝) mod 𝑞 = 439, 𝑆2 = (𝐷 + 𝑎𝑆1)𝑘
−1 (mod 𝑞) = 1259.

Chapter 7. Lattices and Cryptography

INFO-CIRCLE Exercise (Câu 7.43)

Đáp án: 𝑡 = 𝑏1 · 𝑏2
‖𝑏1‖2

và 𝑏*2 = 𝑏2 − 𝑡𝑏1 nên suy ra

𝑏*2 · 𝑏1 = 𝑏1(𝑏2 − 𝑡𝑏1) = 𝑏1 · 𝑏2 − 𝑡‖𝑏1‖2 = 𝑏1 · 𝑏2 −
𝑏1 · 𝑏2
‖𝑏1‖2

· ‖𝑏1‖2 = 0

Do đó 𝑏*2 ⊥ 𝑏1 và 𝑏*2 là hình chiếu của 𝑏2 lên orthogonal complement của 𝑏1.

INFO-CIRCLE Exercise (Câu 7.44)

Đáp án:

‖𝑎− 𝑡𝑏‖2 = (𝑎− 𝑡𝑏)2 = 𝑎2 − 2𝑡𝑎 · 𝑏+ 𝑡2𝑏2 = ‖𝑎‖2 + 𝑡2‖𝑏‖2 − 2𝑡𝑎 · 𝑏 > 0

với mọi 𝑡 ∈ R.

Cho 𝑎− 𝑡𝑏 = 0 ta có 𝑡 = 𝑎 · 𝑏
‖𝑏‖2

.

Từ đó ta có

(𝑎− 𝑡𝑏) · 𝑏 = 𝑎 · 𝑏− 𝑡‖𝑏‖2 = 𝑎 · 𝑏− 𝑎 · 𝑏
‖𝑏‖2

· ‖𝑏‖2 = 0.

Vì vậy 𝑎− 𝑡𝑏 là hình chiếu của 𝑎 lên orthogonal complement của 𝑏 (tương tự 7.43).

INFO-CIRCLE Exercise (Câu 7.45)

Đáp án ở dưới.

Thuật toán Gauss's lattice reduction.

INFO-CIRCLE Algorithm 3 (Thuật toán Gauss's latice reduction)

1. While True

1. If ‖𝑣2‖ < ‖𝑣1‖

1. swap 𝑣1 and 𝑣2

2. 𝑚← ⌊𝑣1 · 𝑣2/‖𝑣1‖2⌉
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2. EndIf

3. If 𝑚 = 0

1. return (𝑣1,𝑣2)

4. EndIf

5. Replace 𝑣2 with 𝑣2 −𝑚𝑣1

2. EndWhile

𝑣1 = (14,−47), 𝑣2 = (−362,−131), 6 steps.

𝑣1 = (14,−47), 𝑣2 = (−362,−131), 6 steps.

𝑣1 = (147, 330), 𝑣2 = (690,−207), 7 steps.

INFO-CIRCLE Exercise (Câu 7.46)

Đáp án ở dưới.

Do 𝑊⊥ là orthogonal complement của 𝑊 trong 𝑉 nên nếu 𝑧 ∈𝑊⊥ thì 𝑧 · 𝑦 = 0, với mọi 𝑦 ∈𝑊 .

Với hai vector 𝑧1, 𝑧2 ∈𝑊⊥ ta có 𝑧1 · 𝑦 = 𝑧2 · 𝑦 = 0, với mọi 𝑦 ∈𝑊 .

Như vậy (𝑧1 + 𝑧2) · 𝑦 = 0⇒ 𝑧1 + 𝑧2 ∈𝑊⊥.

Ta lại có 𝛼𝑧1 · 𝑦 = 𝛼 · 0 = 0⇒ 𝛼𝑧1 ∈𝑊⊥ với mọi 𝛼 ∈ R.

Tới đây ta có hai cách giải.

Cách 1. Ta có 𝑊 ∪𝑊⊥ = {0}. Nếu 𝑢 thuộc cả hai tập 𝑊 và 𝑊⊥ thì 𝑢 · 𝑢 = 0⇒ 𝑢 = 0.

Kí hiệu 𝑈 =𝑊 +𝑊⊥, ta chứng minh 𝑊 = 𝑉 .

Ta có thể chọn một cơ sở trực chuẩn (orthonormal basis) trong 𝑈 và mở rộng nó thành cơ sở trực chuẩn
trong 𝑉 .

Khi đó, nếu 𝑈 ̸= 𝑉 thì có một phần tử 𝑒 trong cơ sở của 𝑉 vuông góc với 𝑈 . Do 𝑈 chứa 𝑊 và 𝑒 vuông góc
với 𝑈 nên 𝑒 ∈𝑊⊥.

Phần sau là không gian con của 𝑊 , do đó 𝑒 thuộc 𝑊 , mâu thuẫn.

Cách 2. Đặt {𝑒1, 𝑒2, · · · , 𝑒𝑘} là cơ sở trực chuẩn của không gian con 𝑊 . Với mỗi 𝑣 ∈ 𝑉 , đặt

𝑃 (𝑣) =

𝑘∑︁
𝑗=1

(𝑣 · 𝑒𝑗) · 𝑒𝑗

Khi đó với mọi 𝑣 ∈ 𝑉 thì 𝑣 = 𝑃 (𝑣)⏟  ⏞  
∈𝑊

+(𝑣 − 𝑃 (𝑣))⏟  ⏞  
∈𝑊⊥

.

Ở đây 𝑣 − 𝑃 (𝑣) ∈𝑊⊥ là vì nếu 𝑗 ∈ {1, 2, · · · , 𝑘} thì

(𝑣 − 𝑃 (𝑣)) · 𝑒𝑗 =

(︃
𝑣 −

𝑘∑︁
𝑙=1

(𝑣 · 𝑒𝑙) · 𝑒𝑙

)︃
· 𝑒𝑗

= 𝑣 · 𝑒𝑗 − 𝑣 · 𝑒𝑗 = 0.

Do {𝑒1, · · · , 𝑒𝑘} là cơ sở của 𝑊 , điều này cho ta 𝑣 − 𝑃 (𝑣) ∈𝑊⊥.
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Như vậy

‖𝑣‖2 = (𝑎𝑤 + 𝑏𝑤′)2 = 𝑎2𝑤2 + 2𝑎𝑏𝑤𝑤′ + 𝑏2𝑤′2

= 𝑎2‖𝑤‖2 + 0 + 𝑏2‖𝑤′‖2 = 𝑎2‖𝑤‖2 + 𝑏2|𝑤′‖2.

4.1.4 Симметричная криптография
Lời giải cho quyển sách [19] của Н.Н. Токарева.

Глава 3. Булевы функции. Комбинаторный подход

Bài 16. Chứng minh rằng, hàm Boolean 𝑓 tuyến tính khi và chỉ khi 𝑓(𝑥⊕ 𝑦) = 𝑓(𝑥)⊕ 𝑓(𝑦) với mọi 𝑥, 𝑦.
Tương tự kiểm tra hàm Boolean là affine khi và chỉ khi 𝑓(𝑥⊕ 𝑦) = 𝑓(𝑥)⊕ 𝑓(𝑦)⊕ 𝑓(0).

INFO-CIRCLE Chứng minh cho hàm tuyến tính

Chiều thuận. Nếu 𝑓 là hàm tuyến tính thì nó có dạng

𝑓(𝑥1, . . . , 𝑥𝑛) = 𝑎𝑛𝑥𝑛 ⊕ · · · ⊕ 𝑎1𝑥1

nên ta tính 𝑓(𝑥⊕ 𝑦) như sau

𝑓(𝑥⊕ 𝑦) = 𝑎𝑛(𝑥𝑛 ⊕ 𝑦𝑛)⊕ · · · ⊕ 𝑎1(𝑥1 ⊕ 𝑦1)
= (𝑎𝑛𝑥𝑛 ⊕ · · · ⊕ 𝑎1𝑥1)⊕ (𝑎𝑛𝑦𝑛 ⊕ · · · ⊕ 𝑎1𝑦1)
= 𝑓(𝑥)⊕ 𝑓(𝑦).

Chiều nghịch. Với 𝑓(𝑥⊕ 𝑦) = 𝑓(𝑥)⊕ 𝑓(𝑦), đặt dạng ANF của 𝑓 là

𝑓(𝑥1, . . . , 𝑥𝑛) =

⎛⎝ 𝑛⨁︁
𝑘=1

⨁︁
𝑖1,...,𝑖𝑘

𝑎𝑖1,...,𝑖𝑘𝑥𝑖1 · · ·𝑥𝑖𝑘

⎞⎠⊕ 𝑎0.
Khi đó

𝑓(𝑥⊕ 𝑦) =

⎛⎝ 𝑛⨁︁
𝑘=1

⨁︁
𝑖1,...,𝑖𝑘

𝑎𝑖1,...,𝑖𝑘(𝑥𝑖1 ⊕ 𝑦𝑖1) · · · (𝑥𝑖𝑘 ⊕ 𝑦𝑖𝑘)

⎞⎠⊕ 𝑎0,
và

𝑓(𝑥)⊕ 𝑓(𝑦) =

⎛⎝ 𝑛⨁︁
𝑘=1

⨁︁
𝑖1,...,𝑖𝑘

𝑎𝑖1,...,𝑖𝑘𝑥𝑖1 · · ·𝑥𝑖𝑘

⎞⎠⊕ 𝑎0 ⊕
⎛⎝ 𝑛⨁︁

𝑘=1

⨁︁
𝑖1,...,𝑖𝑘

𝑎𝑖1,...,𝑖𝑘𝑦𝑖1 · · · 𝑦𝑖𝑘 .

⎞⎠⊕ 𝑎0
=

𝑛⨁︁
𝑘=1

⨁︁
𝑖1,...,𝑖𝑘

𝑎𝑖1,...,𝑖𝑘(𝑥𝑖1 · · ·𝑥𝑖𝑘 ⊕ 𝑦𝑖1 · · · 𝑦𝑖𝑘).

Như vậy, khi đồng nhất hệ số 𝑎𝑖1,...,𝑖𝑘 của 𝑓(𝑥⊕ 𝑦) và 𝑓(𝑥)⊕ 𝑓(𝑦) thì ta có

(𝑥𝑖1 ⊕ 𝑦𝑖1) · · · (𝑥𝑖𝑘 ⊕ 𝑦𝑖𝑘) = 𝑥𝑖1 · · ·𝑥𝑖𝑘 ⊕ 𝑦𝑖1 · · · 𝑦𝑖𝑘 .

Ở vế trái khi khai triển ra ta sẽ nhận được các đơn thức dạng 𝑥𝑖1𝑦𝑖2𝑦𝑖3 · · · 𝑦𝑖𝑘 khi 𝑘 > 1, tuy nhiên ở vế
phải chỉ có đúng hai đơn thức là 𝑥𝑖1 · · ·𝑥𝑖𝑘 và 𝑦𝑖1 · · · 𝑦𝑖𝑘 . Do đó các hệ số 𝑎𝑖1,...,𝑖𝑘 với 𝑘 > 1 phải bằng 0.
Hay nói cách khác bậc của ANF là 1. Ngoài ra 𝑓(𝑥⊕ 𝑦) có hệ số tự do 𝑎0 còn 𝑓(𝑥)⊕ 𝑓(𝑦) thì không có
nên khi đồng nhất hệ số cũng cho ta 𝑎0 = 0. Như vậy 𝑓 là hàm tuyến tính.
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INFO-CIRCLE Chứng minh cho hàm affine

Chiều thuận. Nếu 𝑓 là hàm tuyến tính thì nó có dạng

𝑓(𝑥1, . . . , 𝑥𝑛) = 𝑎𝑛𝑥𝑛 ⊕ · · · ⊕ 𝑎1𝑥1 ⊕ 𝑎0

và ta chứng minh tương tự cho trường hợp hàm tuyến tính với lưu ý 𝑓(0) = 𝑎0.

Chiều nghịch. Chứng minh tương tự cho trường hợp hàm tuyến tính.

Bài 17. Tìm số đỉnh và số cạnh của đồ thị 𝐸𝑛. Có bao nhiêu vector 𝑥,𝑦 ∈ 𝐸𝑛 sao cho 𝑑(𝑥,𝑦) = 𝑘?

Mỗi đỉnh của 𝐸𝑛 biểu diễn một vector dạng

(𝑧1, . . . , 𝑧𝑛), 𝑧𝑖 ∈ {0, 1}

nên 𝐸𝑛 có 2𝑛 đỉnh. Mỗi đỉnh nối với 𝑛 đỉnh khác (khác nhau chỉ ở vị trí 𝑧𝑖) nên deg 𝑣𝑖 = 𝑛 với 𝑖 = 1, 2𝑛.
Theo định lí cơ bản về số cạnh của đồ thị (Định lý 8) thì

số cạnh =
1

2

2𝑛∑︁
𝑖=1

deg 𝑣𝑖 =
1

2
· 𝑛 · 2𝑛 = 𝑛 · 2𝑛−1.

Để 𝑑(𝑥,𝑦) = 𝑘 thì đầu tiên ta chọn 𝑘 vị trí khác nhau với 𝐶𝑘
𝑛 cách. Với mỗi vị trí khác nhau ta có hai cách

chọn 𝑥𝑖 và 𝑦𝑖 là {︃
𝑥𝑖 = 1

𝑦𝑖 = 0
, hoặc

{︃
𝑥𝑖 = 0

𝑦𝑖 = 1
.

Do đó có 2𝑘 cách chọn cho các vị trí khác nhau, còn 𝑛− 𝑘 vị trí còn lại thì chọn tùy ý nên có 2𝑛−𝑘 cách.

Đáp án là 𝐶𝑘
𝑛 · 2𝑘 · 2𝑛−𝑘 = 𝐶𝑘

𝑛 · 2𝑛.

Bài 18. Tìm lực lượng của mặt cầu 𝑆𝑟(𝑥) = {𝑦 : 𝑑(𝑥,𝑦) = 𝑟} và hình cầu 𝐵𝑟(𝑥) = {𝑦 : 𝑑(𝑥,𝑦) 6 𝑟}.

Đối với mặt cầu thì đáp án chính là bài 17, nghĩa là |𝑆𝑟(𝑥)| = 2𝑟 · 𝐶𝑟
𝑛.

Đối với hình cầu 𝐵𝑟(𝑥) ta xét tất cả giá trị từ 0 tới 𝑟:

• khi 𝑑(𝑥,𝑦) = 0 thì có 2𝑛 · 𝐶0
𝑛 cách chọn;

• khi 𝑑(𝑥,𝑦) = 1 thì có 2𝑛 · 𝐶1
𝑛 cách chọn;

• tương tự, khi 𝑑(𝑥,𝑦) = 𝑖 thì có 2𝑛 · 𝐶𝑖
𝑛 cách chọn;

• cho tới khi 𝑑(𝑥,𝑦) = 𝑟 thì có 2𝑛 · 𝐶𝑟
𝑛 cách chọn.

Như vậy lực lượng của hình cầu là tổng tất cả giá trị trên:

|𝐵𝑟(𝑥)| = 2𝑛 · (𝐶0
𝑛 + 𝐶1

𝑛 + · · ·+ 𝐶𝑟
𝑛).

4.1.5 Các bài toán sưu tầm
Олимпиада Якут

INFO-CIRCLE Exercise 1

Tính lim
𝑡→+∞

𝑡
+∞∑︀
𝑘=1

1

𝑘2 + 𝑡2
.
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Ta có công thức thông dụng ∫︁
𝑑𝑥

𝑥2 + 𝑡2
=

1

𝑡
arctan 𝑥

𝑡
.

Ta có chặn

1

(𝑘 + 1)2 + 𝑡2
6

𝑘+1∫︁
𝑘

𝑑𝑥

𝑥2 + 𝑡2
6

1

𝑘2 + 𝑡2
,

suy ra

1

𝑘2 + 𝑡2
6

𝑘∫︁
𝑘−1

𝑑𝑥

𝑥2 + 𝑡2
.

Cộng tất cả phương trình trên với 𝑘 = 1, 2, . . . thì

∞∑︁
𝑘=1

1

𝑘2 + 𝑡2
6

+∞∫︁
0

𝑑𝑥

𝑥2 + 𝑡2
=

1

𝑡
· arctan 𝑥

𝑡

⃒⃒⃒+∞

0
=

1

𝑡
· 𝜋
2
.

Tương tự

𝑘+1∫︁
𝑘

𝑑𝑥

𝑥2 + 𝑡2
6

1

𝑘2 + 𝑡2

⇒
∞∫︁
1

𝑑𝑥

𝑥2 + 𝑡2
6

∞∑︁
𝑘=1

1

𝑘2 + 𝑡2

Do
∞∫︁
1

𝑑𝑥

𝑥2 + 𝑡2
=

1

𝑡
arctan 𝑥

𝑡

⃒⃒⃒∞
1

=
1

𝑡

(︂
𝜋

2
− arctan 1

𝑡

)︂

nên (︂
𝜋

2
− arctan 1

𝑡

)︂
6 𝑡

∞∑︁
𝑘=1

1

𝑘2 + 𝑡2
6
𝜋

2
.

Như vậy

lim
(︂
𝜋

2
− arctan 1

𝑡

)︂
= lim 𝜋

2
=
𝜋

2

khi 𝑡→∞.

INFO-CIRCLE Exercise 2

Giải phương trình

19𝑥 − 13𝑥 = 9𝑥 − 3𝑥.
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Dễ thấy 𝑥 = 0 là một nghiệm của phương trình.

Giả sử phương trình có nghiệm khác 0 là 𝑥.

Cố định 𝑥, đặt 𝑔(𝑡) = 𝑡𝑥.

Theo định lí Lagrange, tồn tại 𝜉 ∈ (𝑎, 𝑏) để 𝑔(𝑎)− 𝑔(𝑏) = 𝑔′(𝜉) · (𝑎− 𝑏).

Như vậy

𝑔′(𝜉) · (19− 13) = 𝑔′(𝜂) · (9− 6)

với 𝜉 ∈ (13, 19) và 𝜂 ∈ (6, 9). Suy ra 𝑔′(𝜉) = 𝑔′(𝜂), nói cách khác là

𝑥 · 𝜉𝑥−1 = 𝑥 · 𝜂𝑥−1

mà 𝑥 ̸= 0 nên
(︂
𝜉

𝜂

)︂𝑥−1

= 1. Điều này chỉ xảy ra khi 𝑥− 1 = 0, hay 𝑥 = 1.

Kết luận: phương trình có hai nghiệm là 𝑥 = 0 và 𝑥 = 1.

4.1.6 Wargame chill chill
Để tránh vấn đề bản quyền và bị soi bởi cộng đồng toxic nào đó thì mình sẽ không để đề ở đây.

Đã giải:

• Bounded Noise (đã viết lời giải)

• Forbiden Fruit

• Noise Free

• Too Many Errors

• Pad-Thai

• Paper Plane

Bound noise

Đây là một bài LWE cơ bản.

Giả sử flag là một số nguyên 𝑀 . Chọn số nguyên tố 𝑞 = 65537 và biểu diễn 𝑀 ở dạng cơ số 𝑞 thì ta được
vector

𝑀 = 𝑠0 + 𝑠1𝑞 + 𝑠2𝑞
2 + · · ·+ 𝑠𝑛−1𝑞

𝑛 ↦→ (𝑠0, 𝑠1, . . . , 𝑠𝑛−1).

Secret sẽ là vector (𝑠0, . . . , 𝑠𝑛−1) và mình kí hiệu ngắn gọn là 𝑠.

Chọn ngẫu nhiên ma trận 𝐴 kích thước 𝑚 × 𝑛 với các phần tử thuộc F𝑞, trong đó 𝑛 là độ dài vector 𝑠 và
𝑚 = 𝑛2.

Sau đó chọn ngẫu nhiên vector 𝑒 độ dài 𝑚 với các phần tử thuộc {0, 1}. Tính vector 𝑏 = 𝐴 · 𝑠+ 𝑒.

Khi đó public key là ma trận 𝐴 và vector 𝑏. Ta cần tìm flag là secret key.

[TODO] Cần hiểu cách thực hiện của đoạn code kia.
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Forbiden fruit

Noise free

Too Many Errors

Pad Thai

Paper Plane
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5
Bên lề sách của Fermat

5.1 Ngoài lề

5.1.1 Lý thuyết trò chơi
Nhập môn lý thuyết trò chơi

Phần này mình tham khảo từ quyển Tài liệu chuyên tin học quyển 3 [42].

Một số khái niệm

1. Trạng thái (hay state) (trong sách Tài liệu chuyên tin gọi là vị trí nhưng để phù hợp với nhiều bài viết
khác như máy Turing, máy trạng thái thì gọi là trạng thái sẽ hợp lý hơn) là tập hợp thông tin về trò
chơi tại từng thời điểm. Ví dụ như vị trí các quân cờ trên bàn cờ vua tại nước đi thứ 1, thứ 2, ...

Ta chia trạng thái làm hai loại:

• Những trạng thái chứa khả năng dẫn tới chiến thắng được gọi là trạng thái có lợi.

• Ngược lại thì gọi là trạng thái không có lợi.

2. Luật chơi (hay rule) là những quy định cho phép người chơi thực hiện các biến đổi chuyển trò chơi từ
trạng thái này sang trạng thái khác. Ví dụ như cách di chuyển của mỗi quân cờ trong cờ vua (đi như
thế nào, ăn quân như nào, ...).

Một bước đi hợp lệ là phép biến đổi theo đúng luật chơi.

Trạng thái kết thúc là trạng thái từ đó không thể di chuyển tiếp.

3. Trò chơi đối kháng là trò chơi hai người, khi một người có lợi thế thì người kia gặp bất lợi.

Có hai loại trò chơi đối kháng

• Trò chơi có thông tin đầy đủ - người chơi biết mọi thông tin về trạng thái hiện tại của đối phương. Ví
dụ trong cờ vua, mỗi người chơi biết vị trí của tất cả quân cờ của đối thủ.

• Trò chơi có thông tin không đầy đủ - người chơi biết một phần hoặc không biết thông tin về trạng
thái hiện tại của đối phương. Ví dụ chơi bài tây thì mỗi người không biết người khác có những quân
bài gì. Ví dụ khác là trò chơi bầu cua, người đặt cược không biết được thông tin của ba quân súc sắc
khi đặt cược.

4. Trong mọi trò chơi, quá trình chơi có thể được biểu diễn dưới dạng cấu trúc cây có hướng (đôi khi là
đồ thị có hướng) gọi là cây trò chơi. Trong đó:
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• Nút biểu diễn trạng thái.

• Nút gốc là trạng thái khởi đầu.

• Nút lá là trạng thái kết thúc.

• Cung (𝑖, 𝑗) thể hiện bước đi hợp lệ từ trạng thái 𝑖 tới trạng thái 𝑗.

Trò chơi tổ hợp cân bằng

Mô tả

Trò chơi tổ hợp cân bằng là trò chơi đối kháng thỏa mãn các điều kiện:

• có hai người chơi (từ đây về sau, người đi đầu kí hiệu là 𝐴 và người đi sau là 𝐵);

• có một tập hữu hạn các trạng thái có thể xảy ra của trò chơi, kí hiệu là 𝑋;

• có luật chơi 𝑄. Quy luật chơi áp dụng cho hai người chơi là cân bằng, nghĩa là mỗi người chơi tới lượt
mình đều có quyền chọn một phép di chuyển hợp lệ tùy ý;

• hai người chơi lần lượt, mỗi lần thực hiện một phép di chuyển hợp lệ;

• trò chơi kết thúc khi đạt trạng thái kết thúc;

• nếu trò chơi không bao giờ kết thúc thì có thể sử dụng rút thăm, hoặc giới hạn số lượng bước đi tối
đa, hoặc cầu hòa.

Tập 𝑃 . Tập 𝑁

1. Tất cả các trạng thái kết thúc đều thuộc 𝑃 .

2. Từ mỗi trạng thái thuộc 𝑁 luôn có ít nhất một di chuyển tới trạng thái thuộc 𝑃 .

3. Từ mỗi trạng thái thuộc 𝑃 , mọi di chuyển đều tới trạng thái thuộc 𝑁 .

Như vậy ta cần xây dựng thuật toán giành thắng cho đấu thủ 𝐴 khi ban đầu 𝐴 nhận trạng thái
thuộc 𝑁 là: đấu thủ 𝐴 luôn di chuyển tới các trạng thái thuộc 𝑃 để ép đối thủ 𝐵 chỉ có thể đi tới
trạng thái thuộc 𝑁 .

Tổng Nim. Trò chơi Nim

Để dễ xác định tập 𝑃 và 𝑁 ta dùng khái niệm tổng Nim.

Tổng Nim là phép XOR hai số nguyên không âm.

Trò chơi Nim chuẩn là trò chơi có ba cọc lần lượt chứa 𝑥1, 𝑥2 và 𝑥3 quân. Hai người chơi lần lượt tạo các
bước di chuyển quân với quy tắc: chọn một cọc tùy ý còn quân và lấy bớt một số quân từ cọc này. Người
thắng là người lấy được quân cuối cùng.

Chúng ta có thể sử dụng tổng Nim để xác định tập 𝑃 với định lí Bouton.

INFO-CIRCLE Theorem 17 (Định lí Bouton)

Mỗi trạng thái (𝑥1, 𝑥2, 𝑥3) trong trò chơi Nim ba cọc là trạng thái 𝑃 khi và chỉ khi tổng Nim 𝑥1⊕𝑥2⊕𝑥3 =
0.

Từ định lí Bouton ta xây dựng chiến thuật giành thắng như sau.
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Giả sử trạng thái hiện tại (cho trò chơi Nim với 𝑛 cọc) là (𝑥1, . . . , 𝑥𝑛), ứng với tổng Nim

𝑔 = 𝑥1 ⊕ 𝑥2 ⊕ · · · ⊕ 𝑥𝑛 > 0.

Ta có thể chứng minh tồn tại phần tử 𝑥𝑖 sao cho 𝑥′𝑖 = (𝑔 ⊕ 𝑥𝑖) 6 𝑥𝑖. Đây là cách đi giành thắng với mục
tiêu là giảm cọc thứ 𝑖 từ 𝑥𝑖 quân thành 𝑥′𝑖 quân.

INFO-CIRCLE Example 29

Ví dụ đơn giản nhất với hai cọc (𝑥1, 𝑥2). Như vậy trạng thái thuộc 𝑃 tương đương với 𝑥1 ⊕ 𝑥2 = 0, hay
𝑥1 = 𝑥2. Từ đây suy ra trạng thái thuộc 𝑁 khi 𝑥1 ̸= 𝑥2.

Giả sử 𝐴 là người chơi trước. Theo thuật toán giành thắng ở trên thì nếu 𝐴 ở trạng thái thuộc 𝑁 thì 𝐴
luôn thắng. Nghĩa là khi trạng thái là (𝑥1, 𝑥2) với giả sử 𝑥1 < 𝑥2 (trường hợp 𝑥1 > 𝑥2 tương tự) thì 𝐴
chỉ cần lấy đi ở cọc thứ hai một lượng 𝑥2 − 𝑥1 để hai cọc có số quân bằng nhau. Cuối cùng thì trạng
thái kết thúc là (0, 0) và 𝐴 sẽ chiến thắng.

5.1.2 Một số đồ thị hàm số sưu tầm
Để vẽ trái tim như ở đây ta dùng phương trình

𝑦 = 𝑥2/3 + 0, 9(3, 3− 𝑥2)1/2 · sin(𝑚 · 𝜋 · 𝑥)

với 𝑚 = 6, 50.

5.1.3 Về một vị giáo sư và định lý Godel

INFO-CIRCLE Cảnh báo

Mình sẽ không sử dụng từ ngữ khó nghe nhưng nội dung sẽ gây khó chịu. Độc giả cân nhắc trước khi
xem!!!

Dạo gần đây mình xem một loạt video trên Youtube của kênh Nhận thức mới về định lí bất toàn của Godel
do giáo sư Phạm Việt Hưng (PVHg) trình bày.

Đây là một chủ đề khá thú vị và mới mẻ với mình. Sau khi xem xong series video và đọc các bài viết trên
blog cá nhân của giáo sư thì mình vừa thấy buồn cười vừa thấy khó chịu. Do đó mình quyết định viết bài
này.

Hệ quả định lí Godel

Theo giáo sư, việc một sự vật tác động lên chính nó là không thể xảy ra. Điều này có thể xem là hệ quả của
định lí Godel.

Giáo sư đưa ra ví dụ về hạt Higgs ở tập 2 của series. Mình không biết hạt Higgs là hạt gì vì kiến thức phổ
thông của mình với vật lí chỉ dừng lại ở proton, electron và neutron. Giáo sư giải thích rằng, hạt Higgs là
hạt truyền khối lượng cho các hạt khác lớn hơn, nhưng tiếp tục đặt vấn đề là hạt nào truyền khối lượng cho
hạt Higgs? Theo định lí Godel, hạt Higgs không thể truyền khối lượng cho chính nó, vì khi đó hạt Higgs là
một hệ tự quy chiếu. Như vậy đưa tới hệ quả là Lý thuyết về mọi thứ (TOE, Theory Of Everything) vẫn
đang bế tắc, suy ra việc lí giải nguồn gốc khối lượng các vật cũng không thể đạt được.

Tiếp theo, ở tập 3, giáo sư nói về việc trí tuệ nhân tạo (AI, Artificial Intelligence) không thể trở nên giống
con người. Con người chúng ta sử dụng ý thức, là bộ não, để tạo ra một "bộ não" máy móc. Như vậy, cũng
theo định lí Godel, vì con người không thể hiểu chính bộ não của bản thân, thì làm sao có thể tạo ra một
"bộ não" giống bản thân, có trực giác, có cảm xúc, có ý thức?
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Hai vấn đề trên cho thấy một hệ quả quan trọng của định lí Godel do giáo sư trình bày

Một hệ tự quy chiếu hoặc mâu thuẫn, hoặc không thể kiểm chứng được tính đúng sai.

Đến đoạn này mình vẫn nghĩ mọi thứ bình thường, nhưng hai tập tiếp theo về việc tìm nguồn gốc sự sống
của giáo sư làm mình thấy rất khó hiểu.

Trước đó, giáo sư có nhiều bài viết trên trang cá nhân có nội dung giống hai tập tiếp theo trên Youtube
cũng về nguồn gốc sự sống. Nói đơn giản thì giáo sư phê phán thuyết tiến hóa của Darwin và đưa ra vấn
đề về nguồn gốc sự sống, thậm chí gọi đó là "sự dối trá". Tới đây mình có một thắc mắc. Nếu hạt Higgs
không thể truyền khối lượng cho chính nó, con người không thể sử dụng bộ não của bản thân để tạo ra "bộ
não" nhân tạo (AI), thì sự sống cũng không thể giải thích nguồn gốc sự sống?

Logic ở đây là, theo định lí Godel, một lý thuyết giải thích nguồn gốc mọi thứ, là không tồn tại đối với hệ
tự quy chiếu. Vì vậy việc truy tìm nguồn gốc của một hiện tượng nào đó luôn đi tới bế tắc.

Nguồn gốc khối lượng là từ hạt nào? Nếu hạt Higgs truyền khối lượng cho các hạt khác thì hạt nào truyền
khối lượng cho nó? Vấn đề ở đây là bản thân hạt Higgs không thể truyền khối lượng cho chính nó.

Nguồn gốc tư duy của AI là từ tư duy con người. Nhưng con người không thể giải thích bộ não của bản
thân, hay nói cách khác là nguồn gốc ý thức và tư duy của bản thân, thì làm sao tạo ra "bộ não" nhân tạo
cũng có ý thức và tư duy giống bản thân?

Nguồn gốc sự sống là từ một sự sống trước đó mà thành (tiến hóa, thoái hóa, ...). Như vậy, sự sống có thể
giải thích nguồn gốc của sự sống không? Thuyết tiến hóa của Darwin nói rằng sự sống đều bắt nguồn từ
một "gốc" (gốc của cây sự sống). Nhưng qua lời giáo sư thì "gốc" đó không tồn tại. Giáo sư đề cập tới một
giải thích khác về thuyết tiến hóa của Darwin là sự sống bắt đầu từ một "thảm" (thảm cỏ của sự sống).
Trong đó sự sống bắt nguồn từ nhiều vị trí trong thảm cỏ đó, không phải từ một gốc đơn thuần như thuyết
của Darwin. Thậm chí như vậy vẫn không làm hài lòng các nhà khoa học (thực ra là giáo sư). Như vậy,
theo logic của mình ở trước, mọi thuyết tiến hóa giải thích nguồn gốc sự sống đều sai, theo những ví dụ giáo
sư đưa ra, và thông qua định lí Godel?

Theo trải nghiệm cá nhân của mình, việc phê phán hay châm biếm thuyết tiến hóa của Darwin không phải
điều gì mới mẻ. Từ nhiều năm trước mình đã từng nghe một thầy cà khịa kiểu "thế quái nào khỉ và người
lại có cùng tổ tiên". Mình không biết nhiều về các thuyết tiến hóa, nhưng video của giáo sư thật sự cung
cấp cho mình nhiều kiến thức và bài học. Bài học quan trọng nhất mình rút ra là:

Chúng ta có thể ứng dụng định lí Godel để bác bỏ những rất nhiều cố gắng của các nhà khoa
học.

Mình không biết giáo sư có tôn sùng quá mức định lí Godel hay không, nhưng việc bác bỏ nỗ lực của người
khác mà không đưa ra một lý thuyết tiến bộ hơn hay có chứng minh vững chắc mà chỉ dựa vào một định lí
TOÁN HỌC để giải thích tính TRIẾT HỌC thì mình thấy khá buồn cười.

Về Cantor

Phần này không nói về tính đúng sai cả về triết học lẫn toán học. Mình chỉ có ý kiến về cách trình bày của
giáo sư.

Về bài viết Về Cái Bất khả Quyết định.

Trong bài viết, giáo sư nhắc rằng "người đời gán cho Cantor là điên rồ", nhưng sau đó giáo sư lại mở ngoặc
"thực tế cuối cùng ông đã mắc bệnh thần kinh". Ở đây mình rất khó chịu vì cách viết không đầu đuôi
(không nói lý do Cantor bị bệnh thần kinh) dễ khiến người khác nghĩ ông ấy đưa ra quá nhiều ý kiến kì lạ
tới nỗi bị thần kinh.

Câu chuyện thực sự là khi cố gắng chứng minh giả thuyết Continuum mà không có tiến triển (mà giáo sư
cũng đề cập trong bài viết) thì Cantor cũng đang bị chèn ép rất mạnh bởi phe chống đối Lý thuyết tập hợp
của ông (do Kronecker và Poincare đứng đầu). Hậu quả là những bài báo của ông đã không thể công bố
trên các tạp chí uy tín do quyền lực ngầm từ phe Kronecker và Poincare, nên ông chỉ có thể đăng trên các
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tạp chí thường, uy tín thấp. Điều này khiến ông không thể có vị trí công việc tốt tại các đại học lớn ở nước
Đức thời bấy giờ khiến cuộc sống khó khăn.

Ngoài ra một bi kịch đã xảy ra với Cantor là đứa con trai út mà ông rất yêu thương đã qua đời. Quá nhiều
biến cố ập đến khiến tinh thần Cantor rơi vào hỗn loạn và cuối cùng là bị bệnh.

Mình không biết giáo sư có thật sự biết về cuộc đời Cantor hay không trước khi viết những dòng đó. Mình
rất hy vọng là có vì văn phong như vậy không thể biết giáo sư nói đùa hay nói thật.

Một lần nữa, việc tôn sùng định lí Godel quá mức là niềm tin của giáo sư và mình không bận tâm. Nhưng
Cantor là idol của mình, và những người động tới idol của bản thân thì ... các bạn biết rồi đó. (^_^)

Viết tới đây mình bỗng dưng nhớ lại một phân cảnh trong phim Pirates of the Caribbean (Cướp biển vùng
Caribbean) phần 5. Trong đó, khi nữ chính gặp một nhà thiên văn và nói lên ý tưởng của mình, thì nhà
thiên văn đã cười và nói lại nữ chính là đồ điên. Nữ chính cũng không vừa, nói là thiên văn là đồ ngu.

Trong bài viết trên, giáo sư PVHg nói Cantor là đồ điên. Đáng tiếc là Cantor đã qua đời từ lâu nên Cantor
không thể gọi giáo sư là đồ ng... được (cũng có thể Cantor không muốn nói?). Mình thì không ở vị thế có
khả năng nói giáo sư ng... (nhưng mình rất muốn) (^^).

Thương thay Cantor, đời sau, người thì xem thường và chửi ông, người muốn bảo vệ ông thì lực hèn sức
mọn!!!

Về sự vô hạn

Vẫn là bài viết Về Cái Bất khả Quyết định.

Giáo sư trích dẫn hai câu nói: "Con người ta đã nghĩ ra khái niệm vô hạn, nhưng chẳng có gì là vô hạn trên
thế gian này, ngoài sự ngu xuẩn của con người", "Chỉ có hai thứ vô hạn: vũ trụ và CÁI NGU của con người;
tôi không chắc về cái thứ nhất". Câu sau thì chắc các bạn cũng khá quen thuộc rồi vì là câu nói (hay được
mang ra làm meme) của Einstein.

Mình không biết quan niệm của giáo sư về sự vô hạn (hay Lý thuyết tập hợp) của Cantor là gì, nhưng hai
câu trích dẫn trên cho thấy một sự châm biếm về điều này. Mình xin phép phản biện lại như sau.

Ví dụ đầu tiên về sự vô hạn bắt nguồn từ phép đếm.

Con người từ xa xưa đã biết đếm. Hết 1, rồi 2, rồi lại 3, cứ thế cho đến mãi mãi. Từ đó, tập hợp vô hạn
đầu tiên xuất hiện, tập N. Vì các con số cứ xuất hiện một cách tự nhiên, số sau là số trước cộng thêm 1,
nên ta gọi là tập hợp số tự nhiên.

Như vậy có thể thấy, bản thân tập hợp vô hạn TỰ NHIÊN XUẤT HIỆN chứ không phải là ảo tưởng của
các nhà toán học.

Tiếp theo, con người dần chấp nhận sự xuất hiện của số âm. Từ gốc 0, làm ngược lại quá trình trên, ta trừ
1 thay vì cộng. Khi đó ta cũng có −1, −2, và cứ như vậy tới mãi mãi. Ta đã xây dựng xong tập vô hạn thứ
hai, tập số nguyên Z.

Trong bộ sách kinh điển Elements của Euclid, ông nói rằng: "Một phần luôn nhỏ hơn toàn bộ". Nhìn lại
hai anh bạn N và Z thì chúng ta thấy rõ ràng rằng N là một phần của Z, hay nói kiểu toán học là tập hợp
con. Như vậy phải chăng N có ít "phần tử" hơn Z? Nếu chúng ta sống ở thời Euclid, thì việc này được cho
là "hiển nhiên", nhưng tới thời Cantor thì cái "hiển nhiên" đó mới được kiểm chứng.

Ví dụ thứ hai là nghịch lí của Zeno.

Nghịch lí này khá nổi tiếng và mình đã có giới thiệu trong bài viết về các tập vô hạn rồi. Đại ý là nếu anh
hùng Archilles trong thần thoại Hy Lạp chạy đua với con rùa nhưng xuất phát sau thì không bao giờ bắt
kịp được con rùa.

Nghịch lí này cho thấy người thời xưa có những quan niệm chưa đúng về sự vô hạn, chưa có các khái niệm
như vô cùng nhỏ, vô cùng lớn.

Ví dụ thứ ba về sự vô hạn bắt nguồn từ số vô tỉ.
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Pythagoras đã quá quen thuộc với chúng ta về định lí mang tên ông cho tam giác vuông. Thời đó, khi cho
hai cạnh góc vuông có độ dài bằng 1 thì độ dài cạnh huyền là một số vô tỉ

√
2. Tuy nhiên các số vô tỉ, ngoài

phần thập phân không tuần hoàn ra, trong nhiều trường hợp còn có một điểm khó chịu khác là ta không
thể biểu diễn nó, thậm chí tệ hơn là ta không biết tới sự tồn tại của nó.

Tỉ lệ giữa chu vi hình tròn với hai lần bán kính của nó, cho ta số 𝜋. Giới hạn đặc biệt lim
𝑛→∞

(︂
1 +

1

𝑛

)︂𝑛

cho

ta số 𝑒. Số 𝜋 và 𝑒 là hai ví dụ về số siêu việt, còn những số có thể biểu diễn qua các phép tính cộng, trừ,
nhân, chia và khai căn được gọi là số đại số. Vấn đề là số lượng số siêu việt nhiều hơn số đại số rất nhiều
và chính chúng mới giúp "làm đầy" trục số thực R.

Ý nghĩa của việc "làm đầy" ở đây là tính liên tục của tập hợp số thực. Nhờ có tính liên tục, chúng ta mới
có thể đạo hàm và tích phân, hai công cụ mạnh mẽ cho phép khảo sát các hàm số. Mình cần lưu ý rằng nếu
hàm số có đạo hàm tại một điểm thì nó chắc chắn liên tục tại điểm đó, nhưng ngược lại chưa chắc, liên tục
chưa chắc có đạo hàm. Nói cách khác tính liên tục là nền tảng cho những phép tính khó hơn. Nếu hàm số
không liên tục tại một điểm, thì việc đạo hàm là không thể, nên quay xe tìm cách khác thì hơn!!!

Vấn đề là nếu các giáo sư chối bỏ sự vô hạn của tập hợp số thực, vậy các giáo sư có thể không dùng những
công cụ mạnh mẽ của toán học như đạo hàm, tích phân trong nghiên cứu vật lí được không?

Trùng hợp thay, các bài toán về mật mã học đang bế tắc vì làm việc với các tập rời rạc, nơi không có tính
liên tục, thậm chí còn hữu hạn. Các bạn, thậm chí giáo sư, có thể nói mình rằng: "Tập hữu hạn còn không
xử lý được mà muốn dây vào tập vô hạn". Trên thực tế, tập vô hạn như R và C cho chúng ta những công
cụ mạnh mẽ: giới hạn, sau đó là tính liên tục, sau đó là vi tích phân. Khi mất đi những công cụ đó, mà các
tập rời rạc là một ví dụ, thì bài toán trở nên khó khủng khiếp. Anh Vũ Hữu Tiệp (blog Machine Learning
cơ bản) cũng có nói rằng "còn đạo hàm được là còn hy vọng". Như vậy mới thấy, tập vô hạn cho chúng ta
nhiều điều kiện thuận lợi, những công cụ mạnh mẽ để khảo sát chúng, nhưng sẽ gây ra nghịch lý nếu không
biết cách "chế ngự" chúng như trường hợp của nghịch lý Zeno.

Tổng kết lại, từ việc đếm rất bình thường, cho tới những tập hợp có phần tử khó nhằn, thì sự vô hạn sẽ đưa
chúng ta tới nhiều trường hợp dở khóc dở cười. Như mình đã nói ở trên, người ng... hay nói những ý tưởng
kì quặc là điên, nhưng tiếc thay người "điên" đó đã mất nên không thể bật lại người ng... Thật đáng tiếc!!!

Về giáo dục

Nếu đã tới bậc giáo sư thì chắc hẳn công bố khoa học phải rất nhiều. Ngoài ra, nghiệp vụ sư phạm là một
phần bắt buộc để thành giáo sư nên ý kiến của giáo sư PVHg về giáo dục rất đáng để tâm. Tuy nhiên, theo
mình, có một số điểm chưa thỏa đáng.

Giáo sư có bài viết về việc Ấn Độ đã loại bỏ thuyết tiến hóa của Darwin ra khỏi chương trình phổ thông.
Đối với giáo sư, đây là tin mừng. Mừng vì các thế hệ học sinh, sinh viên tiếp theo sẽ không bị thuyết tiến
hóa dối trá ấy (theo lời giáo sư) làm lu mờ nhận thức.

Tuy nhiên, đối với học sinh thuộc thế hệ sau như mình thì mình nhận thấy một số vấn đề trong cách nghĩ
của giáo sư.

Một là, nếu loại bỏ thuyết tiến hóa của Darwin thì chắc chắn phải có một nội dung khác (ví dụ, một thuyết
tiến hóa khác) bù vào phần đó. Nói cách khác, khối lượng chương trình học KHÔNG THAY ĐỔI. Trong
quyển sách Lời than vãn của một nhà toán học của Paul Lockhart, trên trường các học sinh thấy tiết toán
... chán òm. Hầu hết chúng mình thấy chán vì những kiến thức khô khan, học thuộc lòng, công thức xào đi
nấu lại của những môn khoa học tự nhiên. Như vậy, vấn đề là nếu thay thuyết tiến hóa của Darwin thành
một nội dung khác, mà theo giáo sư PVHg là giúp các thế hệ sau "không bị lừa dối" nữa, thì kết quả có
thực sự màu hồng vậy không?

Bao nhiêu học sinh sau này sẽ tiếp tục học tập hay làm việc trên các lĩnh vực liên quan sinh học? Tiếp theo,
khi nghiên cứu sâu về sinh học, điều gì đảm bảo các bạn sẽ vẫn tiếp tục "bị lừa" như giáo sư nói? Rõ ràng
khi trình độ các bạn tăng lên, khi các bạn tìm tòi tài liệu, thì các bạn sẽ nhận ra có nhiều thuyết tiến hóa
đang tồn tại, và thuyết của Darwin mà ngày ấy được học ở trường chỉ là một ví dụ.
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Việc giáo sư bác bỏ Darwin là một ví dụ cho tư duy địch-ta, trong đó địch sai, còn ta đúng. Darwin sai,
nên vứt Darwin đi mà học cái khác. Đây là một lối tư duy nguy hiểm vì nó khiến sự đa dạng, nhiều chiều
trong tư duy bị mất đi. Thay vào đó, sao chúng ta không bắt đầu với những câu hỏi đơn giản như: điểm
nào trong thuyết tiến hóa của Darwin không hợp lý (ở đây giáo sư đã giải thích, chính là cây sự sống, tồn
tại một cái "gốc" của sự sống). Tiếp theo, câu hỏi mở rộng hơn, chẳng hạn như: có thể "chữa" chỗ không
hợp lý này không (giáo sư cũng có đề cập tới thảm cỏ sự sống). Giáo sư đã nghĩ được tới vậy, tại sao lại cổ
xúy các bạn trẻ bỏ đi Darwin? Thay vào đó, chúng ta có thể xem xét tới các thuyết tiến hóa khác, điểm
mạnh, điểm yếu, những chỗ chưa hợp lý, những vùng xám trong mỗi thuyết tiến hóa? Khoa học phát triển
trên nguyên lý Đứng trên vai người đi trước (khẩu hiệu của Google Scholar cũng là Stand on the
shoulders of giants). Mình nghĩ rằng việc xem xét các ý tưởng khác nhau sẽ tốt hơn việc cứ chê bai mãi
một lý thuyết.

Giáo sư cho rằng giáo dục hiện tại trên nhiều nước đang giết chết tư duy, không đi vào bản chất. Đối với
đứa mới qua những ngày tháng cử nhân như mình, ký ức của 12 năm phổ thông vẫn còn cháy bỏng lắm.
Nếu môn nào mà mình cũng hiểu rõ bản chất, chắc não mình sẽ vỡ làm đôi mất. (^_^)

Einstein nói rằng: "Ai cũng là thiên tài, nhưng nếu bạn bắt con cá leo cây thì nó suốt đời sẽ nghĩ mình đần
độn". Thiên tính của mỗi người mỗi khác. Có người học tốt khoa học tự nhiên, có bạn lại học tốt khoa học
xã hội. Kể cả mình thiên về khoa học tự nhiên, thì mình cũng chỉ hiểu bản chất toán, còn vật lí, hóa học,
sinh học thì mình bó tay. Vấn đề là, hiểu bản chất toán để làm gì nếu không gặp lại toán trên đường đời?
Vi tích phân xuất phát từ các bài toán chuyển động cơ học trong vật lí. Nhưng việc hiểu rõ ý nghĩa vật lí
của đạo hàm và tích phân có tác dụng gì nếu các bạn thi đại học khối C?

Thứ nhất, giáo dục cung cấp những kiến thức cơ sở cho mọi người ở tất cả môn để làm nền tảng cho những
hướng đi trong tương lai. Mình lấy ví dụ là môn toán. Cái quan trọng nhất chúng ta cần học là TÍNH
TOÁN. Đi chợ, biết tính tiền. Đi học các ngành kĩ thuật, biết tính toán số liệu. Đi học bác sĩ, biết tính
toán lâm sàng (số ca mắc bệnh, tỉ lệ chữa khỏi, ...). Mình không thấy nhiều trường hợp thực sự cần hiểu
bản chất vi tích phân, mà thực tế là cần CÁCH TÍNH ĐẠO HÀM và TÍCH PHÂN.

Thứ hai, giáo sư cũng nói đúng về một vấn đề (may quá ít ra vẫn có phần mình đồng tình với giáo sư). Đó
là câu chuyện về tuổi của vị thuyền trưởng. Khi toán học xa rời thế giới thực, mà điều dễ thấy nhất chính
là đơn vị tính, thì sẽ xảy ra câu chuyện dở khóc dở cười.

Câu chuyện về tuổi của vị thuyền trưởng là một bài toán đơn giản của bậc tiểu học. ví dụ như cho số lượng
quả táo trên thuyền là 15, cho số lượng thủy thủ trên thuyền là 10, hỏi tuổi của vị thuyền trưởng là bao
nhiêu? Các đại lượng không hề cùng đơn vị đo, nhưng những bạn học sinh ở Pháp những năm đầu thế kỉ 20
đã không ngần ngại tính tuổi của vị thuyền trưởng là 15+10 = 25. Khi gắn các đơn vị vào chúng ta sẽ thấy

15 (quả táo)+ 10 (thủy thủ) = 25 (tuổi).

Rất may là chương trình hiện nay ở Việt Nam đã giáo dục kĩ khi còn ở bậc tiểu học. Những phép tính chu
vi, diện tích, thể tích luôn được kiểm tra cẩn thận về đơn vị đo. Điều này vẫn được duy trì trong chương
trình ở cấp 2 và 3.

Tuy nhiên, vấn đề là nếu bó buộc vào trong các bài toán vật lí thì cần gì phải học môn toán nữa? Như vậy
chẳng phải đang bó buộc tư duy lại sao? Rằng mọi thứ phải liên quan đến bài toán cụ thể, vấn đề cụ thể,
mà không quan tâm đến tính trừu tượng, sự tưởng tượng, tính sáng tạo? Như vậy khi những hiện tượng mà
chúng ta không thấy bằng mắt thường như vũ trụ, lượng tử, làm sao chúng ta biết tới sự tồn tại của nó?
Thần Athena sẽ đưa lời sấm cho chúng ta chăng?

Tổng kết lại, giáo dục là một vấn đề có sự tham gia của rất nhiều thành phần và tác động đến nhiều người
nên rất khó để phù hợp cho tất cả các bên. Giáo sư nghĩ theo cách của người học giỏi, còn mình thì dốt nên
chỉ thấy phương án của giáo sư tạo thêm áp lực. (^_^)
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Chủ nghĩa duy lý và tư duy chủ quan

Trong tập 3 (?) giáo sư PVHg có châm biếm một câu nói của Hilbert. Hilbert nói rằng "Tôi nghĩ là ...".
Chúng ta thấy rằng đây là tư duy chủ quan của Hilbert, và vì ông là tượng đài, người đi đầu của chủ nghĩa
hình thức trong toán học, nên giáo sư PVHg đã nhấn mạnh cụm từ "Tôi nghĩ" của Hilbert và có phần châm
biếm ông.

Vẫn là bài viết Về Cái Bất khả Quyết định, giáo sư đề cập rằng "..., thầy Bửu cho rằng Định lý Cuối cùng
của Fermat không thuộc phạm trù bất khả quyết định, vì thầy tin Fermat nói thật ...". Vâng, ở đây giáo sư
PVHg không châm biếm quan điểm và niềm tin của giáo sư Tạ Quang Bửu.

Vấn đề là, tại sao ông Hilbert NGHĨ thì giáo sư châm biếm, còn giáo sư Bửu CHO RẰNG, giáo sư Bửu TIN,
thì giáo sư PVHg không ý kiến gì, thậm chí có phần còn đồng tình, mặc dù cả Hilbert lẫn giáo sư Bửu đều
đưa ra suy nghĩ chủ quan, không có bằng chứng về logic nào cả?

Phải chăng, giáo sư PVHg cũng giống nhiều trường hợp "chỉ nghe những gì mình muốn nghe"? Nhận thức
của giáo sư Tạ Quang Bửu ăn khớp với định lí Godel, mà giáo sư PVHg lại rất tôn sùng định lí đó. Đây có
phải nguyên nhân khiến giáo sư Hưng đồng tình với giáo sư Bửu?

Lời tổng kết

Một lần nữa, mình cần nhắc lại rằng khoa học phát triển theo nguyên lí Đứng trên vai người đi trước.
Các nghiên cứu khoa học, hoặc phải dựa trên những nghiên cứu có trước, nếu không thì những ý tưởng đột
phá cần phải chờ thời gian kiểm chứng (như các giả thuyết mới, phương pháp mới).

Không quan trọng định lí Godel có tác động mạnh mẽ tới logic, triết học, nhận thức luận, ... tới mức nào.
Điều quan trọng là không thể chỉ sử dụng định lí Godel để bác bỏ những lý thuyết trước đó. Điều này chỉ
làm trì trệ khoa học vì không những ném hết những công sức của những người đi trước mà còn không có
điểm gì tiến bộ.

Giáo sư PVHg đã tổng quát hóa một định lí toán học lên tầm vóc triết học, thể hiện sự suy diễn liên ngành.
Sau đó giáo sư lại dùng lí luận triết học đó để "quy chụp" cho những ngành khoa học khác. Giáo sư cũng
rất dày công, chê Darwin, Cantor, Hilbert, ... từ năm này sang năm khác, tháng này sang tháng khác, nền
tảng này sang nền tảng khác. Các bạn có thể thấy giáo sư có nhiều bài viết từ nhiều năm trước, xuất bản
cả sách, và năm 2024 thì lên cả Youtube, chỉ để truyền bá tính "độc hại" trong các tư tưởng kia.

Như vậy, giáo sư PVHg thực chất chỉ là suy diễn ý nghĩa triết học từ định lí Godel trong toán học, mà ngày
nay chúng ta gọi là nhét chữ. Việc các nhà khoa học thời trước đưa ra lý thuyết mới, họ cũng đâu bắt ai
phải tin lý thuyết của mình? Có người tin, có người không tin. Có người tìm cách chứng minh lý thuyết
của họ đúng, cũng có người tìm cách bác bỏ lý thuyết của họ, tất nhiên là bằng lập luận chặt chẽ hay bằng
chứng xác thực. Dù cách này hay cách khác, cộng đồng khoa học luôn tiến bộ và đi lên. Ở một số trường
hợp, lý thuyết của người này giải thích được hiện tượng, nhưng ở một số trường hợp khác, họ nhường chỗ
cho lý thuyết khác hiệu quả hơn.

Cuối cùng, việc giáo sư PVHg đang làm chỉ đơn giản là chê bai những lý thuyết đi trước, cổ xúy chúng ta
đừng tin chúng, nhưng giáo sư không hề nói chúng ta cần tin gì. Nhận thức của con người dù có hạn, và
chúng ta cần chấp nhận, thì cũng không việc gì phải ngừng học tập, ngừng tư duy, rồi đi chê bai người đi
trước cả!!!

Cám ơn các bạn đã xem.

Saint Petersburg, ngày 12 tháng 08 năm 2025

Lê Quốc Dũng
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5.1.4 Chủ nghĩa khắc kỷ và phân phối nhị thức
Phân phối nhị thức

Sự tiêu cực trong chủ nghĩa khắc kỷ và phân phối nhị thức có liên hệ mật thiết nhau tới mức không ngờ.

Mình xin phép nhắc lại về phân phối nhị nhức (binomial distribution).

Nếu một sự kiện có khả năng xảy ra là 𝑝 với 0 6 𝑝 6 1 thì trong một dãy 𝑛 sự kiện như vậy độc
lập nhau, xác suất để có 𝑘 sự kiện xảy ra là

𝑃 (𝜉 = 𝑘) = 𝐶𝑘
𝑛 · 𝑝𝑘 · (1− 𝑝)𝑛−𝑘.

Một ví dụ đơn giản của phân phối nhị thức là bài kiểm tra trắc nghiệm. Giả sử một đề thi có 10 câu, mỗi
câu có bốn đáp án A, B, C, D, và chỉ có một đáp án đúng cho mỗi câu.

Khi đó, 𝑛 = 10 và xác suất để chọn ngẫu nhiên đáp án đúng cho mỗi câu là 𝑝 = 1/4. Gọi 𝑘 là số câu trả lời
đúng khi chọn ngẫu nhiên đáp án từng câu.

Mình sẽ thử lập bảng phân bố xác suất với 𝑘 = 0, 1, . . . , 10.

𝑘 0 1 2 3 4 5
𝑃 (𝜉 = 𝑘) 0.056314 0.187712 0.281568 0.250282 0.145998 0.058399

𝑘 6 7 8 9 10
𝑃 (𝜉 = 𝑘) 0.016222 0.003090 0.000386 29 · 10−5 10−6

Đối với trường hợp 𝑘 = 10, tức là lúc chúng ta "lụi" đúng hết cả 10 câu, các bạn có thấy xác suất nhỏ tới
mức chán chả buồn nói không? Như vậy có thể thấy xác suất một điều tốt xảy ra luôn rất thấp.

5.1.5 Sưu tầm 1
Nguồn: https://vk.com/po_matematike

Tiêu đề gốc. Метод сопряжённых градиентов: линейная алгебра с ускорением.

Tiêu đề. Phương pháp gradient liên hợp: đại số tuyến tính với tốc độ cao.

Khi hệ phương trình tuyến tính 𝐴𝑥 = 𝑏 có quy mô cực lớn (hàng triệu biến), việc lưu trữ toàn bộ ma trận
𝐴 và sử dụng các phương pháp trực tiếp như phân tích LU trở nên bất khả thi. Đặc biệt khi 𝐴 là ma trận
thưa, đối xứng và xác định dương (định thức dương?). Trong trường hợp này, phương pháp Gradient liên
hợp (Conjugate Gradients - CG) là một trong những thuật toán lặp hiệu quả nhất.

Khác với phương pháp Gradient Descent, CG không chỉ "tiến dần" về cực tiểu của hàm bậc hai:

𝑓(𝑥) =
1

2
· 𝑥⊤𝐴𝑥− 𝑏⊤𝑥

mà di chuyển theo các hướng liên hợp với nhau, giúp tránh lãng phí bước đi. Về lý thuyết, sau đúng 𝑛 bước,
CG tìm được nghiệm chính xác, nhưng trên thực tế, quá trình hội tụ thường đạt được sớm hơn nhiều.

Ý tưởng chính. Thay vì chọn hướng gradient 𝑟𝑘 = 𝑏−𝐴𝑥𝑘 ở mỗi bước, CG chọn hướng 𝑝𝑘 liên hợp với
các hướng trước đó theo 𝐴:

𝑝𝑘+1 = 𝑟𝑘+1 + 𝛽𝑘𝑝𝑘, 𝛽𝑘 =
𝑟⊤𝑘+1𝑟𝑘+1

𝑟⊤𝑘 𝑟𝑘
.

Cập nhật nghiệm. Nghiệm mới được tính bằng:

𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑝𝑘, 𝛼𝑘 =
𝑟⊤𝑘 𝑟𝑘
𝑝⊤
𝑘 𝐴𝑝𝑘

.
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Ưu điểm quan trọng. Không cần lưu trữ toàn bộ ma trận 𝐴, chỉ cần khả năng tính nhanh 𝐴𝑥.

Ứng dụng rộng rãi trong:

• phương pháp tính;

• học máy;

• đồ họa máy tính;

• giải phương trình đạo hàm riêng.

Phương pháp này minh họa cách lựa chọn hình học thông minh (liên hợp thay vì trực giao) giúp tăng tốc
đáng kể tính toán.

5.1.6 Sưu tầm 2
Контрольная работа.

Задание 1. Докажите или опровергните утверждение 𝑛2 = 𝑜(2𝑛2).

Задание 2. Расположите следующие функции в порядке увеличения скорости из роста, отметив среди
них Θ-эквивалентные: 𝑓(𝑛) = 4log𝑛, 𝑔(𝑛) = 4𝑛2, ℎ(𝑛) = 𝑛 log(𝑛4).

Задание 3. Пусть 𝑓(𝑛) и 𝑔(𝑛) - асимптотически положительные функции. Докажите или опровергните
следующее утверждение: 𝑓(𝑛) + 𝑔(𝑛) = 𝑂(min(𝑓(𝑛), 𝑔(𝑛))).

5.2 Nước Nga du kí

5.2.1 Giới thiệu
Bước đầu đi học

Năm 2019, mình lên đường sang Nga và bắt đầu hành trình học cử nhân. Việc du học Nga có chỗ tốt, cũng
có chỗ không tốt. Đây là câu chuyện của mình về những điều mình đã học được, đã thấy và cảm nhận đối
với Liên bang Nga.

Chuyện bắt đầu vào một ngày đẹp trời tháng 4 năm 2019. Khi đó mình vẫn đang là sinh viên năm nhất ở
trường Đại học Công nghệ Thông tin (UIT) ở Thành phố Hồ Chí Minh. Bạn cùng lớp giới thiệu cho mình
học bổng hiệp định của Bộ Giáo dục và Đào tạo đi du học Nga. Phần sau mình sẽ nói rõ về học bổng hiệp
định, hiểu đơn giản là phía Nga sẽ trả học phí và phía Việt Nam sẽ cấp bù sinh hoạt phí (SHP) cho mình.
Do đó sinh viên Việt Nam ở Nga thường gọi học bổng hiệp định là học bổng hai phía.

Mình thấy ý tưởng này khá hay, được đi du học mà gần như không tốn gì. Lúc này tham khảo ý kiến của
mọi người xung quanh là khá cần thiết. Đa số tất nhiên là không đồng ý vì du học Nga không phải cái gì
quá hấp dẫn ở thời nay. Sau khi tốt nghiệp cấp 3 rất nhiều người bạn của mình đã đi học ở Mỹ, Úc, Pháp,
Phần Lan, Trung Quốc, Canada ... Lúc đó mình đoán là dưới miền nam không chuộng đi Nga và sau này
khi sang đây thì mình đã chắc chắn về việc đó.

Tuy nhiên, yếu tố quan trọng nhất chính là ba mẹ mình đã cho phép mình đi sau khi đắn đo suy nghĩ. Nếu
ngày đó ba mẹ không cho mình đi, mình đã lỡ mất một cơ hội nhìn ngắm thế giới ngoài Việt Nam. Mình
rất biết ơn ba mẹ về điều này. Tuy nhiên mình đã làm ba mẹ buồn vì ... không dẫn được bạn nữ nào về
giới thiệu ba mẹ suốt mấy năm cử nhân. Hiện tại mình đã gác lại chuyện đó để dồn sức với hy vọng hoàn
thành Tiến sĩ Khoa học (Доктор наук) ở 40 tuổi rồi tính chuyện tình duyên sau ^)^.
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Chuẩn bị hồ sơ

Tiếp theo thì mình chuẩn bị hồ sơ để xin học bổng hiệp định. Mọi thứ đều bình thường ngoại trừ việc dịch
thuật. Mình theo những bài post trên facebook lúc đó để tìm tới một văn phòng nhận dịch thuật tiếng Nga
trên đường Trần Cao Vân (gần đường Nguyễn Đình Chiểu). Lúc đó chỉ có một người dịch tiếng Nga trong
khi có khá nhiều người nhận dịch tiếng Anh, Trung, Hàn, ... Đây là điểm thứ hai khiến mình đoán rằng ít
người miền nam đi học Nga.

Vì số người dịch tiếng Nga ít nên mình tranh thủ chuẩn bị giấy tờ sớm và đem đi dịch. Mọi chuyện diễn ra
khá mượt và mình gửi giấy tờ lên Cục hợp tác quốc tế, là cơ quan trực thuộc Bộ Giáo dục và Đào tạo chịu
trách nhiệm quản lý lưu học sinh tại các nước cấp học bổng hiệp định. Sau đó mình chờ đến tháng 8 thì có
kết quả mình đậu. Ngày 14/10 mình lên đường sang Nga.

Đa số các bạn đi học Nga lần đầu sẽ giống mình là không biết tiếng Nga. Do đó tụi mình sẽ trải qua một
khóa học dự bị tiếng Nga 1 năm, sau đó bắt đầu học cử nhân 4 năm, hoặc thạc sĩ 2 năm, hoặc nghiên cứu
sinh 4 năm. Nói đơn giản, nếu bạn chưa từng học ở Nga và không có chứng chỉ tiếng Nga đủ cao thì bạn sẽ
cần học 1 năm tiếng.

Năm dự bị tiếng

Năm đó có 7 người sang trường mình học dự bị và 1 anh sang học nghiên cứu sinh (trước đó anh này đã học
dự bị và thạc sĩ rồi nên bây giờ không cần học dự bị nữa). Spoil: trong 7 người học dự bị trường mình thì
chỉ có mỗi mình ở lại để học tiếp cử nhân, còn 6 bạn kia sang trường Bauman học.

5.2.2 Đi học ở Nga tốt hay xấu?
Cá nhân mình thấy việc sinh viên Việt Nam đi du học Nga có nhiều điểm hại hơn là điểm lợi.

Đầu tiên là học bổng. Vâng, các bạn không nhầm đâu. Một trong những điểm hại lớn nhất khi đi du học
Nga lại chính là học bổng.

Thông thường sinh viên Việt Nam đi học ở Nga sẽ có hai dạng:

• được Chính phủ Nga trả học phí và được Chính phủ Việt Nam cấp bù sinh hoạt phí (SHP);

• được Chính phủ Nga trả học phí, còn SHP tự lo.

Một số ít thì học theo diện tự túc mọi loại phí nhưng số lượng các bạn ở diện này rất ít. Mình học thạc sĩ ở
ITMO là diện này.

Quay lại với học bổng. Khi các bạn không bị áp lực tài chính thì dễ hiểu các bạn sẽ không quý trọng những
đồng tiền đó. Việc bỏ bê học tập sau năm dự bị tiếng Nga xảy ra rất thường xuyên. Nhiều bạn bị đuổi học
sau năm 1, năm 2 cử nhân, thậm chí một số trường còn đuổi khi hết năm dự bị.

Một điểm bất lợi thứ hai là cộng đồng sinh viên Việt Nam. Vâng, một lần nữa, các bạn không nhầm đâu.
Cộng đồng sinh viên Việt Nam tại Nga, theo mình, là hỗn loạn và có nhiều điểm tiêu cực hơn là tích cực.

Các đơn vị sinh viên tại trường thường tổ chức các hoạt động cho sinh viên nhưng các bạn tham gia không
phải trên tinh thần tự nguyện, mà là bắt buộc một phần.

Điều buồn cười là nhiều người bảo các trường đại học ở Nga chỉ có học mà không năng động, không nhiều
hoạt động. Nguyên nhân là do nhiều bạn chỉ có đi học, lấy 5 điểm, rồi về, chứ có bao giờ để ý trường, khoa
đang tổ chức gì đâu mà biết có hoạt động hay không. Đôi khi vì ngại tiếng Nga của bản thân yếu cũng
khiến nhiều bạn không tham gia. Mình đã từng giúp khoa chuẩn bị cho ngày hội giới thiệu về khoa (День
открытых дверей, Open Day). Mình cũng tham dự các trường hè do các đại học Nga hợp tác tổ chức. Như
vậy, hoạt động ngoại khóa lẫn hoạt động học thuật có rất nhiều, chỉ là các bạn không tham gia rồi bảo ở
Nga không năng động.
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5.2.3 Góc khẩu nghiệp

Radiation Nguy hiểm

Phần này có sự toxic cao, độc giả cân nhắc trước khi xem. ^-^

Radiation Nguy hiểm

Phần này là ý kiến cá nhân và cảm xúc tiêu cực tích lũy khi tác giả đi học ở Nga, độc giả cân nhắc trước
khi xem. ^:^

5.2.4 Các cuộc thi toán ở Nga
Giới thiệu

Các cuộc thi học thuật ở Nga được chia thành bốn cấp chính:

• cấp trường: cuộc thi tổ chức cho sinh viên trong trường tham gia;

• cấp khu vực (региональные): cuộc thi do một hoặc một số trường trong thành phố (và các tỉnh ngoại
ô) tổ chức;

• cấp quốc gia (всероссийские): cuộc thi do một hoặc một số trường trên toàn Nga đứng ra tổ chức;

• cấp quốc tế (международные): các cuộc thi được tổ chức bởi một tổ chức khoa học/cơ quan hàn lâm
trên thế giới, hoặc hợp tác giữa các cơ quan.

Trong bài viết này, mình xin phép chia sẻ một số cuộc thi về toán và mật mã mà mình có dịp tham gia hoặc
thấy qua. Trong mỗi cuộc thi sẽ trình bày các thông tin chính:

• tên cuộc thi;

• địa chỉ website (nếu có);

• cấp độ (trường, khu vực, quốc gia, quốc tế);

• thời gian diễn ra trong năm (ước lượng);

• địa điểm tổ chức.

Đạt giải ở các cuộc thi này giúp cộng điểm để tính xét повышение государственная академическая
стипендия (ПГАС). Khi mình được duyệt ПГАС thì ngoài học phí đã được miễn ra (100%) thì còn được
cấp thêm 15% cho mỗi tháng ở kì tiếp theo. Do đó mình hy vọng nhiều sinh viên Việt Nam sẽ hưởng ứng.

Thông thường việc tham gia các cuộc thi sẽ cần thông qua khoa toán của trường. Một số cho phép tham
gia online vòng loại (tự do) nhưng khi tham gia vòng trong sẽ được đăng kí thông qua trường. Vì vậy mình
nghĩ rằng nếu sinh viên muốn tham gia một giải nào thì nên liên hệ với khoa toán để nhờ họ đăng kí, đôi
khi có thể được học trong đội tuyển để chuẩn bị tốt hơn.

Olympiad toán khu vực

Olympiad ở Zelenograd, trường МИЭТ

1. Tên đầy đủ: Московской городской олимпиады по математике студентов технических вузов.

2. Địa chỉ website: https://www.miet.ru/structure/s/243/e/120419/50 (tham khảo).

3. Cấp độ: khu vực.

4. Thời gian: vào khoảng tháng 4 hằng năm.
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5. Địa điểm: trường МИЭТ (thành phố Zelenograd, nằm ở ngoại ô Moscow).

6. Đối tượng tham gia: cử nhân hoặc chuyên gia.

Cuộc thi gồm hai bảng: cho năm nhất (первый курс) và cho các năm sau (старшие курсы).

Đề thi gồm 4 câu áp dụng cho cả hai bảng, tập trung vào giải tích và đại số tuyến tính.

Olympiad toán quốc gia

Olympiad "Я - профессионал"

Olympiad "Я - профессионал" có thể nói là cuộc thi "quốc dân" ở Nga. Thực chất, "Я - профессионал"
bao gồm nhiều môn khác nhau, trong đó có môn toán.

1. Tên đầy đủ: "Я - профессионал".

2. Địa chỉ website: https://yandex.ru/profi/.

3. Cấp độ: quốc gia.

4. Địa điểm: vòng sơ khảo (отборочный этап) theo hình thức online, vòng chung kết (заключительный
этап) theo hình thức trực tiếp tại một trường trong khu vực.

5. Thời gian: vòng sơ khảo diễn ra khoảng tháng 11-12, vòng chung kết diễn ra khoảng tháng 3 năm tiếp
theo.

6. Đối tượng tham gia: cử nhân, chuyên gia, thạc sĩ.

Ở vòng sơ khảo, hình thức thi là trắc nghiệm điền đáp án. Đề thi gồm 10 câu. Thí sinh đọc đề, giải ra đáp
án, và điền đáp án vào ô trống trên trang web. Nếu trả lời đúng, thí sinh có 10 điểm. Nếu trả lời sai, thí
sinh có 0 điểm.

Ở vòng chung kết (заключительный этап) đôi khi sẽ có một vòng bán kết (полуфинал) khi số lượng tham
gia quá đông. Ở vòng полуфинал, hình thức thi vẫn là trắc nghiệm điền đáp án giống vòng sơ khảo. Sau
đó, vòng chung kết tổng (финал) diễn ra theo hình thức tự luận. Đề thi vòng chung kết tổng cũng có 10
câu. Nếu có ý đúng, thí sinh được điểm.

Các môn thi của "Я - профессионал" nói chung đề gồm hai bảng:

• bảng dành cho cử nhân (для бакалавриата);

• bảng dành cho thạc sĩ/chuyên gia (для магистратуры/специалиста).

Nói cách khác, thạc sĩ và chuyên gia sẽ thi chung đề, chung bảng.

Olympiad "Интегрируй" ở МИФИ

Cuộc thi được tổ chức tại trường МИФИ, nằm ở Moscow.

Cuộc thi diễn ra theo nhiều vòng.

Trong cuộc thi, thí sinh sẽ giải các bài về nguyên hàm và tích phân. Vì vậy cuộc thi mới mang tên
"Интегрируй".

[TODO] Sưu tầm đề.

Olympiad toán quốc tế

Open International Internet Olympiad - OIIO

1. Tên đầy đủ: Открытая международная интернет-олимпиада по математике.

2. Địa chỉ website: https://olymp.i-exam.ru/.
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3. Cấp độ: quốc tế.

4. Địa điểm: cuộc thi gồm 3 vòng. Vòng 1 thi tại trường, vòng 2 thi tại một trường nào đó trong khu
vực, vòng 3 - chung kết - thi tại một thành phố tại Nga.

5. Thời gian: vòng 1 diễn ra khoảng tháng 3, vòng 2 diễn ra vào tháng 4, vòng 3 diễn ra vào tháng 5.

6. Đối tượng tham dự: cử nhân từ năm 1 tới năm 3.

Ở vòng 1, thí sinh sẽ giải các bài toán trên máy tính qua hệ thống của cuộc thi. Hình thức thi là trắc nghiệm
điền đáp án. Thí sinh đọc đề, giải ra kết quả và ghi đáp án và ô trống trên trang web. Nếu trả lời đúng, thí
sinh có điểm. Nếu trả lời sai, thí sinh không có điểm. Vòng 1 diễn ra tại trường, thường sẽ được sắp xếp
phòng máy.

Ở vòng 2, hình thức thi giống vòng 1. Thí sinh của một khu vực (ví dụ Moscow) sẽ tập trung về một trường
nào đó trong khu vực (ví dụ năm 2023 các thí sinh ở Moscow sẽ tập trung về đại học xây dựng Moscow).

Ở vòng 3, hình thức thi là tự luận. Đề thi gồm 10 câu, chấm theo thang điểm. Nếu có ý đúng, thí sinh được
điểm. Điểm của mỗi câu sẽ tăng theo hệ số dựa trên số lượng người giải ra. Nếu một câu có nhiều thí sinh
giải ra, câu đó sẽ giữ nguyên điểm ban đầu. Nếu một câu có ít thí sinh giải ra, điểm sẽ được tăng theo hệ
số do ban tổ chức tính toán dựa trên số lượng lời giải đúng. Vòng 3 diễn ra tại trường ФИЭБ ở thành phố
Йошкар-Ола, gần Kazan.

Vì số lượng câu hỏi lớn nên nội dung thi bao quát nhiều lĩnh vực toán: giải tích, đại số tuyến tính, hình học,
số học, xác suất thống kê, lý thuyết đồ thị, ...

Ý kiến của mình: điểm hay ở vòng 3 là cơ chế tính điểm, giúp những người dù giải được ít câu nhưng điểm
vẫn cao vì câu khó thường là câu ít người giải được.

Chưa phân loại

RUDN Olympiad

Lần đầu tiên mình được tham dự thi toán đồng đội theo hình thức MathBoy (trận chiến toán) năm 2023.

Trong cách thi này, mỗi đội có 3 vị trí: người thuyết trình (докладчик), người phản biện (оппонент) và
người giám sát (наблюдатель).

Ở mỗi vòng sẽ có 3 đội thi với nhau. Mỗi đội sẽ có 1 vị trí tương ứng với 3 vị trí trên. Sau đây là ví dụ

Đội 1 Đội 2 Đội 3
Vòng 1 О Д Н
Vòng 2 Н О Д
Vòng 3 Д Н О

Ở mỗi vòng, đội đóng vai trò người thuyết trình lên bảng ghi bài giải trong thời gian cho phép và thuyết
trình về bài giải của đội mình. Đội phản biện có nhiệm vụ phản biện bài thuyết trình đó. Đội giám sát, dựa
trên bài thuyết trình cũng như phản biện mà ghi chép lại các lỗi, chỗ khó hiểu, ... và trình lên cho giám
khảo.

Ngoài ra, đội thuyết trình trước đó phải trình bài giải viết tay cho giám khảo chấm trước khi lên thuyết
trình.

Ở đây có rất nhiều câu chuyện hack não đã xảy ra. Lúc mình thi vòng 1, câu hỏi quá khó nên đội thuyết
trình chỉ viết được một ít. Đồng nghĩa việc đội phản biện cũng như đội giám sát ... thất nghiệp, không có
gì để nói.
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Đối với vòng 2, trận chiến cân bằng hơn, đội mình làm việc giám sát. Dựa trên bài giải của đội thuyết trình,
chúng mình thấy những trường hợp chưa được xét tới và có thể bị sai, do đó cả ba đội đều có điểm (đội
thuyết trình có nhiều điểm nhất vì các bạn giải hơn 1 nửa rồi).

Đối với vòng 3, đội mình thuyết trình. Đội mình clear bài đó nên giành điểm tuyệt đối cho phần thuyết
trình. Tuy nhiên các bạn phản biện cũng không vừa, vẫn cố gắng bắt một số lỗi do trình bày quá cô đọng.
Kết quả là đội mình (thuyết trình) full điểm cho vòng 3, đội phản biện được 3 điểm.

5.3 Sưu tầm những câu chuyện về các nhà toán học

5.4 Men of Mathematics
Mình dịch quyển Men of Mathematics của Bell [43].

5.4.1 Lời nói đầu
Men of Mathematics

Cuộc đời và thành tựu của các nhà toán học vĩ đại từ Zeno đến Poincaré.

Mục lục

1. Giới thiệu.

Sự thoải mái cho độc giả. Bình minh của toán học hiện đại. Các nhà toán học có phải là con người? Những
bản sao vô vị. Phạm vi vô hạn trong sự tiến hóa của toán học. Những người tiên phong và trinh sát. Manh
mối đi qua mê cung. Liên tục và rời rạc. Sự hiếm có đáng chú ý của lẽ thường. Toán học sống động hay
thuyết thần bí mơ hồ? Bốn thời kì vĩ đại của toán học. Thời kì của chúng ta là Thời kì Hoàng kim.

2. Những tư duy hiện đại trong cơ thể cổ đại: Zeno (thế kỷ thứ 5 TCN), Eudoxus (408-355
TCN), Archimedes (287?-212 TCN).

Những người cổ đại hiện đại và những người hiện đại cổ đại. Pythagoras, nhà thần bí vĩ đại, nhà toán học
vĩ đại hơn. Chứng minh hay trực giác? Gốc rễ của giải tích hiện đại. Một gã nhà quê làm đảo lộn các triết
gia. Những câu đố chưa được giải quyết của Zeno. Người bạn trẻ cần cù của Plato. Sự kiệt quệ vô tận.
Những mẩu truyện tranh hữu ích. Archimedes, quý tộc, nhà khoa học vĩ đại nhất thời cổ đại. Những huyền
thoại về cuộc đời và tính cách của ông. Những khám phá và tuyên bố về tính hiện đại của ông. Một người
La Mã kiên cường. Sự thất bại của Archimedes và chiến thắng của Rome.

3. Quý ông, người lính và nhà toán học: Descartes (1596-1650).

Những ngày xưa tươi đẹp. Một triết gia trẻ nhưng không phải là một kẻ kiêu ngạo. Những lợi thế vô giá của
việc nằm trên giường. Những nghi ngờ tiếp thêm sinh lực. Hòa bình trong chiến tranh. Được cải đạo bởi ác
mộng. Sự khải thị của hình học giải tích. Thêm nhiều vụ giết mổ. Rạp xiếc, sự ghen tị chuyên nghiệp, sự
khoe khoang, những người bạn nữ dễ tính. Sự khó chịu với lửa địa ngục và sự tôn trọng Giáo hội. Được cứu
bởi một cặp hồng y. Một Giáo hoàng tự đánh vào đầu mình. Hai mươi năm sống ẩn dật. Phương pháp. Bị
phản bội bởi danh tiếng. Làm việc với Elisabeth. Descartes thực sự nghĩ gì về cô ấy. Christine tự phụ. Cô
ấy đã làm gì với Descartes. Sự đơn giản khi sáng tạo trong hình học của ông.

4. Hoàng tử của những người nghiệp dư: Fermat (1601-1665).

Nhà toán học vĩ đại nhất của thế kỷ 17. Cuộc sống bận rộn, thực tế của Fermat. Toán học là sở thích của
ông. Đóng góp của ông cho giải tích. Nguyên lý vật lý sâu sắc của ông. Hình học giải tích một lần nữa.
Arithmetica và logistica (tạm dịch - số học và logic học). Sự vượt trội của Fermat trong số học. Một bài
toán chưa được giải về số nguyên tố. Tại sao một số định lý lại "quan trọng"? Một bài kiểm tra trí thông
minh. "Sự giảm vô hạn." Thách thức chưa được trả lời của Fermat đối với hậu thế.
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5. "Sự vĩ đại và khổ đau của con người": Pascal (1623-1662).

Một thần đồng chôn vùi tài năng của mình. Ở tuổi 17, một nhà hình học vĩ đại. Định lý tuyệt vời của
Pascal. Sức khỏe tồi tệ và sự say mê tôn giáo. Chiếc máy tính đầu tiên. Sự xuất sắc của Pascal trong vật
lý. Chị gái thánh thiện Jacqueline, người cứu rỗi linh hồn. Rượu và phụ nữ? "Hãy đến tu viện!" Được cải
đạo trong một cuộc chè chén. Văn học bị lợi dụng cho sự cuồng tín. Helen của Hình học. Một cơn đau răng
thiên thể. Những gì khám nghiệm tử thi tiết lộ. Một tay cờ bạc làm nên lịch sử toán học. Phạm vi của lý
thuyết xác suất. Pascal cùng với Fermat tạo ra lý thuyết này. Sự điên rồ của việc đặt cược chống lại Chúa
hoặc Quỷ dữ.

6. Trên bờ biển: Newton (1642-1727).

Đánh giá của Newton về bản thân. Một thiên tài trẻ không được chứng nhận. Sự hỗn loạn ở thời đại ông.
Đứng trên vai những người khổng lồ. Mối quan hệ duy nhất của ông. Những ngày ở Cambridge. Newton
trẻ tuổi làm chủ sự vô ích của việc chịu đựng những kẻ ngốc. Đại dịch lớn là một phước lành lớn hơn. Bất
tử ở tuổi 24 (hoặc ít hơn). Giải tích. Newton không ai sánh kịp trong toán học thuần túy, tối cao trong triết
học tự nhiên. Ruồi nhặng, ong bắp cày và sự bực bội. Nguyên lý. Samuel Pepys và những kẻ rối rít khác.
Sự thất vọng phẳng lặng nhất trong lịch sử. Tranh cãi, thần học, niên đại học, giả kim thuật, chức vụ công,
cái chết.

7. Bậc thầy của mọi nghề: Leibniz (1646-1716).

Hai đóng góp tuyệt vời. Con của một chính trị gia. Thiên tài ở tuổi 15. Bị lôi cuốn bởi luật pháp. "Đặc
tính phổ quát." Lý luận biểu tượng. Bán rẻ vì tham vọng. Một nhà ngoại giao bậc thầy. Ngoại giao là thứ
gì đó, những chiến tích ngoại giao của bậc thầy được để lại cho các nhà sử học. Cáo trở thành nhà sử học,
chính khách trở thành nhà toán học. Đạo đức ứng dụng. Sự tồn tại của Chúa. Chủ nghĩa lạc quan. Bốn
mươi năm vô ích. Bị vứt bỏ như một miếng giẻ bẩn.

8. Bản chất hay nuôi dưỡng? Gia đình Bernoulli (thế kỷ 17 và 18).

Tám nhà toán học trong ba thế hệ. Bằng chứng lâm sàng về di truyền. Giải tích biến phân.

9. Hiện thân của phân tích: Euler (1707-1783).

Nhà toán học sung mãn nhất trong lịch sử. Được cứu khỏi thần học. Các nhà cai trị chi trả. Tính thực tiễn
của những điều không thực tiễn. Cơ học thiên thể và chiến tranh hải quân. Một nhà toán học do cơ hội
và định mệnh. Bị mắc kẹt ở St. Petersburg. Đức tính của sự im lặng. Mù một nửa vào buổi sáng. Chạy
trốn đến nước Phổ tự do. Sự hào phóng và thô lỗ của Frederick Đại đế. Trở về nước Nga hiếu khách. Sự
hào phóng và thanh lịch của Catherine Đại đế. Mù hoàn toàn vào buổi trưa. Bậc thầy và người truyền cảm
hứng cho các bậc thầy trong một thế kỷ.

10. Một kim tự tháp cao vút: Lagrange (1736-1813).

Nhà toán học vĩ đại và khiêm tốn nhất của thế kỷ 18. Sự phá sản tài chính là cơ hội của ông. Ông đã hình
thành kiệt tác của mình ở tuổi 19. Sự hào phóng của Euler. Từ Turin, đến Paris, đến Berlin: một đứa con
ngoài giá thú biết ơn đã giúp đỡ một thiên tài. Những cuộc chinh phục trong cơ học thiên thể. Frederick
Đại đế hạ mình. Cuộc hôn nhân đãng trí. Công việc như một thói quen. Một tác phẩm kinh điển trong số
học. Mécanique analytique một kiệt tác sống động. Một cột mốc trong lý thuyết phương trình. Được chào
đón ở Paris bởi Marie Antoinette. Kiệt sức thần kinh, u uất và sự chán ghét phổ quát ở tuổi trung niên.
Được đánh thức bởi Cách mạng Pháp và một cô gái trẻ. Lagrange nghĩ gì về Cách mạng. Hệ thống mét.
Những người cách mạng nghĩ gì về Lagrange. Một triết gia chết như thế nào.

11. Từ nông dân đến kẻ kiêu ngạo: Laplace (1749-1827).

Khiêm tốn như Lincoln, kiêu hãnh như Lucifer. Một sự tiếp đón lạnh lùng và một lời chào nồng nhiệt.
Laplace tấn công hệ mặt trời một cách hoành tráng. Mécanique céleste. Đánh giá của ông về bản thân.
Những người khác nghĩ gì về ông. "Thế năng" cơ bản trong vật lý. Laplace trong Cách mạng Pháp. Mối
quan hệ thân thiết với Napoleon. Chủ nghĩa hiện thực chính trị của Laplace vượt trội hơn Napoleon.

12. Những người bạn của một hoàng đế: Monge (1746-1818), Fourier (1768-1830).
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Con trai của một người mài dao và con trai của một thợ may giúp Napoleon lật đổ chiếc xe ngựa của giới
quý tộc. Vở opera hài ở Ai Cập. Hình học mô tả của Monge và Thời đại Máy móc. Phân tích của Fourier
và vật lý hiện đại. Sự ngu ngốc của việc tin tưởng vào các hoàng tử hoặc những người vô sản. Chán đến
chết và chán đến chết.

13. Ngày vinh quang: Poncelet (1788-1867).

Được hồi sinh từ đống đổ nát của Napoleon. Con đường vinh quang dẫn đến nhà tù. Mùa đông ở Nga năm
1812. Thiên tài làm gì trong tù. Hai năm hình học trong địa ngục. Phần thưởng của thiên tài: sự ngu ngốc
của thói quen. Hình học xạ ảnh của Poncelet. Nguyên lý liên tục và đối ngẫu.

14. Hoàng tử của các nhà toán học: Gauss (1777-1855).

Gauss, người ngang hàng với Archimedes và Newton trong toán học. Xuất thân khiêm tốn. Sự tàn bạo của
người cha. Sự phát triển trí tuệ sớm không ai sánh kịp. Cơ hội của ông ở tuổi 10. Đến năm 12 tuổi, ông mơ
về những khám phá cách mạng, đến năm 18 tuổi, ông đạt được chúng. Disquisitiones Arithmeticae. Các tác
phẩm mang tính bước ngoặt khác được tóm tắt. Thảm họa Ceres. Napoleon, gián tiếp cướp đoạt Gauss,
nhận giải nhì. Những tiến bộ cơ bản trong tất cả các nhánh của toán học nhờ Gauss quá nhiều để liệt
kê: xem tài khoản đã cho (?). Hiền triết của các hiền triết. Cái chết không mong muốn.

15. Toán học và cối xay gió: Cauchy (1789-1857).

Sự thay đổi trong bản chất của toán học với thế kỷ 19. Thời thơ ấu trong Cách mạng Pháp. Tính toán sai
lầm sớm của Cauchy. Lời tiên tri của Lagrange. Kỹ sư Cơ đốc trẻ. Sự sắc sảo tiên tri của Malus. Lý thuyết
nhóm. Đứng đầu ở tuổi 27. Một trong những câu đố của Fermat được giải. Hà mã sùng đạo. Bị húc bởi
Charles the Goat (?). Các bài báo về thiên văn học và vật lý toán. Sự ngọt ngào và sự cứng đầu bất khả
chiến bại. Chính phủ Pháp tự làm mình trở thành kẻ ngốc. Vị trí của Cauchy trong toán học. Nhược điểm
của một nhân cách không thể chê trách.

16. Copernicus của hình học: Lobatchevsky (1793-1856).

Dặm của góa phụ (?). Kazan. Được bổ nhiệm làm giáo sư và gián điệp. Khả năng phổ quát. Lobatchevsky
với tư cách là một nhà quản lý. Lý trí và hương trầm (?) chống lại dịch tả. Lòng biết ơn của người Nga.
Bị sỉ nhục trong thời kỳ đỉnh cao. Mù như Milton, Lobatchevsky đọc kiệt tác của mình. Sự tiến bộ của ông
vượt qua Euclid. Hình học phi Euclid. Một Copernicus của trí tuệ.

17. Thiên tài và nghèo khó: Abel (1802-1829).

Na Uy năm 1802. Bị bóp nghẹt bởi sự sinh sản của giáo sĩ. Sự thức tỉnh của Abel. Sự hào phóng của một
giáo viên. Một học trò của các bậc thầy. Sai lầm may mắn của ông. Abel và phương trình bậc năm. Chính
phủ giải cứu. Chuyến du lịch vĩ đại của Abel qua toán học châu Âu không quá vĩ đại. Sự lịch sự của người
Pháp và sự thân thiện của người Đức. Crelle và tạp chí của ông. Tội lỗi không thể tha thứ của Cauchy.
"Định lý Abel." Một thứ để giữ cho các nhà toán học bận rộn 500 năm. Đặt vương miện lên một xác chết.

18. Nhà đại số vĩ đại: Jacobi (1804-1851).

Mạ điện (?) so với toán học. Sinh ra giàu có. Khả năng ngôn ngữ học của Jacobi. Dành cả đời cho toán
học. Công trình đầu tiên. Sạch sẽ. Một con ngỗng giữa những con cáo. Thời kỳ khó khăn. Hàm elliptic. Vị
trí của chúng trong sự phát triển chung. Đảo ngược(?) (tạm dịch - Nghịch đảo). Công trình trong số học,
động lực học, đại số và hàm Abelian. Sự tuyên bố của Fourier. Câu trả lời của Jacobi.

19. Bi kịch Ireland: Hamilton (1805-1865).

Người vĩ đại nhất của Ireland. Giáo dục sai lầm phức tạp (?). Những khám phá ở tuổi 17. Một sự
nghiệp đại học độc đáo. Thất vọng trong tình yêu. Hamilton và các nhà thơ. Được bổ nhiệm tại Dunstink.
Hệ thống tia. Nguyên lý quang học. Dự đoán về khúc xạ hình nón. Hôn nhân và rượu. Trường. Số phức.
Luật giao hoán bị bãi bỏ. Quaternion. Những ngọn núi giấy.

20. Thiên tài và sự ngu ngốc: Galois (1811-1832).

Kỷ lục thế giới của mọi thời đại về sự ngu ngốc. Thời thơ ấu của Galois. Các nhà giáo dục vượt trội hơn
chính họ. Ở tuổi 16, Galois lặp lại sai lầm của Abel. Chính trị và giáo dục. Các kỳ thi như những trọng

5.4. Men of Mathematics 503



Math Book

tài của thiên tài. Bị săn đuổi đến chết bởi một linh mục. Thêm sự bất tài của học thuật. Cauchy đãng trí
một lần nữa. Bị đẩy đến nổi loạn. Một nhà toán học bậc thầy ở tuổi 19. "Một xác chết để kích động dân
chúng." Cống rãnh bẩn nhất ở Paris. Những người yêu nước lao vào chiến trường danh dự. Đêm cuối cùng
của Galois. Câu đố của các phương trình được giải. Bị chôn như một con chó.

21. Cặp song sinh bất biến: Sylvester (1814-1897); Cayley (1821-1895).

Những đóng góp của Cayley. Thời trẻ. Cambridge. Giải trí. Được gọi đến Luật sư đoàn. Mười bốn năm
trong luật pháp. Cayley gặp cộng tác viên của mình. Cuộc đời sóng gió hơn của Sylvester. Bị cản trở bởi
tôn giáo. Cayley và Sylvester đối lập. Sứ mệnh của Sylvester đến Virginia. Những bước sai lầm tiếp theo.
Lý thuyết bất biến. Được gọi đến Đại học Johns Hopkins. Sức sống không thể dập tắt. "Rosalind." Sự
thống nhất hình học của Cayley. Không gian 𝑛 chiều. Ma trận. Oxford ủng hộ Sylvester. Cuối cùng cũng
đáng kính.

22. Thầy và trò: Weierstrass (1815-1897); Sonja Kowalewski (1850-1891).

Cha đẻ của giải tích hiện đại. Mối quan hệ của Weierstrass với những người đương thời. Những hình phạt
của sự xuất sắc. Bị ép vào luật, tự ép mình thoát ra. Bia và kiếm. Một khởi đầu mới. Nợ Gudermann.
Mười lăm năm trong bùn. Sự giải thoát kỳ diệu. Vấn đề cuộc đời của Weierstrass. Quá nhiều thành công.
Sonja tấn công bậc thầy. Học trò yêu thích của ông. Tình bạn của họ. Lòng biết ơn của một người phụ nữ.
Lặp lại, Sonja giành giải thưởng Paris. Weierstrass được vinh danh toàn cầu. Chuỗi lũy thừa. Số học hóa
giải tích (?). Nghi ngờ.

23. Độc lập hoàn toàn: Boole (1815-1864).

Toán học Anh. Bị nguyền rủa từ khi sinh ra bởi sự kiêu ngạo. Cuộc đấu tranh của Boole để được giáo
dục (?). Chẩn đoán sai. Sự can thiệp của Thiên Chúa. Khám phá các bất biến. Đại số là gì? Một triết
gia tấn công một nhà toán học. Cuộc tàn sát khủng khiếp. Cơ hội của Boole. "Các quy luật của tư duy."
Logic biểu tượng. Ý nghĩa toán học của nó. Đại số Boolean. Chết trong thời kỳ đỉnh cao.

24. Con người, không phải phương pháp: Hermite (1822-1901).

Những vấn đề cũ và phương pháp mới. Người mẹ tài ba của Hermite. Sự ghét bỏ của ông đối với các kỳ thi.
Tự dạy mình. Toán học cao cấp đôi khi dễ hơn toán học cơ bản. Thảm họa giáo dục. Thư gửi Jacobi. Bậc
thầy ở tuổi 21. Trả thù những người chấm thi. Hàm Abelian. Bị làm phiền bởi Cauchy. Chủ nghĩa thần bí
của Hermite. Giải pháp cho phương trình bậc năm tổng quát. Số siêu việt. Một gợi ý cho những người vẽ
vòng tròn. Chủ nghĩa quốc tế của Hermite.

25. Kẻ hoài nghi: Kronecker (1823-1891).

Huyền thoại về một vị thánh người Mỹ. Kronecker may mắn. Chiến thắng ở trường. Tài năng lớn. Số đại
số. Những trận chiến với Weierstrass. Sự nghiệp kinh doanh của Kronecker. Trở lại với toán học giàu có.
Lý thuyết Galois. Các bài giảng của Kronecker. Sự hoài nghi của ông là đóng góp độc đáo nhất.

26. Linh hồn trong sáng: Riemann (1826-1866).

Nghèo nhưng hạnh phúc. Sự nhút nhát kinh niên của Riemann. Được định sẵn cho nhà thờ. Được cứu. Một
giả thuyết nổi tiếng. Sự nghiệp tại Göttingen. "Một toán học mới." Nghiên cứu vật lý. Ứng dụng của tô
pô vào giải tích. Bài luận mang tính bước ngoặc về nền tảng của hình học. Gauss nhiệt tình. Phước lành
của sự nghèo khó. Gốc rễ của giải tích tensor. Tìm kiếm sức khỏe. Dưới một cây vả (?). Cột mốc của
Riemann trong hình học. Độ cong của không gian. Mở đường cho thuyết tương đối.

27. Số học thứ hai: Kummer (1810-1893), Dedekind (1831-1916).

Già trong gỗ (?). Sự uốn cong của Napoleon (?) đối với tính cách vui vẻ của Kummer. Có tài năng
như nhau trong trừu tượng và cụ thể. Định lý cuối cùng của Fermat bắt đầu từ đâu. Lý thuyết số hoàn
hảo. Phát minh của Kummer có thể so sánh với Lobatchevsky. Bề mặt sóng trong bốn chiều. Lớn về thể
xác, tâm trí và trái tim. Dedekind, học trò cuối cùng của Gauss. Người trình bày đầu tiên về Galois. Sớm
quan tâm đến khoa học. Chuyển sang toán học. Công trình của Dedekind về tính liên tục. Sự ra đời lý
thuyết ideal của ông.
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28. Nhà bác học toàn diện cuối cùng: Poincaré (1854-1912).

Sự toàn diện và phương pháp của Poincaré. Những trở ngại thời thơ ấu. Bị toán học cuốn hút. Giữ được sự
tỉnh táo trong chiến tranh Pháp-Phổ. Bắt đầu là kỹ sư khai thác mỏ. Tác phẩm vĩ đại đầu tiên. Hàm tự
đẳng cấu. "Chìa khóa của vũ trụ đại số." Vấn đề 𝑛 vật thể. Phần Lan có văn minh không? Phương pháp
mới của Poincaré trong cơ học thiên thể. Vũ trụ học. Các khám phá toán học được tạo ra như thế nào.
Tường thuật của Poincaré. Những linh cảm và cái chết sớm.

29. Thiên đường đã mất? Cantor (1845-1918).

Những kẻ thù cũ với khuôn mặt mới. Những tín điều thối rữa. Di sản nghệ thuật và sự ám ảnh về cha của
Cantor. Trốn thoát, nhưng quá muộn. Công trình cách mạng của ông không đi đến đâu. Sự nhỏ nhen của
học thuật. Hậu quả thảm khốc của "an toàn trước tiên." Một kết quả mang tính bước ngoặc. Nghịch lý hay
sự thật? Sự tồn tại vô hạn của các số siêu việt. Sự hung hăng tiến lên, sự nhút nhát lùi lại. Những tuyên
bố ngoạn mục hơn. Hai loại nhà toán học.

5.4.2 Acknowledgments
Nếu không có một lượng lớn các chú thích thì sẽ không thể trích dẫn nguồn cho mọi tuyên bố về sự kiện lịch
sử ở các trang sau. Nhưng phần lớn tài liệu tham khảo không có sẵn bên ngoài các thư viện đại học lớn, và
hầu hết đều bằng tiếng nước ngoài. Đối với các ngày tháng chính và các sự kiện chính trong cuộc đời của
một người cụ thể, tôi đã tham khảo các thông cáo, cáo phó (của những người hiện đại); những thông cáo
này được tìm thấy trong các hồ sơ của các hiệp hội học thuật mà người đó là thành viên. Các chi tiết thú
vị khác được đưa ra trong thư từ giữa các nhà toán học và trong tập hợp các tác phẩm của họ. Ngoài một
số nguồn cụ thể được trích dẫn hiện tại, các thư mục và tài liệu tham khảo sau đây đặc biệt hữu ích.

1. Các ghi chú và nhiều bài báo lịch sử được tóm tắt trong Jahrbuch über die Fortschritte der Mathematik
(phần về lịch sử toán học).

2. Tương tự trong Bibliotheca Mathematica.

Chỉ có ba nguồn đủ "riêng tư" để cần trích dẫn rõ ràng. Cuộc đời của Galois dựa trên tài liệu cổ điển của P.
Dupuy trong Annales scientifiques de l' École normale supérieure (tập 13, 1896), và các ghi chú được biên tập
bởi Jules Tannery. Thư từ giữa Weierstrass và Sonja Kowalewski được Mittag-Leffler xuất bản trong Acta
Mathematica (cũng như một phần trong Comptes rendus du 2me Congrès international des Mathematiciens,
Paris, 1902). Nhiều chi tiết về Gauss được lấy từ cuốn sách của W. Sartorius von Waltershausen, Gauss
zum Gedächtniss, Leipzig, 1856.

Sẽ là liều lĩnh khi tuyên bố rằng mọi ngày tháng hoặc cách viết tên riêng trong cuốn sách này đều chính
xác. Các ngày tháng được sử dụng chủ yếu với mục đích định hướng độc giả về tuổi của một người khi họ
thực hiện những phát minh độc đáo nhất của mình.

Về cách viết tên, tôi thú nhận sự bất lực của mình trước những biến thể như Basle, Bale, Basel cho một thị
trấn Thụy Sĩ, hoặc Utrendorff, Utizisdorf cho một thị trấn khác, mỗi cách viết được ưa thích bởi một số cơ
quan có uy tín. Khi phải chọn giữa James và Johann, hoặc giữa Wolfgang và Farkas, tôi chọn cách dễ dàng
hơn và xác định người đó bằng cách khác.

Hầu hết các chân dung được sao chép từ bộ sưu tập David Eugene Smith, Đại học Columbia. Chân dung
của Newton là từ một bản khắc gốc được cho mượn bởi Giáo sư E. C. Watson. Các bản vẽ đã được xây
dựng chính xác bởi ông Eugene Edwards.

Như trong một dịp trước đây (The Search for Truth), tôi rất vui được cảm ơn Tiến sĩ Edwin Hubble và vợ
ông, Grace, vì sự hỗ trợ vô giá của họ.

Mặc dù tôi là người duy nhất chịu trách nhiệm cho mọi tuyên bố trong cuốn sách, nhưng việc có được những
lời phê bình học thuật (ngay cả khi tôi không luôn luôn hưởng lợi từ chúng) từ hai chuyên gia trong các lĩnh
vực mà tôi không thể tự nhận là chuyên gia, đã giúp ích rất nhiều, và tôi tin rằng những lời phê bình mang
tính xây dựng của họ đã làm giảm bớt những thiếu sót của tôi. Tiến sĩ Morgan Ward cũng đã phê bình
một số chương và đưa ra nhiều gợi ý hữu ích về các vấn đề mà ông là chuyên gia. Toby, như trước đây, đã
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đóng góp rất nhiều; để ghi nhận những gì cô ấy đã cho tôi, tôi dành tặng cuốn sách này cho cô ấy (nếu cô
ấy chấp nhận) - nó là của cô ấy cũng như của tôi.

Cuối cùng, tôi muốn cảm ơn các nhân viên của các thư viện khác nhau đã hào phóng giúp đỡ với việc cho
mượn các cuốn sách quý hiếm và tài liệu tham khảo. Đặc biệt, tôi muốn cảm ơn các thủ thư tại Đại học
Stanford, Đại học California, Đại học Chicago, Đại học Harvard, Đại học Brown, Đại học Princeton, Đại
học Yale, Thư viện John Crerar (Chicago), và Viện Công nghệ California.

--- E. T. BELL

Họ nói, họ nói gì, hãy để họ nói.

---(Khẩu hiệu của Đại học Marischal, Aberdeen)

Khoa học Toán học Thuần túy, trong sự phát triển hiện đại của nó, có thể được coi là sáng tạo
độc đáo nhất của tinh thần con người.

---A. N. WHITEHEAD (Science and the Modern World, 1925)

Một sự thật toán học không đơn giản cũng không phức tạp trong chính nó, nó là vậy.

---ÉMILE LEMOINE

Một nhà toán học mà không phải là một nhà thơ sẽ không bao giờ là một nhà toán học hoàn
chỉnh.

---KARL WEIERSTRASS

Tôi đã nghe chính mình bị buộc tội là một kẻ phản đối, một kẻ thù của toán học, điều mà không
ai có thể đánh giá cao hơn tôi, vì nó đạt được chính điều mà tôi đã bị từ chối.

---GOETHE

Các nhà toán học giống như những người yêu nhau. . . . Hãy cho một nhà toán học nguyên lý
nhỏ nhất, và anh ta sẽ rút ra một hệ quả mà bạn cũng phải chấp nhận, và từ hệ quả này, ra một
hệ quả khác.

---FONTENELLE

Dễ dàng hơn để vẽ một vòng tròn vuông hơn là vượt qua một nhà toán học.

---AUGUSTUS DE MORGAN

Tôi hối tiếc rằng trong bài giảng này, tôi đã phải đưa ra một liều lượng lớn hình học bốn chiều.
Tôi không xin lỗi, vì tôi thực sự không chịu trách nhiệm cho việc tự nhiên ở khía cạnh cơ bản
nhất của nó là bốn chiều. Mọi thứ là như vậy. . . .

---A. N. WHITEHEAD (The Concept of Nature, 1920)

Số cai trị vũ trụ.

---THE PYTHAGOREANS

Toán học là Nữ hoàng của Khoa học, và Số học là Nữ hoàng của Toán học.

---C. F. GAUSS

Như vậy, số có thể được coi là cai trị toàn bộ thế giới của lượng, và bốn quy tắc của số học có
thể được coi là trang bị đầy đủ của nhà toán học.

---JAMES CLERK MAXWELL

Các nhánh khác nhau của Số học -- Tham vọng, Phân tâm, Xấu xí, và Chế giễu.

---THE MOCK TURTLE (Alice in Wonderland)

Chúa tạo ra các số nguyên, phần còn lại là công việc của con người.
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---LEOPOLD KRONECKER

[Số học] là một trong những nhánh lâu đời nhất, có lẽ là nhánh lâu đời nhất, của kiến thức nhân
loại; và một số bí mật sâu sắc nhất của nó nằm gần những sự thật tầm thường nhất của nó.

---H. J. S. SMITH

Các tác phẩm của Plato không thuyết phục bất kỳ nhà toán học nào rằng tác giả của chúng là
người nghiện hình học. . . . Chúng ta biết rằng ông khuyến khích toán học. . . . Nhưng nếu --
điều mà không ai tin -- câu nói upbels ἀγεωμέτρητος εἰσίτω [Hãy để không ai không biết hình học
bước vào] của Tzetzes được viết trên cổng của ông, nó sẽ không chỉ ra hình học bên trong hơn là
một lời cảnh báo không quên mang theo một gói bánh sandwich sẽ hứa hẹn một bữa tối ngon.

---AUGUSTUS DE MORGAN

Không có con đường hoàng gia dẫn đến hình học.

---MENAECHMUS (nói với ALEXANDER ĐẠI ĐẾ)

Ông đã nghiên cứu và gần như làm chủ sáu cuốn sách của Euclid từ khi ông là thành viên của
Quốc hội.

Ông bắt đầu một khóa học kỷ luật tinh thần nghiêm ngặt với ý định cải thiện khả năng của
mình, đặc biệt là khả năng logic và ngôn ngữ. Do đó, sự yêu thích của ông đối với Euclid, mà
ông mang theo trên đường đi cho đến khi ông có thể dễ dàng chứng minh tất cả các mệnh đề
trong sáu cuốn sách; thường học đến tận đêm, với một ngọn nến gần gối, trong khi các luật sư
đồng nghiệp của ông, nửa tá trong một phòng, làm đầy không khí với tiếng ngáy không dứt.

---ABRAHAM LINCOLN (Tự truyện ngắn, 1860)

Nghe có vẻ kỳ lạ, sức mạnh của toán học nằm ở việc tránh mọi suy nghĩ không cần thiết và ở sự
tiết kiệm tuyệt vời của các hoạt động tinh thần.

---ERNST MACH

Một đường cong duy nhất, được vẽ theo cách của đường cong giá bông, mô tả tất cả những gì
tai có thể nghe được như kết quả của một buổi biểu diễn âm nhạc phức tạp nhất. . . . Đối với
tôi, đó là một bằng chứng tuyệt vời về sức mạnh của toán học.

---LORD KELVIN

Nhà toán học, được cuốn theo dòng chảy của các ký hiệu, xử lý những sự thật thuần túy hình
thức, vẫn có thể đạt được những kết quả vô cùng quan trọng cho việc mô tả vũ trụ vật lý của
chúng ta.

---KARL PEARSON

Các ví dụ . . . có thể được nhân lên ad libitum, cho thấy việc giải thích kết quả thí nghiệm
thường khó khăn như thế nào nếu không có sự trợ giúp của toán học.

---LORD RAYLEIGH

Nhưng có một lý do khác cho danh tiếng cao của toán học: nó cung cấp cho các khoa học tự
nhiên tính chính xác ở một mức độ an toàn nhất định mà, không có toán học, họ không thể đạt
được.

---ALBERT EINSTEIN

Toán học là công cụ đặc biệt phù hợp để xử lý các khái niệm trừu tượng thuộc bất kỳ loại nào
và không có giới hạn nào đối với sức mạnh của nó trong lĩnh vực này. Vì lý do này, một cuốn
sách về vật lý mới, nếu không chỉ thuần túy mô tả công việc thực nghiệm, phải có cơ sở là toán
học.

---P. A. M. DIRAC (Quantum Mechanics, 1930)
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Khi tôi tiến hành nghiên cứu Faraday, tôi nhận ra rằng phương pháp của ông trong việc hình
dung các hiện tượng [của điện từ học] cũng là một phương pháp toán học, mặc dù không được
thể hiện dưới dạng ký hiệu toán học thông thường. Tôi cũng nhận thấy rằng các phương pháp
này có thể được biểu diễn dưới dạng toán học thông thường, và do đó so sánh với các phương
pháp của các nhà toán học chuyên nghiệp.

---JAMES CLERK MAXWELL (A Treatise on Electricity and Magnetism, 1873) *

Truy vấn 64 . . . Liệu các nhà toán học . . . có những bí ẩn của họ, và, hơn nữa, sự chống đối
và mâu thuẫn của họ?

---BISHOP BERKELEY

Để tạo ra một triết học lành mạnh, bạn nên từ bỏ siêu hình học nhưng hãy là một nhà toán học
giỏi.

---BERTRAND RUSSELL (trong một bài giảng, 1935)

Toán học là siêu hình học tốt duy nhất.

---LORD KELVIN

Làm thế nào mà toán học, vốn là sản phẩm của tư duy con người độc lập với kinh nghiệm, lại
có thể thích nghi một cách tuyệt vời với các đối tượng của thực tế?

---ALBERT EINSTEIN (1920).

Mọi khám phá mới đều có dạng toán học, vì không có hướng dẫn nào khác mà chúng ta có thể
có.

---C. G. DARWIN (1931).

Khái niệm vô cực! Không có câu hỏi nào khác từng làm rung động tinh thần con người sâu sắc
đến vậy.

---DAVID HILBERT (1921).

Khái niệm vô cực là người bạn lớn nhất của chúng ta; nó cũng là kẻ thù lớn nhất của sự bình yên
trong tâm trí chúng ta. . . . Weierstrass đã dạy chúng ta tin rằng cuối cùng chúng ta đã thuần
hóa và kiểm soát được yếu tố không tuân thủ này. Tuy nhiên, điều đó không phải là trường hợp;
nó đã lại thoát ra. Hilbert và Brouwer đã bắt đầu thuần hóa nó một lần nữa. Trong bao lâu?
Chúng ta tự hỏi.

---JAMES PIERPONT (Bulletin of the American Mathematical Society, 1928).

Theo ý kiến của tôi, một nhà toán học, trong chừng mực mà ông là một nhà toán học, không
cần phải bận tâm với triết học -- một ý kiến, hơn nữa, đã được nhiều triết gia bày tỏ.

---HENRI LEBESGUE (1936).

Chúa luôn hình học hóa.

---PLATO.

Chúa luôn số học hóa. -- C. G. J. JACOBI.

Kiến trúc sư vĩ đại của Vũ trụ giờ đây bắt đầu xuất hiện như một nhà toán học thuần túy.

---J. H. JEANS (The Mysterious Universe, 1930).

Toán học là khoa học chính xác nhất, và các kết luận của nó có khả năng được chứng minh tuyệt
đối. Nhưng điều này chỉ đúng vì toán học không cố gắng rút ra các kết luận tuyệt đối. Tất cả
các sự thật toán học đều tương đối, có điều kiện.

---Charles Proteus Steinmetz (1923).
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Đó là một quy tắc an toàn để áp dụng rằng, khi một tác giả toán học hoặc triết học viết với một
sự sâu sắc mơ hồ, ông ta đang nói nhảm.

---A. N. Whitehead (1911).

5.5 Lý thuyết lập trình game
Phần này mình sẽ trình bày các lý thuyết cơ bản trong lập trình game và sử dụng DirectX 11 để demo. Tài
liệu tham khảo chính là [44].

5.5.1 Model presentation
Mỗi object 3D được biểu diễn dưới dạng xấp xỉ các tam giác, gọi là tam giác mesh, liền kề nhau và tạo nên
mô hình 3D.

Để tùy chỉnh độ mạnh yếu (intensity) của ánh sáng, ta sử dụng số thực từ 0 tới 1.

Ví dụ, trong hệ màu RGB thì (0, 25; 0, 67; 1, 00) biểu diễn 25% độ mạnh màu đỏ, 67% độ mạnh màu xanh
lá và 100% độ mạnh màu xanh dương.

Như vậy, trong hệ màu RGB, màu sắc được biểu diễn bởi vector (𝑟, 𝑔, 𝑏) với 0 6 𝑟, 𝑔, 𝑏 6 1.

Color Operations

Ta có thể cộng, trừ hai màu (𝑟1, 𝑔1, 𝑟1) và (𝑟2, 𝑔2, 𝑏2) thì được kết quả

(𝑟1, 𝑔1, 𝑏1)± (𝑟2, 𝑔2, 𝑏2) = (𝑟1 ± 𝑟2, 𝑔1 ± 𝑔2, 𝑏1 ± 𝑏2).

Modulation hay componentwise multiplication (nhân đôi một) thực hiện phép nhân theo từng vị trí

(𝑟1, 𝑔1, 𝑏1)⊗ (𝑟2, 𝑔2, 𝑏2) = (𝑟1𝑟2, 𝑔1𝑔2, 𝑏1𝑏2).

128-bit color

Một thành phần bổ sung ngoài R, G, B là A (alpha). Alpha xác định độ mờ (opacity) trong blending.

Khi đó, để xác định màu có alpha ta dùng vector bốn chiều (𝑟, 𝑔, 𝑏, 𝑎) với 0 6 𝑟, 𝑔, 𝑏, 𝑎 6 1.

32-bit color

Để biểu diễn màu với 32 bit, mỗi thành phần (𝑟, 𝑔, 𝑏, 𝑎) được biểu diễn bởi một byte. Tương tự, 0 là độ
mạnh thấp nhất (không có) và 255 là độ mạnh lớn nhất.

INFO-CIRCLE Ghi chú

Màu 32-bit có thể chuyển thành màu 128-bit bằng việc chia cho 255 vì mỗi thành phần đều nằm thỏa
0 6 𝑛 6 255 nên 0 6 𝑛/255 6 1.

Ngược lại, màu 128-bit có thể chuyển thành màu 32-bit bằng phép nhân cho 255 và làm tròn tới số
nguyên gần nhất.

Trong DirectX, XMCOLOR biểu diễn alpha, red, green, blue theo thứ tự.
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5.5.2 Rendering Pipeline
Rendering Pipeline bao gồm các công đoạn được thể hiện ở hình 5.1.

Input Assembler
(IA) Stage

Vertex Shader
(VS) Stage

Hull Shader
(HS) Stage

Tessellator Stage

Domain Shader
(DS) Stage

Geometry Shader
(GS) Stage

Rasterizer Stage
(RS)

Pixel Shader
(PS) Stage

Output Merger
(OM) Stage

Stream Output
(SO) Stage

GPU Resources:
buffers, textures

Hình 5.1: Rendering Pipeline

5.5.3 Input Assembler Stage
Công đoạn Input Assembler (IA) đọc các dữ liệu hình học, bao gồm đỉnh (vertice) và chỉ số (indice), để
thành lập các cơ chế (primitive) hình học như điểm, đường thẳng, tam giác.
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Vertex

Đỉnh là một điểm trong không gian.

Primitive Topology

Đỉnh được đóng gói (bound) và rendering pipeline bởi vertex buffer, là một cấu trúc dữ liệu trong DirectX.

Sử dụng primitive topology ta chỉ định liên kết giữa các đỉnh để hình thành các đối tượng hình học (đỉnh
đơn, đoạn thẳng nối hai đỉnh, tam giác nối ba đỉnh, ...).

void ID3D11DeviceContext::IASetPrimitiveTopology(...);

Khi ta có một danh sách các đỉnh thì có thể áp dụng một trong các topology sau để vẽ chúng.

1. Point List: mỗi đỉnh được vẽ như một đỉnh độc lập.

2. Line Strip: các đỉnh thành lập các đoạn thẳng nối liền nhau. Giả sử ta có 𝑛 đỉnh là 𝑣1, 𝑣2, ..., 𝑣𝑛 thì
ta vẽ 𝑛− 1 cạnh là 𝑣1𝑣2, 𝑣2𝑣3, ..., 𝑣𝑛−1𝑣𝑛.

3. Line List: cứ hai đỉnh sẽ vẽ một cạnh. Giả sử ta có 2𝑛 đỉnh là 𝑣1, 𝑣2, ..., 𝑣2𝑛 thì ta vẽ 𝑛 cạnh 𝑣1𝑣2,
𝑣3𝑣4, ..., 𝑣2𝑛−1𝑣2𝑛.

4. Triangle Strip: các đỉnh thành lập các tam giác nối liền nhau. Giả sử ta có 𝑛 đỉnh là 𝑣1, 𝑣2, ..., 𝑣𝑛 thì
ta vẽ 𝑛− 2 tam giác 𝑣1𝑣2𝑣3, 𝑣2𝑣3𝑣4, ..., 𝑣𝑛−2𝑣𝑛−1𝑣𝑛.

5. Triangle List: cứ ba đỉnh ta vẽ một tam giác. Khi đó với 3𝑛 đỉnh ta có 𝑛 tam giác.

6. Primitives with Adjacency: một triangle list được gọi là adjacency nếu một tam giác kề với một tam
giác khác.

7. Control Point Patch List: optional cho tessellation stage.

Index

Ta sử dụng chỉ số (index) thay vì đỉnh (vertex) nhằm giảm bộ nhớ lưu trữ và xử lý.

Xét hình 5.2. Hình chữ nhật được tạo từ bốn đỉnh 𝑣0, 𝑣1, 𝑣2 và 𝑣3.

v0

v1 v2

v3

Hình 5.2: Hình chữ nhật ghép từ hai hình tam giác

Ta có thể lưu mảng các đỉnh và sau đó là mảng các chỉ số tương ứng với từng tam giác.

Vertex v[4] = { v0, v1, v2, v3 };

UINT indice[6] = {
0, 1, 2, // tam giác v0 -> v1 -> v2
0, 2, 3, // tam giác v0 -> v2 -> v3

};
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Một điều cần lưu ý là thứ tự đỉnh trong các tam giác phải giống nhau (cùng chiều hoặc ngược chiều kim
đồng hồ). Lý do cho việc này là để xác định mặt trước và sau, và sẽ được giải thích rõ hơn trong công đoạn
culling.

5.5.4 Vertex Shader Stage
Sau khi chỉ định primitives để assembler, các đỉnh sẽ được chuyển tới vertex shader stage.

Có thể hiểu rằng, vertex shader stage lấy đầu vào là từng đỉnh và đầu ra cũng là đỉnh.

Hàm VertexShader chúng ta cài đặt để chỉ dẫn cho GPU xử lý.

Các công dụng của vertex shader gồm:

• transformation: là các phép biến hình, bao gồm tịnh tiến (translation), quay (rotation) và co dãn
(scale);

• lighting: ánh sáng;

• displacement mapping (?).

Chúng ta không những có thể truy cập dữ liệu của input vertex mà còn truy cập được texture, ma trận của
phép biến hình, scene light.

Local Space và World Space

World Space là hệ tọa độ toàn cục (global) chứa tất cả object trong không gian 3D.

Đôi khi một object sẽ có vị trí tương đối so với object khác thay vì gốc tọa độ. Ví dụ cánh tay gắn với cơ
thể thì local space sẽ dễ dùng hơn.

Local Space là hệ tọa độ gắn với một object nào đó và xác định vị trí của một số object khác theo vị trí
tương đối đối với object làm gốc.

Câu hỏi là: làm sao dời tất cả object từ local space tới world space? Chúng ta sẽ sử dụng phép biến đổi
world transform và tính toán trên world matrix.

Thuận lợi khi dùng world transform là:

1. Đơn giản: thông thường trong local space thì object nằm ở tâm nên sẽ dễ dàng tính theo world space.

2. Một object có thể dùng trong nhiều scene khác nhau nên không cần thiết phải chỉ định tọa độ cố định
world space (không phải chỉ định tọa độ cho từng scene).

3. Đôi khi ta vẽ cùng object nhiều lần trên scene nhưng khác tọa độ, hướng, kích cỡ. Mỗi lần vẽ ta gọi
là một instance.

Giả sử:

• 𝑄𝑤 = (𝑄𝑥, 𝑄𝑦, 𝑄𝑧) là tọa độ của object ban đầu;

• 𝑢𝑤 = (𝑢𝑥, 𝑢𝑦, 𝑢𝑧) là trục 𝑥 của local space;

• 𝑣𝑤 = (𝑣𝑥, 𝑣𝑦, 𝑣𝑧) là trục 𝑦 của local space;

• 𝑤𝑤 = (𝑤𝑥, 𝑤𝑦, 𝑤𝑧) là trục 𝑧 của local space;

Khi đó ma trận chuyển từ local space sang world space là

𝑊 =

⎛⎜⎜⎝
𝑢𝑥 𝑢𝑦 𝑢𝑧 0
𝑣𝑥 𝑣𝑦 𝑣𝑧 0
𝑤𝑥 𝑤𝑦 𝑤𝑧 0
𝑄𝑥 𝑄𝑦 𝑄𝑧 1

⎞⎟⎟⎠ .

Thông thường 𝑊 là một dãy các biến đôi liên tiếp, ví dụ 𝑊 = 𝑆𝑅𝑇 , trong đó:
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• 𝑆 là ma trận co dãn (scale matrix);

• 𝑅 là ma trận xoay (rotation matrix);

• 𝑇 là ma trận tịnh tiến (translation matrix).

Ví dụ:

𝑆 =

⎛⎜⎜⎝
2 0 0 0
0 1 0 0
0 0 2 1
0 0 0 1

⎞⎟⎟⎠ , 𝑅 =

⎛⎜⎜⎝
√
2/2 0 −

√
2/2 0

0 1 0 0√
2/2 0

√
2/2 0

0 0 0 1

⎞⎟⎟⎠ , 𝑇 =

⎛⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 1 0
10 0 10 1

⎞⎟⎟⎠ .

Khi đó

𝑊 = 𝑆𝑅𝑇 =

⎛⎜⎜⎝
√
2 0 −

√
2 0

0 1 0 0√
2 0

√
2 0

10 0 10 1

⎞⎟⎟⎠
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